
Renaissance: Benchmarking Suite for Parallel
Applications on the JVM

Aleksandar Prokopec
Oracle Labs
Switzerland

aleksandar.prokopec@oracle.com

Andrea Rosà
Università della Svizzera italiana

Switzerland
andrea.rosa@usi.ch

David Leopoldseder
Johannes Kepler Universität Linz

Austria
david.leopoldseder@jku.at

Gilles Duboscq
Oracle Labs
Switzerland

gilles.m.duboscq@oracle.com

Petr Tůma
Charles University
Czech Republic

petr.tuma@d3s.mff.cuni.cz

Martin Studener
Johannes Kepler Universität Linz

Austria
martinstudener@gmail.com

Lubomír Bulej
Charles University
Czech Republic

bulej@d3s.mff.cuni.cz

Yudi Zheng
Oracle Labs
Switzerland

yudi.zheng@oracle.com

Alex Villazón
Universidad Privada Boliviana

Bolivia
avillazon@upb.edu

Doug Simon
Oracle Labs
Switzerland

doug.simon@oracle.com

Thomas Würthinger
Oracle Labs
Switzerland

thomas.wuerthinger@oracle.com

Walter Binder
Università della Svizzera italiana

Switzerland
walter.binder@usi.ch

Abstract
Established benchmark suites for the Java Virtual Machine
(JVM), such as DaCapo, ScalaBench, and SPECjvm2008, lack
workloads that take advantage of the parallel programming
abstractions and concurrency primitives offered by the JVM
and the Java Class Library. However, such workloads are
fundamental for understanding the way in which modern
applications and data-processing frameworks use the JVM’s
concurrency features, and for validating new just-in-time
(JIT) compiler optimizations that enable more efficient execu-
tion of such workloads.We present Renaissance, a new bench-
mark suite composed of modern, real-world, concurrent, and
object-oriented workloads that exercise various concurrency
primitives of the JVM. We show that the use of concurrency
primitives in these workloads reveals optimization oppor-
tunities that were not visible with the existing workloads.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00
https://doi.org/10.1145/3314221.3314637

We use Renaissance to compare performance of two state-
of-the-art, production-quality JIT compilers (HotSpot C2
and Graal), and show that the performance differences are
more significant than on existing suites such as DaCapo and
SPECjvm2008. We also use Renaissance to expose four new
compiler optimizations, and we analyze the behavior of sev-
eral existing ones. Evaluating these optimizations using four
benchmark suites shows a more prominent impact on the
Renaissance workloads than on those of other suites.

CCS Concepts • General and reference → Empirical
studies;Evaluation;Metrics; • Software and its engineer-
ing→ Just-in-time compilers;Dynamic compilers;Run-
time environments; Object oriented languages; Functional
languages; • Computing methodologies → Parallel pro-
gramming languages; Concurrent programming languages;

Keywords benchmarks, JIT compilation, parallelism, con-
currency, JVM, object-oriented programming benchmarks,
functional programming benchmarks, Big Data benchmarks

ACM Reference Format:
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles
Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi Zheng,
Alex Villazón, Doug Simon, ThomasWürthinger, andWalter Binder.
2019. Renaissance: Benchmarking Suite for Parallel Applications
on the JVM. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’19), June
22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 26 pages.
https://doi.org/10.1145/3314221.3314637

https://doi.org/10.1145/3314221.3314637
https://doi.org/10.1145/3314221.3314637

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

1 Introduction
To drive innovation in managed runtimes and just-in-time
(JIT) compilers, researchers and practitioners rely on bench-
marks suites that capture representative patterns of appli-
cation behavior. This allows developing and validating new
optimizations and memory management techniques. Even
though an improvement demonstrated on a benchmark is not
always a sufficient condition, it is usually a necessary condi-
tion for a new optimization or technique to be considered
useful. The Java Virtual Machine (JVM) is at the forefront of
managed runtime research and development, and due to its
popularity and widespread use, many benchmarking suites
targeting the JVM have been developed. Of those most es-
tablished, the DaCapo benchmark suite introduced a set of
workloads to help understand memory behavior of complex
Java applications [21]. The ScalaBench suite [100] focused
on Scala programs, which exhibit a significantly different be-
havior compared to Java programs [99], despite Scala being
compiled to Java bytecode and executed on the JVM. The
SPECjvm2008 focused on computationally intensive work-
loads [1], while the more recent SPECjbb2015 benchmark
simulates the IT infrastructure of an online supermarket [4].
Still, as we argue in this paper, neither of the existing

benchmark suites for the JVM was specifically focused on
concurrency and parallelism. Moreover, the JVM has evolved
considerably over the years, and gained support for atomic
operations [54], lock-free concurrent data structures [51],
and non-blocking I/O [19], as well as new language and
JVM features such as Java Lambdas [36], invokedynamic
and method handles [97], to name a few. At the same time,
the arrival of multicore processors prompted a plethora of
new programming models and frameworks, such as soft-
ware transactional memory [24, 41, 101], fork-join [50], data-
parallel collections [33, 81, 111], and actors [5, 39, 105]. These
workloads potentially present new optimization opportuni-
ties for compilers and virtual machines.
This paper proposes a new representative set of bench-

marks that cover modern JVM concurrency and parallelism
paradigms. While we do not argue that the proposed bench-
mark suite is exhaustive in that it represents all relevant
workloads or optimization opportunities, we have found
these benchmarks useful, since they helped us identify, im-
plement and assess new compiler optimizations. As we show
in the paper, three other established benchmark suites did
not exhibit similar characteristics.

The contributions in this work are as follows:

• We propose a new benchmark suite, which consists of
21 parallelism- and concurrency-oriented benchmarks
for the JVM, and relies on multiple existing state-of-
the-art Java and Scala frameworks (Section 2).

• We identify a set of metrics that reflect the usage of
the basic concurrency primitives on the JVM, along
with a normalization technique (Section 3).

• We show that the proposed benchmarks are diverse
in the sense that they span the space of concurrency
metrics better than the existing suites (Section 4).

• We demonstrate that the proposed benchmarks reveal
new opportunities for JIT compilers by implementing
four new optimizations in the Graal JIT compiler [32]
(Section 5).

• We evaluate the impact of the four new optimizations,
plus three pre-existing optimizations, on Renaissance,
DaCapo, ScalaBench and SPECjvm2008 suites, show-
ing that all 7 optimizations exhibit over 5% impact on
Renaissance, compared to only 2 on ScalaBench, 1 on
DaCapo, and 3 on SPECjvm2008 (Section 6).

• We show that the proposed benchmark suite is as com-
plex as DaCapo and ScalaBench, and much more com-
plex than SPECjvm2008, by evaluating six Chidamber
and Kemerer metrics, and by inspecting the compiled
code size and the hot method count of all the bench-
marks (Section 7),

We present related work in Section 8, and we summarize
our observations in Section 9.

2 Motivation and Benchmark Selection
Our work has several motivating factors. First, we realized
that the state-of-the-art JIT compilers, such as C2 and Graal,
have very comparable performance, e.g., on the DaCapo
suite, and that it has become extremely difficult to demon-
strate significant performance gains on the existing work-
loads when exploring new compiler optimizations. Second,
we determined thatmanymodern programming abstractions,
such as Java Lambdas [36], Streams [33], or Futures [53],
were not represented in the existing benchmark suites. More-
over, we found that the optimizations in existing JIT compil-
ers rarely focused on concurrency-related primitives.

2.1 Selection Methodology
To identify a core set of benchmarks which would reflect
the use of modern concurrency-related abstractions and pro-
gramming paradigms, we manually collected a large number
of candidate workloads using popular Java and Scala frame-
works. In addition to manual filtering, we also developed
a tool, inspired by the AutoBench toolchain [113], to scan
the online corpus of open-source projects on GitHub1 for
candidate workloads. When selecting benchmarks for the
Renaissance suite, our main goals were as follows.
ModernConcurrency. Benchmarks in the suite should rely
on different styles of concurrent and parallel programming.
These include data-parallelism, task-parallelism, streaming

1We included GitHub projects with updates in the last 3 years (2015–2017)
and higher number of recent commits, pull requests, and number of stars.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

and pipelined parallelism, message-based concurrency, soft-
ware transactional memory, lock-based and lock-free con-
current data structures and in-memory databases, as well as
asynchronous programming and network communication.
RealisticWorkloads.Benchmarks should reflect real-world
applications. To this end, we focused onworkloads using pop-
ular Java and Scala frameworks, such as Java StreamAPI [33],
Apache Spark [111], the Java Reactive Extensions [15, 16], the
Java Fork/Join framework [50], ScalaSTM [22], and Twitter
Finagle [12]. We reused existing workloads where possible,
and we adopted several standalone benchmarks that target
specific paradigms, such as STMBench7 [38], J. Paumard’s
Scrabble benchmark [69], and the CloudSuite MovieLens
benchmark for Apache Spark [35]. Overall, we collected
roughly 100 benchmarks since starting the effort in 2016.
Workload Diversity. Benchmarks should be sufficiently di-
verse so that they exercise different concurrency-related fea-
tures of the JVM, such as atomic instructions, Java synchro-
nized blocks, thread-park operations, or guarded blocks (i.e.,
the wait-notify pattern). At the same time, the benchmarks
should be object-oriented to exercise the parts of the JVM re-
sponsible for efficient execution of code patterns commonly
associated with abstraction in object-oriented programs, i.e.,
frequent object allocation and virtual dispatch. To this end,
we analyzed candidate projects by running their testing code
and recording various concurrency-related metrics (details
in Section 3) to ensure adequate coverage of the metric space.
This served as the basis for the diversity analysis in Section 4.
Deterministic Execution. Benchmarks should run deter-
ministically, even though it is not possible to achieve full de-
terminism in concurrent benchmarks due to non-determinism
inherent to thread scheduling. However, apart from that,
the control flow of a benchmark should not include non-
deterministic choices on data produced, e.g., by a random
generator seeded by the current time instead of a constant.
Open-Source Availability. Benchmarks should be open-
source, and rely only on open-source frameworks, whenever
possible. This goal is important for several reasons. First of
all, it enables inspection of the workloads by the community
and allows multiple parties to collaborate on improving and
maintaining the suite so that it can evolve along with the
target platform ecosystem. Moreover, it enables source-code
level analysis of the benchmarks, and allows evaluating the
actionability of profiler results. And last, but not least, open-
source software is less likely to cause licensing issues.
Avoiding Known Pitfalls. The benchmarks should avoid
pitfalls that were identified in other benchmark suites over
time and which hinder adoption in a broader community.
The lack of benchmark source code is one such pitfall. An-
other pitfall is the use of timeouts, which make it difficult
to analyze the benchmark execution using dynamic analysis
tools that require heavy-weight instrumentation, because
the timeouts keep triggering due to high overhead. Yet an-
other pitfall is benchmark correctness, avoiding benchmarks

with resource leaks and, especially in the case of concurrent
benchmarks, data races and deadlocks.

2.2 Renaissance Benchmarks and Harness
The set of benchmarks that we ultimately decided to include
in the Renaissance suite is shown in Table 1, along with
short descriptions. In total, 14 out of 21 benchmarks were
adapted from existing standalone benchmarks (akka-uct,
als, chi-square, dec-tree, fj-kmeans, log-regression, movie-lens,
naive-bays, philosophers, reactors-savina, rx-scrabble, scrab-
ble, stm-bench7 and streams-mnemonics), and the rest were
gathered from production usages of different companies, and
usages in existing applications.

All benchmarks run within a single JVM process, and only
rely on the JDK as an external dependency. Some of the
benchmarks use network communication, and they are en-
coded as multiple threads that exercise the network stack
within a single process (using the loopback interface). We
realize that this does not reflect realistic network conditions,
but it does exercise code responsible for spanning multiple
address spaces, which is common for data-parallel compu-
tational frameworks. The default execution time of each
benchmark is tuned to take several seconds.
We provide a harness that allows to run the benchmarks

and collect the results, and also allows to easily add new
benchmarks. The harness also provides an interface for cus-
tom measurement plugins, which can latch onto benchmark
execution events to perform additional operations. For ex-
ample, most of the metrics in Section 3 were collected using
custom plugins. In addition, the harness allows running the
benchmarks with JMH [102] (a standard microbenchmarking
tool for the JVM) as a frontend to avoid common measure-
ment pitfalls associated with benchmarking.

3 Characterizing Metrics
To meet the goals outlined in Section 2.1, we define a set of
metrics to characterize the usage of concurrency primitives,
basic primitives of object-oriented programming, and mod-
ern programming primitives introduced in JDK 7 or later.
Notably, our goal is not to define an exhaustive set of metrics
to cover all of these features. Instead, we aim at profiling
metrics that 1) can reasonably characterize the use of these
features, 2) can be collected with simple instrumentation,
and 3) can be easily understood.

In this section, we present the metrics used in benchmark
selection, and the details of how we collect them. Subsequent
sections compare these metrics across different benchmarks
and relate them with compiler optimizations.

3.1 Description of the Metrics
Table 2 presents the metrics used during benchmark selec-
tion. The initial several metrics in the list reflect the us-
age of some basic concurrency primitives on the JVM [94]:

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

Table 1. Summary of benchmarks included in Renaissance.

Benchmark Description Focus

akka-uct Unbalanced Cobwebbed Tree computation using Akka [5]. actors, message-passing
als Alternating Least Squares algorithm using Spark. data-parallel, compute-bound
chi-square Computes a Chi-Square Test in parallel using Spark ML [62]. data-parallel, machine learning
db-shootout Parallel shootout test on Java in-memory databases. query-processing, data structures
dec-tree Classification decision tree algorithm using Spark ML [62]. data-parallel, machine learning
dotty Compiles a Scala codebase using the Dotty compiler for Scala. data-structures, synchronization
finagle-chirper Simulates a microblogging service using Twitter Finagle [12]. network stack, futures, atomics
finagle-http Simulates a high server load with Twitter Finagle [12] and Netty [11]. network stack, message-passing
fj-kmeans K-means algorithm using the Fork/Join framework [50]. task-parallel, concurrent data structures
future-genetic Genetic algorithm function optimization using Jenetics [9]. task-parallel, contention
log-regression Performs the logistic regression algorithm on a large dataset. data-parallel, machine learning
movie-lens Recommender for the MovieLens dataset using Spark ML [62]. data-parallel, compute-bound
naive-bayes Multinomial Naive Bayes algorithm using Spark ML [62]. data-parallel, machine learning
neo4j-analytics Analytical queries and transactions on the Neo4J database [10]. query processing, transactions
page-rank PageRank using the Apache Spark framework [111]. data-parallel, atomics
philosophers Dining philosophers using the ScalaSTM framework [22]. STM, atomics, guarded blocks
reactors A set of message-passing workloads encoded in the Reactors framework [90]. actors, message-passing, critical sections
rx-scrabble Solves the Scrabble puzzle [69] using the RxJava framework. streaming
scrabble Solves the Scrabble puzzle [69] using Java 8 Streams. data-parallel, memory-bound
stm-bench7 STMBench7 workload [38] using the ScalaSTM framework [22]. STM, atomics
streams-mnemonics Computes phone mnemonics [64] using Java 8 Streams. data-parallel, memory-bound

Table 2. Metrics considered during benchmark selection.

Name Description

synch synchronized methods and blocks executed.
wait Invocations of Object.wait().
notify Invocations of Object.notify() and Object.notifyAll() .
atomic Atomic operations executed.
park Park operations.
cpu Average CPU utilization (user and kernel).
cachemiss Cache misses, including L1 cache (instruction and data), last-

layer cache (LLC), and translation lookaside buffer (TLB; in-
struction and data).

object Objects allocated.
array Arrays allocated.
method Methods invoked with invokevirtual, invokeinterface or

invokedynamic bytecodes.
idynamic invokedynamic bytecodes executed.

(1) synchronized blocks and methods (i.e. critical sections),
(2) wait/notify calls (i.e. guarded blocks), (3) atomicmemory-
access operations (e.g., compare-and-swap), (4) thread park-
ing and unparking. Since most high-level concurrency ab-
stractions are implemented from these basic primitives, their
usage rates estimate the use of concurrency abstractions dur-
ing execution. We therefore collect the dynamic invocation
counts of these primitives2.
2We omitted unparks, since they correlated with parks in all benchmarks.

Next, we define a metric for the average CPU utilization,
and ametric for the number of cachemisses during execution.
Both these metrics are indirectly related to concurrency –
for example, unless several CPUs or cores are utilized by the
benchmark, it is unlikely that the benchmark will exhibit
interesting synchronization behavior. Similarly, a high cache-
miss rate may indicate contention between threads.

Then, we track the object-allocation rate, the array-alloca-
tion rate, and the dynamic-dispatch rate (i.e., the execu-
tion counts of the invokedynamic, invokeinterface, or
invokevirtual bytecodes). These metrics estimate the us-
age of the basic primitives in object-oriented programming,
and usually correlate with the complexity of the code3.

Finally, we track the execution rate of the invokedynamic
bytecode (introduced in JDK 7 [97]), which supports dy-
namic languages on the JVM [66], and is also used to im-
plement Lambdas [36]. Java Lambdas are used in various
data-processing libraries – for example, Java Streams [33]
or Reactive Extensions [15] expose operations such as map
and reduce that typically take Lambda values as arguments.
Therefore, counting the invokedynamic occurrences allows
estimating the usage rate of high-level operations.

3Some data-parallel and streaming frameworks allocate intermediate arrays.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

3.2 Normalization
Absolute values of the metrics from Table 2 are not very
indicative, since a high value may reflect a long execution
rather than a frequent usage of a given primitive, which is
our focus. To this end, we use rates instead of absolute values,
and we normalize each metric (except cpu) by the number
of references cycles executed by the benchmark, defined as
machine cycles measured at a constant nominal frequency,
even if the real CPU frequency scales up or down [46].

We use reference cycles as ameasure of the amount of com-
putations executed by an application. Using reference cycles
allows comparing the metrics between different benchmarks,
even if they are executed under different or fluctuating CPU
frequencies. Moreover, reference cycles represent runtime
conditions more accurately, since they account for instruc-
tion complexity (as complex instructions take more cycles)
and for latencies due to e.g. cache misses.

3.3 Metric Collection
To collect the metrics, we rely on several tools. To pro-
file the usage of concurrency primitives (synch, wait, no-
tify, atomic, park), allocations (object, array), invocations
(method), and invokedynamic executions (idynamic), we de-
veloped a profiler based on bytecode instrumentation, built
on top of the open-source dynamic program-analysis frame-
work DiSL4 [61]. The profiler exploits the full bytecode cov-
erage offered by DiSL (i.e., it can instrument every method
that has a bytecode representation), so the metrics can be
collected in every loaded class, including the JDK classes, as
well as the classes that are dynamically generated or fetched
from a remote location. The profiler uses a deployment set-
ting of DiSL called Shadow VM [60] to enforce isolation
between analysis and application code, preventing certain
well-known problems that may be introduced by less isolated
approaches [49]. We profile atomic and park by intercept-
ing the respective method calls in sun.misc.Unsafe. CPU
utilization is sampled every ∼150ms using top [57]. Finally,
we use perf [70] to collect cache misses and reference cy-
cles (used for normalization). While instrumentation may
influence thread interleaving and bias the collection, we
made sure to keep the perturbations low with minimal in-
strumentation that avoids heap allocations, and by keeping
the profiling data structures in a separate process, on a sep-
arate NUMA node. Additional details of the experimental
setup are in Section B of the supplemental material.

4 Diversity
Having collected the metrics described in Section 3, we used
these metrics to narrow down the list of benchmarks, and to
compare Renaissance to the established benchmark suites.
In this section, we show that Renaissance represents the se-
lected concurrency primitives better than the existing suites,
4https://disl.ow2.org/

that it is comparable to suites such as DaCapo and Scal-
aBench in terms of object-allocation rates and dynamic dis-
patch, and that it exercises invokedynamic more often.

4.1 Benchmark Suites
We compare Renaissance with benchmarks included in sev-
eral established and widely-used benchmark suites for the
JVM: DaCapo [21], ScalaBench [100], and SPECjvm2008 [1]5.
These suites can be executed with different input sizes. In
DaCapo and ScalaBench, we use the largest input defined for
each benchmark, while in SPECjvm2008 we use the “lagom”
workload (a fixed-size workload, intended for research pur-
poses [2]). Table 6 in Section A of the supplemental material
lists all benchmarks that we considered.

All benchmarks have a warm-up phase, which takes either
a number of iterations (Renaissance, DaCapo, ScalaBench)
or some execution time (SPECjvm2008). Execution after the
warmup is classified as steady-state, and we always measure
steady-state execution in this paper.

4.2 Methodology
To study the differences between Renaissance and other
suites, we first collect the metrics defined in Section 3 for
all workloads;6 then, we visually compare them by means of
scatter plots. Rather than analyzing benchmarks on a coor-
dinate system composed of 11 dimensions (one dimension
for each collected metric) we resort to principal component
analysis (PCA) [48] to reduce data dimensionality, comparing
benchmarks on the resulting coordinate system. PCA is a
statistical technique that transforms a K-dimensional space
into another space of linearly uncorrelated variables, called
principal components (PCs). PCA applies linear transforma-
tions such that the first PC has the largest possible variance,
while each subsequent component has the highest possible
variance, under the constraint of being orthogonal to the pre-
ceeding components. Considering variance as a measure of
information, PCA allows one to reduce the dimensionality of
the original dataset by considering only the first components
(i.e., those retaining most of the variance) while preserving
as much information as possible from the original dataset.
We apply PCA as follows. Matrix X contains the set of

collected metrics. Each component xi j ∈ X (i ∈ [1,N];
j ∈ [1,K]; where N is the number of benchmarks analyzed
and K the number of collected metrics) is the normalized
value of metric j obtained on benchmark i . The metrics are
profiled during a single steady-state benchmark execution,
as discussed in Section B of the supplemental material.

5We use the latest released versions of the suites at the time of writing:
DaCapo v.9.12-MR1 (dated Jan. 2018), ScalaBench v.0.1.0 (dated Feb. 2012)
and SPECjvm2008 v.1.01 (dated May 2009). According to the guidelines on
the DaCapo website, we use the lusearch-fix benchmark instead of lusearch.
6Table 7 in Section D of the supplemental material reports the collected
unnormalized metrics for all analyzed benchmarks.

https://disl.ow2.org/

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

Table 3. Loadings of metrics (defined in Table 2) on the first
four principal components (PCs), sorted by absolute value
(descending order).

PC1 PC2 PC3 PC4
Metric load. Metric load. Metric load. Metric load.
object +0.50 atomic +0.67 cachemiss +0.58 idynamic +0.56
cpu -0.49 park +0.65 notify +0.50 array +0.42
method +0.44 method +0.20 wait +0.41 notify +0.42
array +0.40 notify +0.18 cpu -0.28 method -0.35
idynamic +0.27 idynamic -0.17 synch -0.25 cachemiss +0.28
synch -0.17 cpu -0.16 park -0.20 cpu +0.22
notify -0.13 cachemiss -0.08 idynamic -0.18 atomic +0.18
atomic -0.13 object +0.05 array -0.13 wait -0.15
cachemiss -0.07 array -0.03 method +0.10 object +0.13
park -0.06 synch -0.02 object -0.04 synch +0.11
wait -0.02 wait -0.00 atomic -0.03 park +0.05

(a) PC1 vs PC2. (b) PC3 vs PC4.

Figure 1. Scatter plots of benchmark scores over the first
four principal components (PCs).

Each metric vector X j is standardized to zero mean and
unit variance, yielding a new vector Yj =

X j−x j
sj

∈ Y (where
x j and sj are the mean and variance of X j , respectively).
According to established practices, we apply PCA on the
standardized matrix Y rather than onX. PCA produces a new
matrix S = YL, where each row vector in S is the projection
of the corresponding row vector in Y on the new coordinate
system formed by the PCs (called score), while li j ∈ L (li j ∈
[−1, 1]; i, j ∈ [1,K]) is the loading of metric i on the j-th
PC (henceforth called PCj). The absolute value of a loading
quantifies the correlation of a metric to a given PC, while its
sign determines if the correlation is positive or negative.

4.3 Analysis
Table 3 reports the loading of each metric on the first four
PCs, ranked by their absolute values in descending order,
while in Figure 1, we plot the scores of the considered bench-
marks against the four PCs. 7 The first four components
account for ∼60% of the variance present in the data. 8

7A larger version of Figure 1 can be found in Section E of the supplemental
material.
8As discussed in Section B of the supplemental material, we excluded bench-
marks tradebeans, actors and scimark.monte_carlo from the PCA.

As shown in Table 3, object allocation, dynamic dispatch,
and array allocation correlate positively with PC1, and CPU
utilization correlates negatively. Figure 1(a) shows that the
SPECjvm2008 benchmarks are clustered in the bottom-left
portion of the figure, while the benchmarks of the other
suites are well distributed along PC1. This is a sign that
Renaissance, DaCapo and ScalaBench contain applications
that nicely exercise object allocation and dynamic dispatch,
which is often a sign of using abstractions in those workloads.

In contrast, PC2 exhibits a strong positive correlation with
two concurrency primitives, i.e., atomic and park. As demon-
strated by the wide distribution of Renaissance benchmarks
along PC2, as shown in Figure 1(a), Renaissance benchmarks
extensively use these primitives. On the other hand, bench-
marks from the other suites span a limited space along PC2.
Similarly to PC2, PC3 is well correlated with metrics esti-
mating concurrency, particularly cache misses and the usage
of wait/notify. The benchmark distribution along PC3 is
similar to the one along PC2 (as shown in Figure 1(b)), which
suggests that generally, the use of concurrency primitives in
DaCapo, ScalaBench, and SPECjvm2008 is limited.
Finally, idynamic contributes most to PC4, with a strong

positive correlation. The presence of numerous Renaissance
benchmarks in the top part of Figure 1(b) demonstrates the
frequent execution of invokedynamic bytecodes in thework-
loads (indeed, 10 out of 21 benchmarks execute this byte-
code at runtime), which in turn may represent the use of
functional-style operations commonly found in parallelism
frameworks. This is expected, as other suites were released
before the introduction of invokedynamic in JDK 7 [97] and
of Lambas and Streams in JDK 8 [36] (while a recent DaCapo
version was released in Jan. 2018, there was no major change
to the constituent benchmarks, originally released in 2009).

5 Optimization Opportunities
Once we identified a sufficiently diverse set of benchmarks,
as explained previously in Sections 2, 3 and 4, we wanted
to check if these benchmarks help us in identifying new
optimization opportunities. We therefore investigated if we
can develop new JIT-compiler optimizations that are useful
for the code patterns that appear in Renaissance benchmarks.

In this section, we analyze several compiler optimizations
for which we noticed a significant impact on Renaissance
benchmarks, and we explain the reason for the impact. For
the purposes of the analysis, we used the Graal JIT com-
piler to implement 4 new optimizations9 (escape analysis
with atomic operations, loop-wide lock coarsening, atomic-
operation coalescing, andmethod-handle simplification), and
to study 3 existing optimizations (speculative guard move-
ment, loop vectorization, and dominance-based duplication
simulation). Notably, we do not claim that these are the

9Graal’s compliance test suite is available at GitHub [6], and we ran it to
check that our implementations are correct.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

only optimizations that are important for the Renaissance
benchmarks – we only discuss those parallelism-related op-
timizations that we were able to identify. Also, we focused
on high-level optimizations for the existing backends of the
Graal compiler. In particular, we did not study fence opti-
mizations although they are interesting for platforms such
as PowerPC or AArch6410.
In the rest of the section, we briefly explain each opti-

mization and discuss its impact on the benchmarks. We also
establish a relationship to the metrics from Section 3 and
illustrate performance with data cited from Section 6. We
present a minimal example for each optimization – while
such examples are rare in the source code, they do appear in
the compiler after transformations such as inlining.

In sections where optimization soundness is not apparent,
we reason as follows. Each program P has some set R of
possible results, where a result is a sequence of external side-
effects that the program’s threads make. An external side-
effect is an output of the program that the user can observe
(for example, the exit status or the I/O). Program’s executions
can produce different results because the program-threads’
execution schedule is non-deterministic. When writing a
concurrent program, users consider the program correct if
its executions produce some result from the set of allowed
resultsR. However, users are not allowed to assume any prob-
ability distribution of the program’s results across executions.
Thus, for an optimization to be valid, it must transform an
original program P with a set of possible results R into a
program P ′ with a set of possible results R′, such that R′ ⊆ R.
For each optimization, we informally reason why the set of
results of the transformed program is either equal to that of
the original program or its strict subset.

5.1 Escape Analysis with Atomic Operations
Partial Escape Analysis (PEA) [106] is an optimization that
reduces the amount of object allocations by postponing heap
allocation of an object until it escapes and can be seen by
other threads. PEA does this by analyzing the reads and
writes to the allocated objects. So far, the PEA in Graal was
limited to regular reads and writes, but it did not consider
atomic operations such as Compare-And-Swap (CAS).

1 o = new A(v) ;
2 CAS (o . x , v , new B (v2)) ;
3 CAS (o . x . y , v2 , v3)
4 return o . x ;

Consider the example on the
right: if the CASes are not ac-
counted for during PEA, then
the A and B objects must be al-
located before the first CAS.
A CAS operation involves up to three objects: the object

containing the field, the expected value and the new value. If
the object containing the field has not yet escaped, the CAS
can simply update the state of the scalar-replaced object.
This might replace the two other objects with scalars. This

10Graal has no PowerPC backend that we know of and its AArch64 backend
has not yet been optimized for fine-grained use of fences.

Figure 2. Number of atomic operations executed, normal-
ized by reference cycles.

also helps when the objects escape later, because the CAS
operation can be removed and the objects can be directly ini-
tialized in their mutated state before being published. In par-
ticular, this initialization can be performed with—potentially
cheaper—regular writes rather than with atomic instructions.

return new B (v3) ;
For example, in the previous

code, assuming the constructors
don’t let the objects escape, the allocation of the A object can
be completely eliminated and the value of the field in the B
object can directly be set to its updated value (v3).

We observed this pattern in usages of java.util.Random,
com.twitter.util.Promise, and java.util.concurrent.
atomic.AtomicReference. These classes change their inter-
nal state using a CAS operation. An application can create an
instance of these classes and change its internal state a few
times before discarding it (full escape analysis), or publishing
it to the rest of the program (partial escape analysis).

This optimization has a 24% impact on finagle-chirper . As
seen in Figure 2, this benchmark exhibits a higher value
for the atomic metric than any of the benchmarks from
the existing suites. This is coherent, since the optimization
targets an operation counted by the atomic metric.
Soundness. Objects that have not yet escaped cannot be
observed or mutated by other threads by definition. Conse-
quently, any schedule of the original program P will yield the
same outcome for the CAS operation: the transformed pro-
gram P ′ emulates this behavior on the thread which executed
the CAS in P . If the object containing the memory location
subject to CAS can be entirely escape-analyzed away in P ′,
no other thread can observe the effects of this CAS in P . In
this case, P ′ does not contain any external side-effect for this
CAS and any result of P ′ is a possible result of P . If the object
escapes at a later point in the program, its fully initialized
state containing the emulated effects of the CAS is safely
published during the side-effect that causes the object to
escape. In this case any schedule of P ′ can be mapped to a
schedule of P where all side-effects due to the initialization
of this object happened before the escape point.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

Figure 3. Number of synchronized methods or blocks exe-
cuted, normalized by reference cycles.

5.2 Loop-Wide Lock Coarsening

1 for (; c o nd i t i o n ;)
2 synchronized (x) {
3 . . . r e g i on . . .
4 }

Consider the Java loop shown in
the snippet on the right enclosing
a synchronized statement, which
protects a critical region. The time
spent entering and exiting the critical region can critically
affect performance if the loop is frequently executed.
1 int b = 0 ;
2 for (; c o nd i t i o n ;)
3 synchronized (x) {
4 for (; c o nd i t i o n ;) {
5 . . . r e g i on . . .
6 b ++ ;
7 if (b % T == 0)
8 break ; } }

This synchronization pattern
occurs when accessing syn-
chronized collections such as
the JDK java.util.Vector and
SynchronizedList (whose op-
erations use locks [13, 14]) inside
a loop.

To reduce the cost of locking and unlocking within the
synchronized block, we extended Graal with an optimiza-
tion that coarsens the lock [30] by tiling the iteration space
into C-sized chunks, as seen in the second snippet. The lock
is held in the entire nested loop, so the total number of
monitor operations decreases. The necessary condition is
that the code motion on condition and region is legal (e.g.,
condition must not obtain another lock).

Existing lock optimizations in HotSpot’s C2 [68] compiler
can optimize loops that have a statically known number
of iterations, by completely unrolling and coarsening the
lock across the unrolled iterations. By contrast, our optimiza-
tion tiles the iteration space of any loop to coarsen the lock,
without pulling the lock out of the loop completely. Lock
coarsening has an effect on fairness, but since synchronized
regions in Java are inherently not fair, this optimization does
not change the program semantics – applications relying on
fairness must anyway use more elaborate locking mecha-
nisms, such as the ReentrantLock class from the JDK.

Loop-wide lock coarsening improves fj-kmeans by about
71%. We found that a chunk size of C = 32 works well for
this benchmark. Generally, the impact depends on the size of
the critical region, as well as the number of loop iterations.
Figure 3 shows the synchronization counts across the suites,
normalized by the CPU reference cycles. Note that fj-kmeans

uses the synchronized primitive considerably more often,
which made it possible to identify this optimization.
Soundness. Any schedule s ′ of the transformed program
P ′ can be mapped to a schedule s of the original program
P , such that the respective external side-effects r ′ and r are
equal. Consider a schedule s ′ of P ′ in which some threadT is
about to execute a loop that contains a synchronized region,
and which has external side-effects r0 and the memory state
m0 before executing that loop. There exists some execution
schedule s of P in which all other threads pause during the
execution of the C iterations of the loop. That execution
schedule has the same external side-effects r0 and the mem-
ory state m0 before executing that loop. Since condition
does not acquire any locks, it is easy to show that both s and
s ′ have the same set of external side-effects and the same
memory state after executing C iterations of the loop. By in-
duction, the two execution schedules have the same external
side-effects r ′ = r , so the transformation is correct.

5.3 Atomic-Operation Coalescing

1 do {
2 v = READ(x)
3 nv = f 1 (v)
4 } while (! CAS (x , v , nv))
5 do {
6 v = READ(x)
7 nv = f 2 (v)
8 } while (! CAS (x , v , nv))

A typical retry-loop in lock-free
algorithms reads the value at a
memory address, and uses a CAS
instruction to atomically replace
the old value with the newly com-
puted value. If the CAS fails due
to a concurrent write by another
thread, the loop repeats, or otherwise terminates. The code
snippet on the right shows two such consecutive retry-loops.
This pattern rarely appears directly in user programs, but
it does occur after inlining high-level operations, such as
random-number generators or concurrent counters.

Consider an execution schedule in which no other thread
makes progress between the READ in line 2 up to the CAS in
line 8, In this execution schedule, the intermediate CAS in
line 4 is not observed by any other thread. According to
the Java Memory Model [94], threads are not guaranteed to
observe other execution schedules of this snippet, so user
programs should not assume that they will ever see f1(v).

1 do {
2 v = READ(x)
3 nv = f 2 (f 1 (v))
4 } while (! CAS (x , v , nv))

Consequently, if the functions
f1 and f2 are referentially trans-
parent, the new value nv of the
first CAS can be directly replaced

with the new value nv of the second CAS, and the second CAS
can be removed; the resulting snippet is on the left.
We observed this pattern in java.util.Random usages,

where the method nextDouble consecutively executes a CAS
twice. This optimization mostly affects future-genetic, im-
proving it by≈24%. The high atomic operations rate in future-
genetic, shown previously in Figure 2, is due to the shared
use of a pseudo-random generator, and this optimization
reduces the overall contention by eliminating some CASes.
Soundness.Call the original program P , and the transformed
program P ′. Let S be the subset of all the execution schedules

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

of P in which some thread T executes the CAS instructions
in lines 4-8, during which all other threads are paused. We
will show that any schedule of P ′ can be mapped to s ∈ S .

First, consider some schedule s ′ of P ′ in which the CAS in
line 4 succeeds. There must exist an execution schedule s ∈ S
of P that is exactly the same as s ′ until the lines 4-8. Before
T executes the CAS in line 4 of P ′, the set of external side-
effects must have been r0 in both s and s ′, and the state of the
memory must have beenm0 ·∪ {x→v}. After T executes the
CAS in line 4 of P ′, external side-effects remain r0 because
f1 and f2 are referentially transparent, and memory state
becomesm0 ·∪ {x→f2(f1(v))}. Since the CAS in line 4 of
P ′ succeeds in s ′, then CAS in line 4 of P succeeds in s . Since
s ∈ S , the CAS in line 8 must also succeed. Consequently, after
T executes the lines 4-8 of P , the set of external side-effects
is r0, andm0 ·∪ {x→f2(f1(v))} is the state of the memory.
Therefore, in the schedule s ∈ S , after the other threads

resume, P has the same memory state as P ′ in s ′, so the
remaining external side-effects r1 must be the same in both s
and s ′, and the execution has the same result r ′ = r = r0 · r1.
The proof is similar when the CAS in line 4 of P ′ fails.

In conclusion, any schedule s ′ of P ′ can be mapped to
a schedule s in P that has the same result r = r ′. By the
previous definition,R′ ⊆ R and the transformation is correct.

5.4 Method-Handle Simplification
Java 8 Lambdas are used to express declarative operations in
multiple frameworks such as Java Streams [33], futures [12,
51, 53, 54], and Rx [15]. In the bytecode, the lambda-value
creation is encoded with an invokedynamic instruction [97].
The first time this instruction is executed, a special boot-
strap method generates an anonymous class for the lambda,
and returns a method handle. The method handle’s invoke
method is then used to call the lambda.
. . .
invokedynamic #14 , 0
a load 11
i n v o k e v i r t u a l #15 , 2
. . .

Consider the sequence of byte-
codes shown on the left. By the
time this code gets compiled, the
invokedynamic gets replaced with

the address of the generated method-handle object.

Invoke

Arguments

C(0x2FB7B44C)The figure on the right shows the cor-
responding program segment in the inter-
mediate representation used by Graal [32].
The Invoke node represents the second
invoke, while Arguments encapsulates the argument list. Im-
portantly, the first argument C is a constant that represents
the address of the method-handle in memory.

In frameworks that parameterize operations with lambda
values, inlining the body of the lambda typically triggers
other optimizations. Unfortunately, the method handle’s
invoke method is polymorphic, which prevents the inlining.
Even though the method-handle object has a constant ad-
dress, the compiler does not know the actual code of the JVM
method that the method-handle object refers to. We therefore
used the existing JVM compiler interface [96] to resolve the

Figure 4. Number of invokedynamic bytecodes executed,
normalized by reference cycles.

method-handle-object address to the JVM method that is
encapsulated within the method handle. This allowed us to
replace method-handle calls with direct calls, which can be
inlined in the subsequent phases in the compiler.

We found that this generally improves performance across
multiple methods. For example, using Oracle Developer Stu-
dio 12.6, we recorded the hottest methods in scrabble, along
with the execution times with and without this optimization.

with
(ms)

w/o
(ms) Compilation unit

303.4 350.0 <Total>
25.9 29.6 JavaScrabble.lambdarun2
23.7 23.1 java.util.Spliterator$OfInt.forEachRemaining
22.4 28.8 java.util.stream.ReferencePipeline$3$1.accept
18.1 20.4 JavaScrabble.lambdarun5

In the preceding table, method-handle simplification re-
duces the execution time for most methods, but not for the
forEachRemaininingmethod of the Spliterator interface.
The reason is as follows: parallel Stream operations split col-
lections into subsets, pass some subsets to worker threads,
and some to the calling thread. The invokedynamic instruc-
tion that creates themethod-handle is executed on the calling
thread. Thus, the method-handle type can be statically deter-
mined on the calling thread, but not on the worker threads,
which invoke the forEachRemainingmethod. This indicates
additional opportunities for optimizations in the future.
1 hi s togram = word −>
2 word . cha r s () . boxed ()
3 . c o l l e c t (groupingBy (
4 i d e n t i t y () ,
5 count ing ())) ;

Method lambdarun2 corre-
sponds to the Java code on the
left: a lambda that produces a
histogram of characters for a

given string. Using Graal, we inspected the intermediate
representation of this method, both with and without the
optimization. The additional inlining induced by method-
handle simplification triggers other optimizations that re-
duce the number of callsites from 19 to 1, remove 37 out of 61
dynamic type- and null-checks, and reduce the total number
of IR nodes in that method from 696 to 490.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

Overall, method-handle simplification impacts the run-
ning time of finagle-chirper by 4%, scrabble by 22%, streams-
mnemonics by 7%, and rx-scrabble by 1%. These results cor-
relate with the invokedynamic counts normalized by CPU
reference cycles, shown in Figure 4. On DaCapo, ScalaBench,
and SPECjvm2008 (which precede invokedynamic), the calls
to invokedynamic usually occur only indirectly through the
Java class library.

5.5 Speculative Guard Motion

1 for (i = 0 ; i <N ; i ++) {
2 if (. . .) {
3 guard (0 <= i <L) ;
4 . . .
5 }
6 }

JIT compilers for the JVM often
use speculative optimizations.
Some of these optimizations re-
quire the insertion of guards,
which ensure the speculation is
correct at runtime. If the specu-
lation is not correct, these guards divert the execution to
an environment that does not use speculations (i.e., an in-
terpreter, or code compiled by a baseline compiler). New
profiling then takes place and a re-compilation that does not
use the respective speculation is triggered. In order to avoid
useless re-compilations, guards are not typically hoisted out
of the branch where they are needed.
1 guard (0 < L && 0<=N−1<L) ;
2 for (i = 0 ; i <N ; i ++) {
3 if (. . .) {
4 . . .
5 }
6 }

However, for some loops, it is
beneficial to speculatively hoist
guards out of loops even if the
control-flow in the loop does
not always lead to that guard.

This is beneficial because the hoisted guards are executed
less often. To capture typical cases such as bounds checks,
comparisons of induction variables can be rewritten to loop-
invariant versions. Speculative Guard Motion is described in
more details by Duboscq [31]. This optimization has a 15%
impact on the log-regression benchmark and an 8% impact
on the dec-tree benchmark. To better understand this dif-
ference, we measured the number of guards executed with
and without speculative guard motion for the log-regression
benchmark.

Executions Guard type

Without

57 487 131 1% Others
529 958 424 10% UnreachedCode

1 639 903 998 32% NullCheckException
2 917 610 059 57% BoundsCheckException

5 144 959 612 100% Total

With

55 660 483 7% Others
18 314 637 2% Speculative NullCheckException
22 056 283 3% Speculative UnreachedCode
28 570 247 3% Speculative BoundsCheckException
62 046 637 7% BoundsCheckException
166 341 946 20% NullCheckException
499 933 160 59% UnreachedCode

852 923 393 100% Total

First, note that the total number of executed guards is re-
duced by 83%. Moreover, note the entry for speculative guard
variants, which accounts for the hoisted guards. In particular,
we can see the large effect on BoundsCheckException and
NullCheckException guards where most occurrences have
been replaced by the lower-frequency speculative versions.
In some cases, removing the guards enables additional

optimizations. Loop vectorization, discussed next, is one
such example – we found that by disabling speculative guard
motion, loop vectorization almost never triggers.
Soundness. Hoisting guards of loop-invariant conditions is
sound since executing unnecessary guards is always sound:
guards have no external side-effects, they only run the risk
of reducing performance. In this case performance is con-
served by not doing this transformation again if a deop-
timization already happened for this loop. The rewrite of
loop-variant inequalities (<, >, ≤, ≥, signed and unsigned)
involving loop induction variables requires the induction
variable to change monotonically which can be statically or
dynamically checked above the loop. Once this is established,
if the inequality holds at both bounds, it holds over the whole
range. As a result, the hoisted guard implies the original one,
ensuring the transformed program will deoptimize in at least
as many cases as the original.

5.6 Loop Vectorization
Modern CPUs include vector instruction sets that ensure bet-
ter performance by operating on multiple memory addresses
at once [3]. Most languages do not have dedicated abstrac-
tions for these instructions, so the compiler transforms parts
of the program to use vector instructions, when possible.

1 for (i = 0 ; i <N ; i ++) {
2 c [i] = a [i] + b [i] ;
3 }

Consider a simple Java loop
shown on the right. When sep-
arate loop iterations have no
data dependencies, a compiler
can aggregate arithmetic opera-
tions from several consecutive iterations into a single vector
operation. However, on the JVM, the code must also perform
a bounds check on each array access, which introduces addi-
tional guards into the loop, and normally prevents vector-
ization. Speculative guard motion makes loop vectorization
possible, since it moves the bounds-check guards outside of
the loop.
We found that combining loop vectorization with specu-

lative guard motion results in a ≈10% impact on als, and a
≈3% impact on dec-tree.

5.7 Dominance-Based Duplication Simulation

1 if (x instanceof C) a ()
2 else b ()
3 if (x instanceof C) c ()

Dominance-based duplication
simulation (DBDS) [56] is an
optimization that simplifies
control flow by duplicating the code after control-flow
merges. Consider the pattern on the right, which consists of
two subsequent instanceof-checks on the same class C.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

After duplicating the second instanceof-check within
both preceding branches, this second check becomes domi-
nated by the first check. It can therefore be eliminated, re-
sulting in the code shown on the left.

1 if (x instanceof C) {
2 a () ; c ()
3 } else b ()

Since tail-duplication opti-
mizations typically enable other
optimizations by devirtualizing

the callsites, we decided to include DBDS in the impact anal-
ysis. We found that this optimization mostly affects streams-
mnemonics, with a performance impact of around 22%.

6 Performance Evaluation
To investigate how the new optimization opportunities in
Renaissance compare to the other suites, we provide a com-
prehensive performance evaluation that identifies the impact
of each optimization discussed in Section 5 on each individual
benchmark. As a consistent measure of impact across differ-
ent optimizations and benchmarks, we define the impact of
an optimization as the change in the benchmark execution
time observed when the optimization is selectively disabled.
The measure thus accounts for the cumulative impact of an
optimization, including its possible (enabling or disabling)
effects on other optimizations performed by the compiler.
The results are summarized in Figure 5. Evaluation re-

sults shown in this section have been obtained using the G1
collector. More details on the experimental setup used for
collecting the measurements are described in Section C of
the supplemental material. The figure supports our claim
that the optimizations outlined in Section 5 benefit Renais-
sance more than other benchmark suites – at significance
level α = 0.01, all (7 of 7) evaluated optimizations have an
impact of at least 5% on some Renaissance benchmark, com-
pared with 2 of 7 for ScalaBench, 1 of 7 for DaCapo, and 3
of 7 for SPECjvm2008. At the same significance level, the
median impact is 6.4% for Renaissance, compared with 2.8%
for ScalaBench, 1.8% for DaCapo, and 3.9% for SPECjvm2008.
In Section G of the supplemental material, we also provide
some information on how each optimization impacts the
overall compilation time.

The architecture of Graal enables rapid development and
deployment of new optimizations, making it an obvious
choice for our experiments with optimization opportunities
in modern workloads. We found it relatively straightfor-
ward to implement new optimizations in the open-source
Graal compiler. However, if Graal were a poorly performing
compiler, the impact of each optimization relative to baseline
might appear magnified. To prove that Graal can serve as
a reasonable baseline, we also compared performance of
the four benchmark suites on two variants of the HotSpot
JVM, one equipped with the standard C2 compiler, other
with Graal, both in the role of the final-tier compiler. The
results, relative to the baseline HotSpot JVM using the C2
compiler, are shown in Figure 6.

Graal provides better performance than C2 in 51 out of
68 benchmarks, the opposite is true in 10 benchmarks, for
the remaining 7 benchmarks the difference is not statisti-
cally significant as the 99% confidence interval straddles 1.0.
On benchmarks where Graal is better than C2, the median
speedup is 20%. On benchmarks where C2 is better than
Graal, the median slowdown is 4%. This justifies our choice
of Graal as the experimental evaluation platform.

7 Code Complexity
In this section, we compare the software complexity and
the compiled code size of Renaissance against the one of
DaCapo, ScalaBench and SPECjvm2008.

7.1 Software Complexity Metrics
Here, we compare Renaissance against the other benchmark
suites by computing the Chidamber and Kemerer (CK) met-
rics [27], which were previously used to evaluate software
complexity of benchmarks from the DaCapo and CDx [47]
suites. We used the ckjm [104] tool to calculate the metrics.
To analyze only the classes used in each benchmark (and not
all the classes in the classpath), we also developed a JVMTI
native agent [65] for the HotSpot JVM that receives class-
loading events from the VM, and forwards the loaded classes
to ckjm, which then calculates the metrics.

We use the following CK metrics:
1. Weighted methods per class (WMC), which is calculated
as the number of declared methods per loaded class.
2. Depth of the inheritance tree (DIT), defined as the depth of
the inheritance tree along all loaded classes.
3. Number of children (NOC) is computed as the number of
immediate subclasses of a class.
4. Coupling between object classes (CBO) counts the number
of classes coupled to a given class, either by method calls,
field accesses, inheritance, method signatures or exceptions.
5. Response for a class (RFC) counts the number of different
methods that are potentially (transitively) executed when a
single method is invoked.
6. Lack of cohesion (LCOM) counts how many methods of a
class are not related by accessing the same field of that class.

The summarized results of the analysis are shown in Ta-
ble 4. For each benchmark suite, we report a geometric mean,
the minimum, and the maximum for the sum and for the av-
erage (arithmetic mean) of each metric across all benchmarks
of the suite. When looking at the sums, we overall observed
the highest values on five out of six metrics on Renaissance,
while the LCOMmetric was the highest on ScalaBench. With
respect to the average complexity across all benchmarks of
the suite, we can see that ScalaBench has higher values than
Renaissance in 5 cases. In general we cannot say whether
Renaissance is more complex than ScalaBench. However,

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

Figure 5. Optimization impact on individual benchmarks. Results with black outline significant at α = 0.01.

Figure 6. Graal compiler performance relative to HotSpot second tier JIT compiler.

we see that Renaissance is in the same ball park as Scal-
aBench and the other suites. The reason why Renaissance is
more complex on some of the metrics is highly related to the
number of loaded classes of the benchmark suites. We took
a look at the sum of all loaded classes across each bench-
mark suite and the number of unique loaded classes for each
benchmark suite in Table 5. We observed that Renaissance
benchmarks on average load many classes, compared to the
other benchmark suites.

7.2 Compiled Code Size
This section presents several metrics about the size of the
compiled programs. Figure 7 shows the code size and compiled-
method count distribution for theDaCapo, ScalaBench, SPEC-
jvm2008, and Renaissance suites. Both the code size and the

method count refer to the hot code, compiledwith the second-
tier optimizing compiler, and were measured using Oracle’s
Graal compiler [7] by letting the benchmark run for 120
seconds.

The JVM uses the method’s invocation count and its loop
iteration counts to decide if a method is hot (i.e. frequently
executed). Hot methods are compiled using the second-tier
optimizing compiler, so the total size and themethod count of
the hot code indicate how much of the program was deemed
important for the overall performance.

The geomean of the compiled code size (across all bench-
marks) is ≈6.87MB for Renaissance, which is slightly lower
than ≈7.98MB for DaCapo, and ≈10.03MB for ScalaBench.
The geomean of the total number of hot methods is ≈1 636
for Renaissance, which is slightly higher than ≈1 599 for
DaCapo, and somewhat lower than ≈1 853 for Scalabench.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

WMC DIT CBO NOC RFC LCOM
Renaissance

min-sum 21830 3066 21757 1571 41799 455958
max-sum 206933 23936 184901 14029 369131 7360650
geomean-sum 55533 7842 55147 4212 105105 1358042

min-avg 11.07 1.79 12.57 0.97 20.78 141.02
max-avg 18.48 2.29 17.54 1.16 33.84 706.54
geomean-avg 13.58 1.92 13.49 1.03 25.71 332.19

DaCapo [21]
min-sum 12466 1687 10640 857 22378 161333
max-sum 124191 5753 45597 6421 97757 616524
geomean-sum 32470 3377 23275 2160 48461 336192

min-avg 11.74 1.24 11.90 0.97 22.07 130.36
max-avg 42.43 2.13 14.45 2.19 32.27 310.86
geomean-avg 17.97 1.87 12.88 1.20 26.82 186.05

ScalaBench [100]
min-sum 24693 2657 19713 1481 45364 1080228
max-sum 150895 7789 66036 7890 124240 2298594
geomean-sum 44505 4291 32810 2735 71840 1489515

min-avg 14.04 1.70 12.67 1.00 27.82 440.66
max-avg 42.60 1.97 16.17 2.49 34.26 836.09
geomean-avg 18.85 1.82 13.90 1.16 30.43 631.02

SPECjvm2008 [1]
min-sum 30560 3832 29966 2190 65741 546396
max-sum 55044 5744 45745 3480 103373 1131251
geomean-sum 33195 4142 32187 2383 70280 578408

min-avg 13.55 1.72 13.48 0.99 28.69 206.19
max-avg 16.90 1.86 14.04 1.07 31.73 347.22
geomean-avg 14.00 1.75 13.58 1.01 29.65 244.03

Table 4. CK Metrics Summary: Minimum, maximum and
geometric mean across the sum and arithmetic mean of all
loaded classes of a benchmark suite. Bold values indicate the
highest value for a metric across all benchmark suites.

Benchmark Suite Sum All Sum Unique
Loaded Classes Loaded Classes

Renaissance 109 004 29 157
DaCapo 27 923 12 073
ScalaBench 27 911 12 207
SPECjvm2008 50 099 5 274

Table 5. Loaded classes per benchmark suite.

While DaCapo, ScalaBench and Renaissance are roughly
in the same range, the SPECjvm2008 has a geomean of ≈486
hot methods, and a geomean code size of ≈1.17MB (for
readability, the names of individual SPECjvm2008 bench-
marks are not shown in Figure 7). This indicates that the
SPECjvm2008 workloads are considerably smaller.

8 Related Work
By differentiating between the optimizations that are worth
pursuing, benchmark suites were at the core of innovation
throughout the JVM’s history. Since its introduction in 2006,
the DaCapo suite [21] has been a de facto standard for JVM
benchmarking. While much of the original motivation for
the DaCapo suite was to understand object and memory be-
havior in complex Java applications, this suite is still actively
used to evaluate not only JVM components such as JIT com-
pilers [34, 56, 83, 85, 106] and garbage collectors [17, 63],

Figure 7. Code Size Metrics

but also tools such as profilers [25, 98], data-race detec-
tors [20, 110], memory monitors and contention analyz-
ers [42, 109], static analyzers [37, 107], and debuggers [58].
The subsequently proposed ScalaBench suite [99, 100]

identified a range of typical Scala programs, and argued
that Scala and Java programs have considerably different
distributions of instructions, polymorphic calls, object allo-
cations, and method sizes. This observation that benchmark
suites tend to over-represent certain programming styles
was also noticed in other languages, (e.g., JavaScript [95]).
On the other hand, the SPECjvm2008 benchmark suite [1]
focused more on the core Java functionality. Most of the
SPECjvm2008 benchmarks are considerably smaller than
the DaCapo and ScalaBench benchmarks, and do not use
a lot of object-oriented abstractions – SPECjvm2008 exer-
cises classic JIT compiler optimizations, such as instruction
scheduling and loop optimizations [31].
We did not include SPECjbb2015 [4] in our analysis, be-

cause it consists of a single benchmark designed to run over
2 hours, typically executed on multiple JVM instances. Using
SPECjbb2015 to detect small statistically significant changes
is therefore relatively costly (needs long execution time).

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

A brief evaluation suggests that the combined effect of all
optimizations considered here accounts for about 1.2% im-
provement in the reported peak throughput (max jOPS) in
single JVM configuration.

Another older JVM benchmark suite is Java Grande [103],
but it consists mostly of microbenchmarks.

The tuning of compilers such as C2 [68] and Graal [7, 32]
was heavily influenced by the DaCapo, ScalaBench, and
SPECjvm2008 suites. Given that these existing benchmark
suites do not exercise many frameworks and language ex-
tensions that gained popularity in the recent years, we looked
forworkloads exercising frameworks such as Java Streams [33]
and Parallel Collections [81, 92, 93], Reactive Extensions [15],
Akka [5], Scala actors [39] and Reactors [72, 75, 84, 90], corou-
tines [8, 86, 87], Apache Spark [111], futures and promises [40],
Netty [11], Twitter Finagle [12], andNeo4J [10].Most of these
frameworks either assist in structuring concurrent programs,
or enable programmers to declaratively specify data-parallel
processing tasks. In both cases, they achieve these goals by
providing a higher level of abstraction – for example, Finagle
supports functional-style composition of future values, while
Apache Spark exposes data-processing combinators for dis-
tributed datasets. By inspecting the IR of the open-source
Graal compiler (c.f. Section 5), we found that many of the
benchmarks exercise the interaction between different types
of JIT compiler optimizations: optimizations, such as inlining,
duplication [56], and partial escape analysis [106], typically
start by reducing the level of abstraction in these frame-
works, and then trigger more low-level optimizations such
as guard motion [31], vectorization, or atomic-operation
coalescing. Aside from a challenge in dealing with high-
level abstractions, the new concurrency primitives in mod-
ern benchmarks pose new optimization opportunities, such
as contention elimination [59], application-specific work-
stealing [89], NUMA-aware node replication [26], specula-
tive spinning [73], access path caching [74, 76–78], or other
traditional compiler optimizations applied to concurrent pro-
grams [108]. Many of these newer optimizations may be
applicable to domains such as concurrent data structures,
which have been extensively studied on the JVM [18, 23, 28,
52, 67, 71, 79, 80, 82, 88, 91].
Unlike some other suites whose goal was to simulate de-

ployment in clusters and Cloud environments, such as Cloud-
Suite [35], our design decision was to follow the philosophy
of DaCapo and ScalaBench, in which benchmarks are exe-
cuted within a single JVM instance, whose execution charac-
teristics can be understood more easily. Still, we found some
alternative suites useful: for example, we took the movie-
lens benchmark for Apache Spark from CloudSuite, and we
adapted it to use Spark’s single-process mode.

The Unbalanced Cobwebbed Tree (UCT) benchmark [112]
was designed for better actor-scheduler comparison on non-
uniform workloads, and our akka-uct benchmark is the im-
plementation of that benchmark in the Akka actor frame-
work for the JVM [5]. A suite that specialized exclusively on
benchmarks for the actor model is the Savina suite [43].

Several other benchmarkswere either inspired by or adapted
from existing workloads. The naive-bayes, log-regression, als,
dec-tree and chi-square benchmarks directly work with sev-
eral machine-learning algorithms from Apache Spark ML-
Lib, and some of these benchmarks were inspired by the
SparkPerf suite [29]. The Shakespeare plays Scrabble bench-
mark [69] was presented by José Paumard at the Virtual
Technology Summit 2015 to demonstrate an advanced usage
of Java Streams, and we directly adopted it as our scrabble
benchmark. The rx-scrabble is a version of the scrabble bench-
mark that uses the Reactive Extensions framework instead of
Java Streams. The streams-mnemonics benchmark is rewrit-
ten from the Phone Mnemonics benchmark that was origi-
nally used to demonstrate the usage of Scala collections [64].
The stm-bench7 benchmark is STMBench7 [38] applied to
ScalaSTM [22, 24], a software transactional memory imple-
mentation for Scala, while the philosophers benchmark is
ScalaSTM’s Reality-Show Philosophers usage example.

9 Conclusion
We presented Renaissance – a benchmark suite consisting of
21 benchmarks that represent modern concurrency and par-
allelism workloads, written in popular Java and Scala frame-
works. To obtain these benchmarks, we gathered a large list
of candidate workloads, both manually and by scanning an
online corpus of GitHub projects. We then defined a set of
basic metrics to filter potentially interesting workloads, and
to ensure that the selection is sufficiently diverse. Our PCA
analysis revealed that the set of benchmarks selected this way
covers the metric space differently than the existing bench-
mark suites. To confirm that the thus-selected benchmarks
are useful, we then analyzed them for performance-critical
patterns, which lead us to implement four new optimiza-
tions in the Graal JIT compiler. These optimizations have
a considerably smaller impact on existing suites, such as
DaCapo, ScalaBench and SPECjvm2008, indicating that Re-
naissance helped in identifying new compiler optimizations.
We also identified three existing optimizations whose per-
formance impact is prominent. Furthermore, by comparing
two production-quality JIT compilers, Graal and HotSpot
C2, we determined that performance varies much more on
Renaissance than on DaCapo and SPECjvm2008.
While we showed that Renaissance aids in identifying

new compiler optimizations, we believe that the suite might
be beneficial for other domains as well, such as garbage
collectors, profilers, data-race detectors, and debuggers. We
leave these and other investigations to future work.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

References
[1] 2008. SPECjvm2008. https://www.spec.org/jvm2008/.
[2] 2008. SPECjvm2008 User’s Guide. https://www.spec.org/jvm2008/

docs/UserGuide.html
[3] 2013. AVX 512 Instructions. https://software.intel.com/en-us/blogs/

2013/avx-512-instructions.
[4] 2015. SPECjbb2015. https://www.spec.org/jbb2015/.
[5] 2018. Akka Documentation. http://akka.io/docs/.
[6] 2018. Graal JTTTest Source Code. https://github.com/oracle/graal/

blob/master/compiler/src/org.graalvm.compiler.jtt/src/org/graalvm/
compiler/jtt/JTTTest.java.

[7] 2018. GraalVM Website. https://www.graalvm.org/downloads/
[8] 2018. Kotlin Coroutines. https://github.com/Kotlin/kotlinx.

coroutines/blob/master/coroutines-guide.md. Accessed: 2018-11-15.
[9] 2018. Open-Source Jenetics Repository at GitHub. https://github.

com/jenetics/jenetics.
[10] 2018. Open-Source Neo4J Repository at GitHub. https://github.com/

neo4j/neo4j.
[11] 2018. Open-Source Netty Repository at GitHub. https://github.com/

netty/netty.
[12] 2018. Open-Source Twitter Finagle Repository at GitHub. https:

//github.com/twitter/finagle.
[13] 2018. OpenJDK SynchronizedList Source Code. http:

//hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/
classes/java/util/Collections.java.

[14] 2018. OpenJDK Vector Source Code. http://hg.openjdk.java.net/jdk8/
jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/Vector.java.

[15] 2018. ReactiveX project. http://reactivex.io/languages.html.
[16] 2018. RxJava repository. https://github.com/ReactiveX/RxJava.
[17] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley, and Lieven

Eeckhout. 2018. Write-rationing Garbage Collection for Hybrid Mem-
ories. In PLDI. 62–77.

[18] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-
Gueta, Eshcar Hillel, Idit Keidar, and Moshe Sulamy. 2017. KiWi:
A Key-Value Map for Scalable Real-Time Analytics. In Proceedings
of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’17). ACM, New York, NY, USA, 357–369.
https://doi.org/10.1145/3018743.3018761

[19] Alan Bateman and Doug Lea. 2011. Java Specification Request 203:
More New I/O APIs for the JavaTM Platform ("NIO.2"). https:
//jcp.org/en/jsr/detail?id=203.

[20] Swarnendu Biswas, Man Cao, Minjia Zhang, Michael D. Bond, and
Benjamin P. Wood. 2017. Lightweight Data Race Detection for Pro-
duction Runs. In CC. 11–21.

[21] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M.
Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmark-
ing Development and Analysis. SIGPLAN Not. 41, 10 (Oct. 2006),
169–190.

[22] Nathan Bronson, Jonas Boner, Guy Korland, Aleksandar Prokopec,
Krishna Sankar, Daniel Spiewak, and Peter Veentjer. 2011. ScalaSTM
Expert Group. https://nbronson.github.io/scala-stm/expert_group.
html.

[23] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. A Practical Concurrent Binary Search Tree. SIGPLAN Not. 45,
5 (Jan. 2010), 257–268. https://doi.org/10.1145/1837853.1693488

[24] Nathan G. Bronson, Hassan Chafi, and Kunle Olukotun. 2010. CCSTM:
A library-based STM for Scala. In The First Annual Scala Workshop at
Scala Days.

[25] Rodrigo Bruno and Paulo Ferreira. 2017. POLM2: Automatic Profiling
for Object Lifetime-aware Memory Management for Hotspot Big
Data Applications. In Middleware. 147–160.

[26] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K.
Aguilera. 2017. Black-box Concurrent Data Structures for NUMA
Architectures. In Proceedings of the Twenty-Second International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS ’17). ACM, New York, NY, USA, 207–221.
https://doi.org/10.1145/3037697.3037721

[27] Shyam R Chidamber and Chris F Kemerer. 1994. A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software Engineering
20, 6 (1994), 476–493.

[28] Cliff Click. 2007. Towards a Scalable Non-Blocking Coding
Style. http://www.azulsystems.com/events/javaone_2007/2007_
LockFreeHash.pdf

[29] Databricks. 2018. Spark Performance Tests. https://github.com/
databricks/spark-perf.

[30] Pedro C. Diniz and Martin C. Rinard. 1998. Lock Coarsening: Elim-
inating Lock Overhead in Automatically Parallelized Object-based
Programs. J. Parallel and Distrib. Comput. 49, 2 (1998), 218–244.

[31] Gilles Duboscq. 2016. Combining Speculative Optimizations with
Flexible Scheduling of Side-effects. Ph.D. Dissertation. Johannes Kepler
University, Linz.

[32] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wim-
mer, Doug Simon, and Hanspeter Mössenböck. 2013. An Intermediate
Representation for Speculative Optimizations in a Dynamic Compiler.
In VMIL. 1–10.

[33] Michael Duigou. 2011. Java Enhancement Proposal 107: Bulk Data
Operations for Collections. http://openjdk.java.net/jeps/107.

[34] Josef Eisl, Matthias Grimmer, Doug Simon, Thomas Würthinger, and
Hanspeter Mössenböck. 2016. Trace-based Register Allocation in a
JIT Compiler. In PPPJ. 14:1–14:11.

[35] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-
ware. SIGPLAN Not. 47, 4 (March 2012), 37–48.

[36] Rémi Forax, Vladimir Zakharov, Kevin Bourrillion, Dan Heidinga,
Srikanth Sankaran, Andrey Breslav, Doug Lea, Bob Lee, Brian Goetz,
Daniel Smith, Samuel Pullara, and David Lloyd. 2014. Java Specifica-
tion Request 335: Lambda Expressions for the JavaTM Programming
Language. https://jcp.org/en/jsr/detail?id=335.

[37] Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis
Smaragdakis. 2018. Shooting from the Heap: Ultra-scalable Static
Analysis with Heap Snapshots. In ISSTA. 198–208.

[38] Rachid Guerraoui, Michal Kapalka, and Jan Vitek. 2007. STMBench7:
A Benchmark for Software Transactional Memory. In EuroSys. 315–
324.

[39] Philipp Haller and Martin Odersky. 2007. Actors That Unify Threads
and Events. In COORDINATION. 171–190.

[40] Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang,
Roland Kuhn, and Vojin Jovanovic. 2012. Scala Improvement Pro-
posal: Futures and Promises (SIP-14). http://docs.scala-lang.org/sips/
pending/futures-promises.html

[41] TimHarris, SimonMarlow, Simon Peyton-Jones, andMaurice Herlihy.
2005. Composable Memory Transactions. In PPoPP. 48–60.

[42] Peter Hofer, David Gnedt, Andreas Schörgenhumer, and Hanspeter
Mössenböck. 2016. Efficient Tracing and Versatile Analysis of Lock
Contention in Java Applications on the Virtual Machine Level. In
ICPE. 263–274.

[43] ShamsM. Imam and Vivek Sarkar. 2014. Savina - AnActor Benchmark
Suite: Enabling Empirical Evaluation of Actor Libraries. In AGERE!
67–80.

[44] Intel. 2018. Hyper-Threading Technology. https://www.
intel.com/content/www/us/en/architecture-and-technology/
hyper-threading/hyper-threading-technology.html.

https://www.spec.org/jvm2008/
https://www.spec.org/jvm2008/docs/UserGuide.html
https://www.spec.org/jvm2008/docs/UserGuide.html
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://software.intel.com/en-us/blogs/2013/avx-512-instructions
https://www.spec.org/jbb2015/
http://akka.io/docs/
https://github.com/oracle/graal/blob/master/compiler/src/org.graalvm.compiler.jtt/src/org/graalvm/compiler/jtt/JTTTest.java
https://github.com/oracle/graal/blob/master/compiler/src/org.graalvm.compiler.jtt/src/org/graalvm/compiler/jtt/JTTTest.java
https://github.com/oracle/graal/blob/master/compiler/src/org.graalvm.compiler.jtt/src/org/graalvm/compiler/jtt/JTTTest.java
https://www.graalvm.org/downloads/
https://github.com/Kotlin/kotlinx.coroutines/blob/master/coroutines-guide.md
https://github.com/Kotlin/kotlinx.coroutines/blob/master/coroutines-guide.md
https://github.com/jenetics/jenetics
https://github.com/jenetics/jenetics
https://github.com/neo4j/neo4j
https://github.com/neo4j/neo4j
https://github.com/netty/netty
https://github.com/netty/netty
https://github.com/twitter/finagle
https://github.com/twitter/finagle
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/Collections.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/Collections.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/Collections.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/Vector.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/Vector.java
http://reactivex.io/languages.html
https://github.com/ReactiveX/RxJava
https://doi.org/10.1145/3018743.3018761
https://jcp.org/en/jsr/detail?id=203
https://jcp.org/en/jsr/detail?id=203
https://nbronson.github.io/scala-stm/expert_group.html
https://nbronson.github.io/scala-stm/expert_group.html
https://doi.org/10.1145/1837853.1693488
https://doi.org/10.1145/3037697.3037721
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
https://github.com/databricks/spark-perf
https://github.com/databricks/spark-perf
http://openjdk.java.net/jeps/107
https://jcp.org/en/jsr/detail?id=335
http://docs.scala-lang.org/sips/pending/futures-promises.html
http://docs.scala-lang.org/sips/pending/futures-promises.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

[45] Intel. 2018. Turbo Boost Technology 2.0. https://www.intel.com/
content/www/us/en/architecture-and-technology/turbo-boost/
turbo-boost-technology.html.

[46] Intel. 2019. Intel 64 and IA-32 Architectures De-
veloper’s Manual, Section 18.18. https://www.intel.
com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-manual-325462.html.

[47] Tomas Kalibera, Jeff Hagelberg, Petr Maj, Filip Pizlo, Ben Titzer, and
Jan Vitek. 2010. A Family of Real-time Java Benchmarks. Concurrency
and Computation: Practice and Experience 23, 14 (2010), 1679–1700.

[48] Karl Pearson. 1901. On lines and planes of closest fit to systems of
points in space. Philos. Mag. 2, 11 (1901), 559–572.

[49] Stephen Kell, Danilo Ansaloni, Walter Binder, and Lukáš Marek. 2012.
The JVM is Not Observable Enough (and What to Do About It). In
VMIL. 33–38.

[50] Doug Lea. 2000. A Java Fork/Join Framework. In JAVA. 36–43.
[51] Doug Lea. 2012. Java Enhancement Proposal 155: Concurrency Up-

dates. http://openjdk.java.net/jeps/155.
[52] Doug Lea. 2014. Doug Lea’s Workstation. http://g.oswego.edu/
[53] Doug Lea. 2015. Java Enhancement Proposal 266: More Concurrency

Updates. http://openjdk.java.net/jeps/266.
[54] Doug Lea, Joshua Bloch, SamMidkiff, David Holmes, Joseph Bowbeer,

and Tim Peierls. 2004. Java Specification Request 166: Concurrency
Utilities. https://jcp.org/ja/jsr/detail?id=166.

[55] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus
Weninger. 2017. A Comprehensive Java Benchmark Study onMemory
and Garbage Collection Behavior of DaCapo, DaCapo Scala, and
SPECjvm2008. In ICPE. 3–14.

[56] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl,
Doug Simon, and Hanspeter Mössenböck. 2018. Dominance-based
Duplication Simulation (DBDS): Code Duplication to Enable Compiler
Optimizations. In CGO. 126–137.

[57] Linux man. 2013. top(1). https://linux.die.net/man/1/top.
[58] Bozhen Liu and Jeff Huang. 2018. D4: Fast Concurrency Debugging

with Parallel Differential Analysis. In PLDI. 359–373.
[59] Honghui Lu, Alan L. Cox, and Willy Zwaenepoel. 2001. Con-

tention Elimination by Replication of Sequential Sections in Dis-
tributed Shared Memory Programs. In Proceedings of the Eighth
ACM SIGPLAN Symposium on Principles and Practices of Parallel Pro-
gramming (PPoPP ’01). ACM, New York, NY, USA, 53–61. https:
//doi.org/10.1145/379539.379568

[60] LukášMarek, Stephen Kell, Yudi Zheng, Lubomír Bulej, Walter Binder,
Petr Tůma, Danilo Ansaloni, Aibek Sarimbekov, and Andreas Sewe.
2013. ShadowVM: Robust and Comprehensive Dynamic Program
Analysis for the Java Platform. In GPCE. 105–114.

[61] Lukáš Marek, Alex Villazón, Yudi Zheng, Danilo Ansaloni, Walter
Binder, and Zhengwei Qi. 2012. DiSL: A Domain-specific Language
for Bytecode Instrumentation. In AOSD. 239–250.

[62] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram
Venkataraman, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde,
Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh,
Matei Zaharia, and Ameet Talwalkar. 2016. MLlib: Machine Learning
in Apache Spark. Journal of Machine Learning Research 17, 34 (2016),
1–7.

[63] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu,
Sanazsadat Alamian, andOnurMutlu. 2016. Yak: AHigh-performance
Big-data-friendly Garbage Collector. In OSDI. 349–365.

[64] Martin Odersky. 2011. State of Scala. http://days2011.scala-lang.org/
sites/days2011/files/01.%20Martin%20Odersky.pdf.

[65] Oracle. 2018. JVM Tool Interface. https://docs.oracle.com/javase/8/
docs/platform/jvmti/jvmti.html.

[66] F. Ortin, P. Conde, D. Fernandez-Lanvin, and R. Izquierdo. 2014. The
Runtime Performance of invokedynamic: An Evaluation with a Java
Library. IEEE Software 31, 4 (July 2014), 82–90.

[67] Rotem Oshman and Nir Shavit. 2013. The SkipTrie: Low-depth Con-
current Search Without Rebalancing. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing (PODC ’13). ACM,
New York, NY, USA, 23–32. https://doi.org/10.1145/2484239.2484270

[68] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java
HotspotTM Server Compiler. In JVM.

[69] José Paumard. 2018. JDK8 Stream/Rx Comparison. https://github.
com/JosePaumard/jdk8-stream-rx-comparison.

[70] perf. 2015. Linux profiling with performance counters. https://perf.
wiki.kernel.org.

[71] Aleksandar Prokopec. 2015. SnapQueue: Lock-free Queue with Con-
stant Time Snapshots. In Proceedings of the 6th ACM SIGPLAN Sym-
posium on Scala (SCALA 2015). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/2774975.2774976

[72] Aleksandar Prokopec. 2016. Pluggable Scheduling for the Reactor
Programming Model. In AGERE! 41–50.

[73] Aleksandar Prokopec. 2017. Accelerating by Idling: How Speculative
Delays Improve Performance of Message-Oriented Systems. Springer
International Publishing, Cham, 177–191. https://doi.org/10.1007/
978-3-319-64203-1_13

[74] Aleksandar Prokopec. 2017. Analysis of Concurrent Lock-Free Hash
Tries with Constant-Time Operations. ArXiv e-prints (Dec. 2017).
arXiv:cs.DS/1712.09636

[75] Aleksandar Prokopec. 2017. Encoding the Building Blocks of Com-
munication. In Proceedings of the 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! 2017). ACM, New York, NY, USA,
104–118. https://doi.org/10.1145/3133850.3133865

[76] Aleksandar Prokopec. 2018. Cache-tries: Concurrent Lock-free
Hash Tries with Constant-time Operations. In Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP ’18). ACM, New York, NY, USA, 137–151.
https://doi.org/10.1145/3178487.3178498

[77] Aleksandar Prokopec. 2018. Efficient Lock-Free Removing and Com-
paction for the Cache-Trie Data Structure. Springer International
Publishing, Cham.

[78] Aleksandar Prokopec. 2018. Efficient Lock-Free Remov-
ing and Compaction for the Cache-Trie Data Structure.
https://doi.org/10.6084/m9.figshare.6369134.

[79] Aleksandar Prokopec, Phil Bagwell, andMartin Odersky. 2011. Cache-
Aware Lock-Free Concurrent Hash Tries. Technical Report.

[80] Aleksandar Prokopec, Phil Bagwell, and Martin Odersky. 2011. Lock-
Free Resizeable Concurrent Tries. Springer Berlin Heidelberg, Berlin,
Heidelberg, 156–170. https://doi.org/10.1007/978-3-642-36036-7_11

[81] Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, andMartin Odersky.
2011. A Generic Parallel Collection Framework. In Euro-Par. 136–147.

[82] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and
Martin Odersky. 2012. Concurrent Tries with Efficient Non-blocking
Snapshots. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP ’12). ACM, New
York, NY, USA, 151–160. https://doi.org/10.1145/2145816.2145836

[83] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and
Thomas Würthinger. 2019. An Optimization-driven Incremental
Inline Substitution Algorithm for Just-in-time Compilers. In Proceed-
ings of the 2019 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO 2019). IEEE Press, Piscataway, NJ, USA,
164–179. http://dl.acm.org/citation.cfm?id=3314872.3314893

[84] Aleksandar Prokopec, Philipp Haller, and Martin Odersky. 2014. Con-
tainers and Aggregates, Mutators and Isolates for Reactive Program-
ming. In Proceedings of the Fifth Annual Scala Workshop (SCALA ’14).
ACM, New York, NY, USA, 51–61. https://doi.org/10.1145/2637647.
2637656

[85] Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and
Thomas Würthinger. 2017. Making Collection Operations Optimal
with Aggressive JIT Compilation. In SCALA. 29–40.

https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/turbo-boost-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-manual-325462.html
http://openjdk.java.net/jeps/155
http://g.oswego.edu/
http://openjdk.java.net/jeps/266
https://jcp.org/ja/jsr/detail?id=166
https://linux.die.net/man/1/top
https://doi.org/10.1145/379539.379568
https://doi.org/10.1145/379539.379568
http://days2011.scala-lang.org/sites/days2011/files/01.%20Martin%20Odersky.pdf
http://days2011.scala-lang.org/sites/days2011/files/01.%20Martin%20Odersky.pdf
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://doi.org/10.1145/2484239.2484270
https://github.com/JosePaumard/jdk8-stream-rx-comparison
https://github.com/JosePaumard/jdk8-stream-rx-comparison
https://perf.wiki.kernel.org
https://perf.wiki.kernel.org
https://doi.org/10.1145/2774975.2774976
https://doi.org/10.1007/978-3-319-64203-1_13
https://doi.org/10.1007/978-3-319-64203-1_13
http://arxiv.org/abs/cs.DS/1712.09636
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/3178487.3178498
https://doi.org/10.1007/978-3-642-36036-7_11
https://doi.org/10.1145/2145816.2145836
http://dl.acm.org/citation.cfm?id=3314872.3314893
https://doi.org/10.1145/2637647.2637656
https://doi.org/10.1145/2637647.2637656

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

[86] Aleksandar Prokopec and Fengyun Liu. 2018. On the Sound-
ness of Coroutines with Snapshots. CoRR abs/1806.01405 (2018).
arXiv:1806.01405 https://arxiv.org/abs/1806.01405

[87] Aleksandar Prokopec and Fengyun Liu. 2018. Theory and Practice of
Coroutines with Snapshots. In 32nd European Conference on Object-
Oriented Programming, ECOOP 2018, July 16-21, 2018, Amsterdam, The
Netherlands. 3:1–3:32. https://doi.org/10.4230/LIPIcs.ECOOP.2018.3

[88] Aleksandar Prokopec, Heather Miller, Tobias Schlatter, Philipp Haller,
and Martin Odersky. 2012. FlowPools: A Lock-Free Deterministic
Concurrent Dataflow Abstraction. In LCPC. 158–173.

[89] Aleksandar Prokopec and Martin Odersky. 2014. Near Optimal Work-
Stealing Tree Scheduler for Highly Irregular Data-Parallel Work-
loads. In Languages and Compilers for Parallel Computing, Călin Cas-
caval and Pablo Montesinos (Eds.). Springer International Publishing,
Cham, 55–86.

[90] Aleksandar Prokopec and Martin Odersky. 2015. Isolates, Channels,
and Event Streams for Composable Distributed Programming. In
Onward! 171–182.

[91] Aleksandar Prokopec and Martin Odersky. 2016. Conc-Trees for Func-
tional and Parallel Programming. Springer International Publishing,
Cham, 254–268. https://doi.org/10.1007/978-3-319-29778-1_16

[92] Aleksandar Prokopec, Dmitry Petrashko, and Martin Odersky. 2014.
On Lock-Free Work-stealing Iterators for Parallel Data Structures.
(2014), 10.

[93] A. Prokopec, D. Petrashko, and M. Odersky. 2015. Efficient Lock-
Free Work-Stealing Iterators for Data-Parallel Collections. In 2015
23rd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. 248–252. https://doi.org/10.1109/PDP.
2015.65

[94] William Pugh, Sarita Adve, and Doug Lea. 2004. Java Specification Re-
quest 133: JavaTMMemory Model and Thread Specification Revision.
https://jcp.org/ja/jsr/detail?id=133.

[95] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin G. Zorn.
2010. JSMeter: Comparing the Behavior of JavaScript Benchmarks
with Real Web Applications. In WebApps. 3–3.

[96] John Rose. 2014. Java Enhancement Proposal 243: Java-Level JVM
Compiler Interface. http://openjdk.java.net/jeps/243.

[97] John Rose, Bini Ola, William Cook, Rémi Forax, Samuele Pedroni, and
Jochen Theodorou. 2011. Java Specification Request 292: Supporting
Dynamically Typed Languages on the JavaTM Platform. https:
//jcp.org/en/jsr/detail?id=292.

[98] Andreas Schörgenhumer, Peter Hofer, David Gnedt, and Hanspeter
Mössenböck. 2017. Efficient Sampling-based Lock Contention Profil-
ing for Java. In ICPE. 331–334.

[99] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, Danilo Ansaloni,
Walter Binder, Nathan Ricci, and Samuel Z. Guyer. 2012. new Scala()
instanceof Java: A Comparison of the Memory Behaviour of Java and
Scala Programs. In ISMM. 97–108.

[100] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder.
2011. Da Capo Con Scala: Design and Analysis of a Scala Benchmark
Suite for the Java Virtual Machine. In OOPSLA. 657–676.

[101] Nir Shavit and Dan Touitou. 1995. Software Transactional Memory.
In PODC. 204–213.

[102] Aleksei Shipilev. 2018. Code Tools: jmh. http://openjdk.java.net/
projects/code-tools/jmh/.

[103] L. A. Smith, J. M. Bull, and J. Obdrizalek. 2001. A Parallel Java Grande
Benchmark Suite. In SC.

[104] Diomidis Spinellis. 2005. Tool Writing: A Forgotten Art? IEEE Soft-
ware 4 (2005), 9–11.

[105] Sriram Srinivasan and Alan Mycroft. 2008. Kilim: Isolation-Typed
Actors for Java. In ECOOP. 104–128.

[106] Lukas Stadler, ThomasWürthinger, and Hanspeter Mössenböck. 2014.
Partial Escape Analysis and Scalar Replacement for Java. In CGO.
165:165–165:174.

[107] Rei Thiessen and Ondřej Lhoták. 2017. Context Transformations for
Pointer Analysis. In PLDI. 263–277.

[108] Jaroslav Ševčík. 2011. Safe Optimisations for Shared-memory Concur-
rent Programs. In Proceedings of the 32Nd ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’11).
ACM, New York, NY, USA, 306–316. https://doi.org/10.1145/1993498.
1993534

[109] Markus Weninger and Hanspeter Mössenböck. 2018. User-defined
Classification and Multi-level Grouping of Objects in Memory Moni-
toring. In ICPE. 115–126.

[110] Benjamin P. Wood, Man Cao, Michael D. Bond, and Dan Grossman.
2017. Instrumentation Bias for Dynamic Data Race Detection. Proc.
ACM Program. Lang. 1, OOPSLA (Oct. 2017), 69:1–69:31.

[111] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-
ing Sets. In HotCloud. 10–10.

[112] Xinghui Zhao andNadeem Jamali. 2013. Load Balancing Non-uniform
Parallel Computations. In AGERE! 97–108.

[113] Yudi Zheng, Andrea Rosà, Luca Salucci, Yao Li, Haiyang Sun, Omar
Javed, Lubomír Bulej, Lydia Y. Chen, Zhengwei Qi, andWalter Binder.
2016. AutoBench: FindingWorkloads That You Need Using Pluggable
Hybrid Analyses.. In SANER. 639–643.

http://arxiv.org/abs/1806.01405
https://arxiv.org/abs/1806.01405
https://doi.org/10.4230/LIPIcs.ECOOP.2018.3
https://doi.org/10.1007/978-3-319-29778-1_16
https://doi.org/10.1109/PDP.2015.65
https://doi.org/10.1109/PDP.2015.65
https://jcp.org/ja/jsr/detail?id=133
http://openjdk.java.net/jeps/243
https://jcp.org/en/jsr/detail?id=292
https://jcp.org/en/jsr/detail?id=292
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1145/1993498.1993534
https://doi.org/10.1145/1993498.1993534

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

Table 6. Benchmarks considered in the paper, including
input size and number of operations executed (# ops).

Benchmark Input Benchmark Input
DaCapo [21] size ScalaBench [100] size
avrora large actors huge
batik large apparat gargantuan
eclipse large factorie gargantuan
fop default kiama default
h2 huge scalac large
jython large scaladoc large
luindex default scalap large
lusearch-fix large scalariform huge
pmd large scalatest default
sunflow large scalaxb huge
tomcat huge specs large
tradebeans huge tmt huge
tradesoap huge
xalan large
Benchmark # ops Benchmark # opsSPECjvm2008 [1]
compiler.compiler 20 scimark.lu.small 125

compiler.sunflow 20 scimark.monte_carlo 900

compress 50 scimark.sor.large 15

crypto.aes 20 scimark.sor.small 75

crypto.rsa 150 scimark.sparse.large 10

crypto.signverify 125 scimark.sparse.small 25

derby 30 serial 25

mpegaudio 50 sunflow 30

scimark.fft.large 10 xml.transform 7

scimark.fft.small 100 xml.validation 40

scimark.lu.large 4

A Analyzed Benchmarks
Table 6 lists the benchmarks from the DaCapo, ScalaBench
and SPECjvm2008 suites that were considered in the main
paper, along with the used input size (expressed as number
of operations executed in SPECjvm2008).

B Experimental Setup for Metric Profiling
and Principal Component Analysis

Here, we detail the experimental setup for the collection of
metrics described in Table 2 and analyzed in Section 4 and 5
of the main paper.

Themetrics are profiled during a single steady-state bench-
mark execution. Before collecting the metrics, we let the
benchmarks warp-up until dynamic compilation and GC
ergonomics are stabilized, following the methodology of
Lengauer et al. [55]. We could not collect metrics for bench-
marks tradebeans, actors and scimark.monte_carlo either be-
cause bytecode instrumentation causes a premature work-
load termination with a TimeoutException (tradebeans, ac-
tors) or because profiling takes an excessive amount of time,
exceeding 7 days (scimark.monte_carlo). Therefore we ex-
cluded such benchmarks from the PCA analysis (Section 4
of the main paper).

We collect the metrics on a machine with two NUMA
nodes, each containing an Intel Xeon E5-2680 (2.7 GHz) pro-
cessor with 8 physical cores and 64 GB of RAM, running
under Ubuntu 16.04.03 LTS (kernel GNU/Linux 4.4.0-112-
generic x86_64). We configure top to sample CPU utilization
only for the NUMA node where the benchmark is execut-
ing, to increase the accuracy of the collected measurements
(as the computational resources used by perf and top are
not accounted). We disable Turbo Boost [45] and Hyper-
Threading [44]. We use Java OpenJDK 1.8.0_161-b12.

We collect the metrics in two runs, profiling OS- and
hardware-layer metrics (cpu and cachemiss) in the first run
on the original program, and the other metrics in the second
run (using DiSL instrumentation). This way, we obtain more
precise metrics at the OS- and hardware-layer, which do not
account for the execution of instrumentation code. During
metric collection, no other CPU-, memory-, or IO-intensive
application is executing on the system to reduce measure-
ment perturbations. In addition, we pin the execution to an
exclusive NUMA node, to reduce performance interference
caused by other running processes.

C Experimental Setup for Performance
Evaluation

Here, we describe the experimental setup for the perfor-
mance evaluation described in Section 6 of the main paper.

The performancemeasurement experiments are conducted
on 8-core Intel servers, equipped with an Intel Xeon E5-
2620v4 CPU (2.1 GHz, 8 cores, 20 MB cache, Hyper Thread-
ing disabled), 64 GB RAM, running Fedora Linux 27 (kernel
4.15.6). For stable measurement, power management fea-
tures are disabled and the processor is run at the nominal
frequency. Prior to each benchmark execution, the physical
memory pool is randomized. We use Oracle JDK 8u172 with
Graal 1.0.0-rc9 as virtual machine. The heap size is fixed at
12 GB with the G1 collector, and except for the selection of
individual compiler optimizations used to produce Figure 5,
no other option is used.

For each benchmark and each optimization configuration,
we execute the measurements in a new JVM 15 times. Each
execution consists of a warm-up period of 5 minutes, fol-
lowed by 60 seconds of steady-state execution, rounded up to
the next complete benchmark iteration. The duration of the
warm-up period is chosen so that major performance fluctua-
tions due to compilation happen before actual measurement
(verified manually). To provide for meaningful comparison
across benchmarks, we always collect the execution times
of the main benchmark operation (we have modified the
SPECjvm2008 benchmark harness to achieve this, the bench-
mark would normally report aggregated throughput). Win-
sorized filtering is used to remove outliers from Figure 5.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

D Collected Metrics
Table 7 reports the metrics (listed in Table 2) collected on all
analyzed benchmarks, before being normalized by reference
cycles. The experimental setup used for metric collection is
detailed in Section B of the main paper.

E Principal Component Analysis
In Figure 8, we report a larger version of the scatter plots
shown in Figure 1 and discussed in Section 4 of the main
paper.

F Additional Data for the Software
Complexity Metrics

In Tables 8 to 11, we present additional data for the Chi-
damber & Kemerer metrics (Section 7.1 in the main paper),
across all four suites. Tables 8 and 9 contain the sum for each
metric across all benchmarks of a suite, while in Tables 10
and 11 we present the arithmetic mean for each metric across
all benchmarks of a suite.

G Additional Data for the Optimization
Impact Measurements

In Tables 12 to 15, we provide numerical data for the opti-
mization impact overview from Figure 5. The seven columns

– AC, DS, EAWA, GM, LV, LLC and MHS – stand for the
seven optimizations considered, namely Atomic-Operation
Coalescing, Dominance-Based Duplication Simulation, Es-
cape Analysis with Atomic Operations, Speculative Guard
Motion, Loop Vectorization, Loop-Wide Lock Coarsening,
and Method-Handle Simplification. In each column, the first
number gives the change in benchmark execution times
observed when the relevant optimization is turned off, rela-
tive to a baseline with all optimizations turned on (positive
numbers mean optimization speeds up execution, negative
numbers mean optimization slows down execution). The sec-
ond number gives the p-value as computed by the Welch’s
t-test.
Table 16 provides estimate on the compilation overhead

associated with each of the seven optimizations considered.
In each row, the value gives the relative reduction in compiler
thread execution time when the particular optimization is
disabled, measured over the entire warm up period. The
values are aggregated across all benchmarks.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

Benchmark synch wait notify atomic park cpu cachemiss object array method idynamic
Renaissance

akka-uct 4.27E+05 1.00E+00 2.00E+00 1.18E+07 1.75E+05 94.45 6.24E+08 1.16E+08 6.00E+05 1.96E+09 0.00E+00
als 3.01E+06 1.15E+02 1.31E+04 1.81E+06 2.39E+03 58.90 9.63E+08 1.10E+08 2.38E+07 2.91E+09 0.00E+00
chi-square 1.52E+06 8.70E+01 4.30E+01 1.58E+05 7.20E+01 26.19 4.97E+08 1.73E+08 2.40E+07 2.39E+09 0.00E+00
db-shootout 7.28E+06 3.20E+01 0.00E+00 2.72E+07 4.01E+05 45.53 2.91E+09 2.16E+08 1.92E+08 1.11E+10 1.00E+06
dec-tree 5.83E+05 8.80E+01 1.37E+03 5.45E+05 5.35E+02 27.23 7.54E+08 2.50E+08 2.84E+07 2.96E+09 0.00E+00
dotty 5.63E+06 4.00E+00 2.56E+04 4.33E+04 0.00E+00 15.68 7.59E+08 4.92E+07 1.42E+07 1.26E+09 7.22E+06
finagle-chirper 1.29E+07 1.72E+03 1.74E+03 1.02E+08 1.72E+04 69.82 2.52E+09 1.43E+08 1.01E+07 4.44E+09 2.36E+03
finagle-http 2.72E+04 2.00E+01 0.00E+00 5.20E+04 6.66E+02 14.72 4.14E+08 2.81E+08 6.40E+04 3.09E+09 5.80E+02
fj-kmeans 1.01E+08 6.57E+02 6.62E+02 1.89E+04 1.19E+03 69.59 4.23E+08 1.35E+08 2.45E+03 7.08E+08 0.00E+00
future-genetic 6.72E+05 2.37E+04 2.40E+04 5.00E+07 1.59E+05 55.85 7.04E+08 2.11E+08 2.64E+05 1.58E+09 2.34E+06
log-regression 2.09E+05 1.09E+02 9.81E+02 4.77E+05 6.62E+02 24.83 6.58E+08 5.39E+07 1.68E+07 1.86E+09 0.00E+00
movie-lens 1.24E+07 5.78E+02 2.22E+05 3.11E+07 3.98E+04 44.17 3.37E+09 2.00E+08 2.58E+07 7.32E+09 2.16E+02
naive-bayes 2.33E+05 3.50E+01 1.09E+02 1.81E+04 1.32E+02 76.90 1.04E+09 3.60E+08 8.21E+07 3.65E+09 0.00E+00
neo4j-analytics 1.37E+07 4.23E+02 1.54E+05 2.05E+06 2.02E+02 59.74 1.05E+18 1.42E+09 3.29E+07 2.22E+10 2.49E+07
page-rank 2.63E+06 9.10E+01 1.26E+02 9.25E+06 1.38E+02 56.14 1.23E+09 2.01E+08 2.94E+06 5.15E+09 0.00E+00
philosophers 2.21E+06 1.52E+04 8.15E+04 1.18E+08 2.52E+04 99.21 1.16E+09 1.80E+08 4.81E+07 6.28E+09 0.00E+00
reactors 2.59E+08 0.00E+00 0.00E+00 1.76E+08 5.52E+06 56.62 4.22E+09 2.71E+08 1.86E+07 1.24E+10 0.00E+00
rx-scrabble 7.55E+06 0.00E+00 0.00E+00 7.49E+05 8.90E+01 25.10 8.11E+07 1.07E+07 0.00E+00 1.02E+08 1.71E+06
scrabble 2.00E+00 1.00E+00 1.00E+00 3.00E+01 1.00E+00 66.70 2.81E+08 5.65E+07 3.44E+06 4.99E+08 2.73E+07
stm-bench7 3.56E+03 1.00E+01 3.00E+00 2.92E+06 0.00E+00 49.44 3.48E+08 3.03E+07 2.96E+06 8.15E+08 0.00E+00
streams-mnemonics 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 19.24 7.99E+08 2.04E+08 2.09E+08 1.15E+09 2.15E+07

DaCapo
avrora 7.22E+06 1.75E+06 1.68E+05 0.00E+00 0.00E+00 20.28 7.11E+17 7.22E+06 2.05E+06 2.78E+09 0.00E+00
batik 1.67E+06 6.00E+00 0.00E+00 7.00E+00 0.00E+00 24.54 1.96E+08 8.77E+05 2.03E+05 3.46E+07 0.00E+00
eclipse 6.80E+07 1.88E+04 3.60E+05 1.27E+05 0.00E+00 13.91 4.66E+09 9.06E+07 9.89E+07 2.41E+09 0.00E+00
fop 2.45E+06 0.00E+00 0.00E+00 1.60E+01 0.00E+00 6.25 5.10E+07 1.63E+06 7.12E+05 3.50E+07 0.00E+00
h2 7.76E+08 4.65E+03 0.00E+00 2.82E+07 0.00E+00 17.78 2.14E+10 2.91E+08 1.23E+08 2.62E+10 0.00E+00
jython 1.06E+08 0.00E+00 0.00E+00 1.72E+07 0.00E+00 11.41 8.86E+08 1.38E+08 2.80E+07 4.14E+09 0.00E+00
luindex 2.77E+05 1.00E+00 1.25E+03 1.00E+01 0.00E+00 5.57 3.74E+07 1.85E+05 8.48E+04 7.81E+07 0.00E+00
lusearch-fix 6.32E+06 1.38E+02 9.05E+02 5.12E+02 0.00E+00 85.00 6.60E+08 1.04E+07 4.64E+06 6.28E+08 0.00E+00
pmd 3.05E+06 0.00E+00 3.34E+03 4.62E+03 3.00E+00 22.26 4.06E+08 1.04E+07 2.86E+06 1.73E+08 0.00E+00
sunflow 1.53E+03 5.00E+00 0.00E+00 0.00E+00 0.00E+00 79.55 1.13E+09 1.71E+08 4.34E+06 4.19E+09 0.00E+00
tomcat 2.28E+08 6.04E+02 2.18E+05 7.84E+06 1.93E+05 27.51 1.61E+18 1.07E+08 7.61E+07 4.44E+09 0.00E+00
tradesoap 7.31E+08 2.12E+02 1.29E+06 2.39E+06 1.30E+05 64.92 2.96E+10 6.64E+08 2.44E+08 1.50E+10 1.40E+02
xalan 2.12E+08 3.48E+02 1.01E+05 0.00E+00 0.00E+00 97.89 5.11E+09 6.12E+07 4.00E+07 3.84E+09 0.00E+00

ScalaBench
apparat 1.35E+07 5.64E+03 5.16E+05 1.19E+06 4.54E+04 15.80 2.69E+10 3.22E+08 2.55E+07 1.00E+11 0.00E+00
factorie 3.10E+07 3.00E+00 0.00E+00 9.81E+07 0.00E+00 12.04 1.43E+10 7.43E+09 1.16E+08 6.00E+10 0.00E+00
kiama 6.47E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.12 6.28E+07 9.67E+06 2.10E+06 9.10E+07 0.00E+00
scalac 2.52E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 15.45 6.36E+08 4.69E+07 6.45E+06 1.27E+09 0.00E+00
scaladoc 1.90E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.11 3.74E+08 3.92E+07 7.62E+06 9.76E+08 0.00E+00
scalap 7.83E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.32 2.05E+07 3.39E+06 3.40E+05 7.73E+07 0.00E+00
scalariform 1.90E+06 0.00E+00 0.00E+00 0.00E+00 0.00E+00 15.65 3.12E+08 5.70E+07 4.17E+06 5.78E+08 0.00E+00
scalatest 7.83E+05 6.45E+02 1.93E+04 6.53E+04 3.30E+01 20.00 2.56E+08 2.61E+06 7.83E+05 3.51E+07 0.00E+00
scalaxb 1.76E+05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 12.42 9.55E+09 1.22E+08 4.08E+06 1.14E+10 0.00E+00
specs 1.14E+06 4.10E+01 1.38E+04 9.48E+04 5.10E+01 10.53 3.08E+08 1.33E+07 1.93E+06 1.12E+08 0.00E+00
tmt 1.35E+08 5.56E+03 8.70E+01 5.13E+04 5.00E+03 36.54 1.26E+19 3.47E+09 1.75E+07 7.19E+10 0.00E+00

SPECjvm2008
compiler.compiler 4.50E+06 5.00E+00 1.00E+00 2.60E+01 0.00E+00 98.30 1.31E+10 4.17E+08 4.78E+07 1.01E+10 0.00E+00
compiler.sunflow 3.31E+07 1.52E+02 1.00E+00 3.00E+01 0.00E+00 97.85 2.38E+10 1.02E+09 1.72E+08 2.98E+10 0.00E+00
compress 6.18E+05 4.00E+00 1.00E+00 5.50E+01 0.00E+00 98.56 7.06E+10 2.15E+05 1.43E+05 1.56E+11 0.00E+00
crypto.aes 2.94E+07 5.00E+00 1.00E+00 7.70E+01 0.00E+00 97.63 8.29E+09 2.80E+05 3.83E+05 2.91E+09 0.00E+00
crypto.rsa 4.10E+07 4.00E+00 1.00E+00 9.74E+02 0.00E+00 97.33 4.17E+09 1.47E+08 1.83E+08 1.92E+09 1.00E+00
crypto.signverify 2.68E+09 4.00E+00 1.00E+00 7.30E+01 0.00E+00 97.65 1.71E+10 1.51E+07 2.48E+07 2.55E+10 0.00E+00
derby 4.39E+08 1.50E+04 2.60E+07 1.97E+06 1.50E+01 97.92 2.05E+10 1.59E+09 4.25E+08 1.43E+10 0.00E+00
mpegaudio 9.38E+06 8.50E+01 3.00E+00 3.19E+03 0.00E+00 98.29 2.86E+10 1.50E+05 4.81E+06 1.73E+10 1.00E+00
scimark.fft.large 3.36E+08 6.00E+00 1.00E+00 3.70E+01 0.00E+00 95.31 5.94E+10 4.01E+03 2.84E+03 3.36E+08 0.00E+00
scimark.fft.small 3.36E+09 4.00E+00 1.00E+00 3.60E+01 0.00E+00 98.14 3.27E+11 4.90E+05 5.29E+05 3.36E+09 0.00E+00
scimark.lu.large 1.34E+08 4.00E+00 1.00E+00 3.20E+01 0.00E+00 92.28 1.01E+11 1.80E+03 1.39E+03 1.34E+08 0.00E+00
scimark.lu.small 4.02E+09 4.00E+00 1.00E+00 3.30E+01 0.00E+00 97.83 2.95E+11 6.12E+05 9.16E+05 4.02E+09 0.00E+00
scimark.sor.large 5.03E+08 5.00E+00 1.00E+00 3.90E+01 0.00E+00 92.38 1.78E+11 5.34E+03 3.35E+03 5.03E+08 0.00E+00
scimark.sor.small 6.00E+08 5.00E+00 1.00E+00 3.90E+01 0.00E+00 98.22 7.24E+10 7.00E+04 5.13E+04 6.01E+08 0.00E+00
scimark.sparse.large 3.36E+08 4.00E+00 1.00E+00 3.20E+01 0.00E+00 87.15 1.96E+11 3.64E+03 2.71E+03 3.36E+08 0.00E+00
scimark.sparse.small 2.40E+08 5.00E+00 1.00E+00 3.20E+01 0.00E+00 96.42 5.16E+10 2.36E+04 3.33E+04 2.40E+08 0.00E+00
serial 2.25E+09 2.20E+02 7.50E+01 8.35E+02 0.00E+00 98.09 3.89E+10 1.78E+09 1.05E+09 3.70E+10 1.00E+00
sunflow 1.03E+05 4.49E+02 1.00E+00 5.14E+02 0.00E+00 96.95 1.34E+10 2.54E+09 6.26E+07 6.23E+10 0.00E+00
xml.transform 4.76E+08 7.00E+00 1.00E+00 2.40E+01 0.00E+00 97.82 5.80E+09 1.75E+08 7.74E+07 7.73E+09 0.00E+00
xml.validation 8.99E+08 5.00E+00 1.00E+00 1.22E+02 0.00E+00 98.80 2.05E+10 5.49E+08 2.11E+08 2.41E+10 0.00E+00

Table 7. Unnormalized metrics collected on all analyzed benchmarks.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

−2 0 2 4 6
Principal C mp nent 1

−1

0

1

2

3

4

5

Pr
in
cip

al
 C
 m

p
ne

nt
 2

akka-uct

db-sh t ut

finagle-chirper

fin
ag
le-
htt
p

future-genetic

m
vie
-le
ns

page-rank

ph
il s
 p
he
rs

rea
ct
rs

rx-scrabble

stm-bench7

scrabble

streams-mnem nics

d tty

DaCap
ScalaBench
SPECjvm2008
Renaissance

(a) PC1 vs PC2.

−2 −1 0 1 2 3 4 5
Principal Component 3

−2

−1

0

1

2

3

4

5

Pr
in
cip

al
 C
om

po
ne

nt
 4

movie-lens

neo4j-analytics

philosophers
r -
scr
ab
ble

scrabble

streams-mnemonics DaCapo
ScalaBench
SPECjvm2008
Renaissance

(b) PC3 vs PC4.

Figure 8. Scatter plots of benchmark scores over the first four principal components (PCs) - Larger version.

Benchmark WMC DIT CBO NOC RFC LCOM

Renaissance
akka-uct 34607 4938 35384 2718 66665 674747
als 96524 13465 95480 7488 184730 5049619
chi-square 116483 13963 108544 8110 232191 3465588
db-shootout 57652 7393 51499 4285 99878 1874929
dec-tree 206933 23936 184901 14029 369131 7360650
dotty 65887 7185 62533 4121 120656 1824595
finagle-chirper 71465 13894 78437 6322 137705 1429201
finagle-http 65465 13122 72146 5835 126281 1169093
fj-kmeans 22425 3092 22061 1592 42584 461842
future-genetic 26198 3499 25430 1883 49263 508615
log-regression 163424 21841 161667 12057 307276 5569868
movie-lens 101483 14335 100517 8050 192950 5118756
naive-bayes 88885 12871 91563 7130 174908 1850846
neo4j-analytics 119743 22172 141185 11666 224669 1524820
page-rank 93537 13939 97078 7732 183346 1541349
philosophers 24617 3432 24161 1821 46714 494658
reactors 32644 4097 29610 2251 60899 1066392
rx-scrabble 25981 3752 25829 1958 49387 576353
scrabble 24333 3380 24176 1759 46212 484610
stm-bench7 28074 3829 27159 2083 52889 635890
streams-mnemonics 21830 3066 21757 1571 41799 455958
min 21830 3066 21757 1571 41799 455958
max 206933 23936 184901 14029 369131 7360650
geomean 55533.33 7842.22 55146.79 4212.47 105104.97 1358042.08

Table 8. CK metrics for Renaissance: Sum across all loaded classes of a benchmark.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

Benchmark WMC DIT CBO NOC RFC LCOM

DaCapo
avrora 13488 2328 13719 1145 25357 169973
batik 31205 4958 30436 2655 60275 333328
eclipse 66318 5753 45597 4346 97757 600483
fop 28162 4272 28427 2278 56725 324197
h2 20230 2358 16492 1200 37467 297210
jython 66079 3595 34583 2978 71881 616258
luindex 14361 1927 12737 1004 26549 181134
lusearch-fix 12466 1687 10640 857 22378 161333
pmd 24238 3406 21589 1746 46074 526595
sunflow 18088 2359 17493 1266 37288 245761
tomcat 63591 5347 37448 4239 85921 616524
tradebeans 122123 5108 36856 6347 74677 463044
tradesoap 124191 5120 36971 6421 75043 466569
xalan 18203 2852 16987 1364 35126 231540
min 12466 1687 10640 857 22378 161333
max 124191 5753 45597 6421 97757 616524
geomean 32470 3376.65 23275.3 2160.25 48461.37 336191.51

ScalaBench
actors 41398 4900 34981 2848 76794 1216221
apparat 34994 4023 29838 2121 66309 1344756
factorie 24693 2657 19713 1481 45364 1080228
kiama 31925 4054 27664 2051 60955 1259018
scalac 57337 7789 66036 4111 124240 2298594
scaladoc 50655 6343 50616 3379 103649 2178195
scalap 29661 3137 23638 1743 54480 1312560
scalariform 32871 3626 28467 2041 62891 1352823
scalatest 114544 4589 37128 6687 78209 1473601
scalaxb 30112 3402 25528 1884 57511 1180527
specs 150895 6548 50104 7890 105427 2215152
tmt 35875 3188 25590 1941 64142 1565153
min 24693 2657 19713 1481 45364 1080228
max 150895 7789 66036 7890 124240 2298594
geomean 44505.06 4290.27 32809.23 2734.69 71839.71 1489515.03

SPECjvm2008
compiler.compiler 36385 4744 36421 2728 77428 598961
compiler.sunflow 36456 4745 36424 2728 77538 600724
compress 30586 3843 30009 2200 65819 546396
crypto.aes 33789 4134 31810 2413 69028 551637
crypto.rsa 32724 4089 31553 2381 68457 549741
crypto.signverify 30999 3930 30639 2250 66899 547493
derby 55044 5744 45745 3480 103373 1131251
mpegaudio 31370 3925 30483 2251 66884 552206
scimark.fft.large 30572 3835 29977 2192 65767 546563
scimark.fft.small 30572 3835 29977 2192 65767 546563
scimark.lu.large 30569 3833 29968 2191 65761 546558
scimark.lu.small 30569 3832 29967 2190 65761 546558
scimark.monte_carlo 30560 3833 29966 2191 65741 546482
scimark.sor.large 30565 3835 29975 2192 65755 546493
scimark.sor.small 30565 3835 29975 2192 65755 546493
scimark.sparse.large 30561 3833 29967 2191 65746 546486
scimark.sparse.small 30561 3833 29967 2191 65746 546486
serial 32690 3987 31200 2310 68584 570658
sunflow 31946 4003 31463 2324 69076 552092
xml.transform 43374 5654 40968 3154 86981 625179
xml.validation 34578 4378 34225 2545 74250 581626
min 30560 3832 29966 2190 65741 546396
max 55044 5744 45745 3480 103373 1131251
geomean 33194.67 4142.17 32187.12 2383.19 70279.58 578408.18

Table 9. CK metrics for DaCapo, ScalaBench and SPECjvm2008: Sum across all loaded classes of a benchmark.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Benchmark WMC DIT CBO NOC RFC LCOM

Renaissance
akka-uct 12.83 1.83 13.11 1.01 24.71 250.09
als 13.51 1.88 13.36 1.05 25.85 706.54
chi-square 14.91 1.79 13.9 1.04 29.73 443.74
db-shootout 14.61 1.87 13.05 1.09 25.3 475.03
dec-tree 16.17 1.87 14.45 1.1 28.84 575.1
dotty 18.48 2.02 17.54 1.16 33.84 511.81
finagle-chirper 11.5 2.24 12.62 1.02 22.16 230
finagle-http 11.41 2.29 12.57 1.02 22 203.71
fj-kmeans 13.76 1.9 13.53 0.98 26.13 283.34
future-genetic 13.94 1.86 13.53 1 26.22 270.68
log-regression 14.39 1.92 14.23 1.06 27.05 490.31
movie-lens 13.31 1.88 13.18 1.06 25.31 671.4
naive-bayes 13.01 1.88 13.4 1.04 25.6 270.91
neo4j-analytics 11.07 2.05 13.06 1.08 20.78 141.02
page-rank 12.68 1.89 13.16 1.05 24.86 209
philosophers 13.29 1.85 13.05 0.98 25.22 267.09
reactors 14.54 1.82 13.19 1 27.13 475.01
rx-scrabble 13.2 1.91 13.12 0.99 25.08 292.71
scrabble 13.57 1.89 13.48 0.98 25.77 270.28
stm-bench7 13.36 1.82 12.93 0.99 25.17 302.66
stream-mnemonics 13.54 1.9 13.5 0.97 25.93 282.85
min 11.07 1.79 12.57 0.97 20.78 141.02
max 18.48 2.29 17.54 1.16 33.84 706.54
geomean 13.58 1.92 13.49 1.03 25.71 332.19

Table 10. CK metrics for Renaissance: Average across all loaded classes of a benchmark.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

Benchmark WMC DIT CBO NOC RFC LCOM

DaCapo
avrora 11.74 2.03 11.94 1 22.07 147.93
batik 12.2 1.94 11.9 1.04 23.57 130.36
eclipse 21.02 1.82 14.45 1.38 30.98 190.33
fop 12.67 1.92 12.79 1.02 25.52 145.84
h2 17.42 2.03 14.2 1.03 32.27 255.99
jython 22.81 1.24 11.94 1.03 24.81 212.72
luindex 14.68 1.97 13.02 1.03 27.15 185.21
lusearch-fix 15.13 2.05 12.91 1.04 27.16 195.79
pmd 14.31 2.01 12.74 1.03 27.2 310.86
sunflow 13.83 1.8 13.37 0.97 28.51 187.89
tomcat 22.76 1.91 13.4 1.52 30.75 220.66
tradebeans 41.89 1.75 12.64 2.18 25.62 158.85
tradesoap 42.43 1.75 12.63 2.19 25.64 159.4
xalan 13.57 2.13 12.67 1.02 26.19 172.66
min 11.74 1.24 11.9 0.97 22.07 130.36
max 42.43 2.13 14.45 2.19 32.27 310.86
geomean 17.97 1.87 12.88 1.2 26.82 186.05

ScalaBench
actors 15 1.78 12.67 1.03 27.82 440.66
apparat 16.78 1.93 14.31 1.02 31.8 644.97
factorie 16.67 1.79 13.31 1 30.63 729.39
kiama 15.55 1.97 13.47 1 29.69 613.26
scalac 14.04 1.91 16.17 1.01 30.43 562.97
scaladoc 15.12 1.89 15.1 1.01 30.93 650.01
scalap 17.14 1.81 13.66 1.01 31.47 758.27
scalariform 16.18 1.79 14.02 1 30.97 666.09
scalatest 42.6 1.71 13.81 2.49 29.08 548.01
scalaxb 16.04 1.81 13.6 1 30.64 628.94
specs 40.1 1.74 13.31 2.1 28.02 588.67
tmt 19.16 1.7 13.67 1.04 34.26 836.09
min 14.04 1.7 12.67 1 27.82 440.66
max 42.6 1.97 16.17 2.49 34.26 836.09
geomean 18.85 1.82 13.9 1.16 30.43 631.02

SPECjvm2008
compiler.compiler 13.55 1.77 13.56 1.02 28.83 222.99
compiler.sunflow 13.57 1.77 13.56 1.02 28.87 223.65
compress 13.83 1.74 13.57 1 29.77 247.13
crypto.aes 14.32 1.75 13.48 1.02 29.26 233.84
crypto.rsa 14 1.75 13.5 1.02 29.29 235.23
crypto.signverify 13.73 1.74 13.57 1 29.63 242.47
derby 16.9 1.76 14.04 1.07 31.73 347.22
mpegaudio 13.89 1.74 13.49 1 29.61 244.45
scimark.fft.large 13.87 1.74 13.6 0.99 29.84 247.99
scimark.fft.small 13.87 1.74 13.6 0.99 29.84 247.99
scimark.lu.large 13.88 1.74 13.6 0.99 29.85 248.1
scimark.lu.small 13.88 1.74 13.61 0.99 29.86 248.21
scimark.monte_carlo 13.87 1.74 13.6 0.99 29.84 248.06
scimark.sor.large 13.87 1.74 13.6 0.99 29.83 247.96
scimark.sor.small 13.87 1.74 13.6 0.99 29.83 247.96
scimark.sparse.large 13.87 1.74 13.6 0.99 29.84 248.06
scimark.sparse.small 13.87 1.74 13.6 0.99 29.84 248.06
serial 14.15 1.73 13.5 1 29.68 246.93
sunflow 13.69 1.72 13.49 1 29.61 236.64
xml.transform 14.31 1.86 13.51 1.04 28.69 206.19
xml.validation 13.62 1.72 13.48 1 29.24 229.08
min 13.55 1.72 13.48 0.99 28.69 206.19
max 16.9 1.86 14.04 1.07 31.73 347.22
geomean 14 1.75 13.58 1.01 29.65 244.03

Table 11. CK metrics for DaCapo, ScalaBench and SPECjvm2008: Average across all loaded classes of a benchmark.

Renaissance: Suite for Parallelism on the JVM PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

workload AC DS EAWA GM LV LLC MHS
akka-uct +1% 38% +2% 22% +5% 0% +1% 44% +4% 1% +1% 39% +3% 4%

als +0% 81% +1% 33% −1% 14% +11% 0% +10% 0% +1% 29% +0% 82%
chi-square +4% 3% +4% 4% +5% 0% +5% 0% +3% 12% +2% 33% +4% 2%

db-shootout −0% 35% −0% 63% +0% 14% +5% 0% +0% 24% −0% 29% +0% 48%
dec-tree +0% 60% +1% 0% −0% 90% +8% 0% +3% 0% −0% 35% −0% 45%

dotty +0% 1% +2% 0% +0% 85% +3% 0% +1% 0% +0% 0% +8% 0%
finagle-chirper −1% 90% −0% 96% +24% 0% −1% 88% +0% 91% +3% 23% +4% 18%

finagle-http −1% 5% +4% 0% −1% 12% +0% 60% −0% 25% −0% 29% −0% 95%
fj-kmeans −0% 16% −1% 0% +0% 90% +2% 0% −0% 6% +71% 0% −0% 62%

future-genetic +24% 0% +0% 59% +2% 1% +2% 0% +1% 0% +1% 0% +25% 0%
log-regression −0% 89% +1% 58% +0% 73% +15% 0% +2% 6% +2% 1% +1% 28%

movie-lens +1% 85% +0% 99% +1% 81% +1% 84% −1% 80% −3% 18% +1% 76%
naive-bayes +1% 14% −3% 0% +1% 25% +13% 2% +1% 17% +1% 27% −0% 55%

neo4j-analytics +0% 91% −4% 37% −7% 10% +5% 24% −3% 49% −0% 100% −4% 27%
page-rank −1% 2% −0% 51% −1% 2% +2% 0% −0% 38% −1% 0% −1% 0%

philosophers −5% 5% −2% 32% −1% 43% +2% 9% +2% 22% −1% 64% −1% 62%
reactors −0% 42% −2% 0% −0% 11% −1% 3% −1% 1% −1% 4% −1% 16%

rx-scrabble −0% 93% +1% 6% −0% 69% −1% 0% −1% 8% −0% 38% +1% 0%
scrabble +1% 65% +1% 32% −2% 11% +3% 6% −1% 47% −1% 31% +22% 0%

stm-bench7 +1% 21% +3% 0% +1% 26% +1% 6% +0% 12% +1% 1% −0% 96%
streams-mnemonics +0% 35% +22% 0% +1% 2% +1% 3% +2% 0% +0% 59% +7% 0%

Table 12. Optimization impact – Renaissance benchmarks.

workload AC DS EAWA GM LV LLC MHS
avrora +0% 3% +0% 4% +0% 90% +0% 17% +0% 19% +0% 0% +0% 7%
batik −0% 35% −0% 0% +0% 91% +1% 0% +0% 81% −0% 68% −0% 3%

eclipse +0% 26% +5% 0% −0% 39% +1% 0% +1% 0% +0% 10% +0% 11%
fop +0% 90% +1% 0% +0% 63% +0% 83% +1% 0% −0% 84% +0% 72%
h2 +0% 29% +2% 0% −0% 65% +1% 4% +0% 20% +0% 8% +1% 1%

jython −1% 26% +5% 0% +1% 65% +2% 9% −0% 96% +1% 42% +0% 96%
luindex −0% 39% +3% 0% −0% 5% +2% 0% +0% 0% −0% 70% −1% 0%
lusearch −0% 17% +1% 0% −0% 9% −0% 76% −0% 1% −0% 80% −0% 62%

pmd −0% 10% −0% 58% +0% 28% −1% 0% −0% 63% +0% 76% +0% 81%
sunflow +1% 1% +4% 0% +0% 78% +0% 24% +2% 2% +2% 1% +2% 1%
tomcat +0% 6% −0% 40% +0% 76% −0% 54% +0% 40% −0% 85% −0% 91%

tradebeans +0% 19% +7% 0% +0% 46% −0% 33% +1% 0% +0% 78% +0% 85%
tradesoap +3% 1% −2% 0% −2% 4% −0% 80% +1% 35% +0% 70% −3% 0%

xalan +1% 4% +1% 0% +0% 52% +0% 1% +0% 6% +0% 42% +0% 2%
Table 13. Optimization impact – DaCapo benchmarks.

workload AC DS EAWA GM LV LLC MHS
actors +0% 51% +1% 0% +1% 0% +0% 35% +0% 5% −0% 86% +0% 4%

apparat +1% 2% −1% 14% −1% 19% +0% 83% +1% 10% −0% 62% −0% 74%
factorie +2% 0% +7% 0% +1% 1% −2% 0% +1% 30% +1% 7% +1% 27%
kiama −0% 37% +4% 0% −0% 24% +1% 0% +1% 0% +0% 24% +0% 60%
scalac −0% 77% +1% 0% +0% 38% −0% 96% +0% 20% −0% 32% −0% 10%

scaladoc −2% 0% +0% 65% −3% 0% −2% 0% −1% 23% −1% 10% −1% 40%
scalap −0% 1% +1% 0% −0% 0% +9% 0% +2% 0% −0% 7% −0% 0%

scalariform +0% 5% +1% 0% −0% 49% +0% 1% +0% 2% +0% 64% −0% 22%
scalatest +0% 90% −1% 19% −1% 34% +0% 83% +1% 2% +1% 41% +0% 100%
scalaxb +1% 88% +8% 5% +1% 87% +6% 15% +6% 18% +7% 8% +2% 72%
specs −0% 16% +0% 18% −0% 11% +0% 2% +0% 78% −0% 20% −0% 45%
tmt +0% 10% +1% 0% +0% 0% +13% 0% +1% 0% +0% 6% +0% 42%

Table 14. Optimization impact – ScalaBench benchmarks.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tůma, Martin Studener, Lubomír Bulej, Yudi

Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder

workload AC DS EAWA GM LV LLC MHS
compiler.compiler +0% 8% +1% 0% −0% 10% +3% 0% +1% 0% −0% 35% −0% 73%
compiler.sunflow −0% 42% +1% 0% +0% 39% +2% 0% +1% 0% −0% 39% +0% 12%

compress −0% 33% −2% 0% +0% 77% +2% 0% +4% 0% −0% 82% −0% 35%
crypto.aes −0% 5% −0% 67% −0% 37% +1% 0% +1% 0% −0% 8% −0% 4%
crypto.rsa −0% 20% +0% 2% −0% 36% +0% 77% −0% 34% −0% 29% −0% 15%

crypto.signverify −0% 92% +0% 69% −0% 64% +9% 0% −0% 74% −0% 100% +0% 87%
derby +0% 44% +0% 59% −0% 48% −1% 1% −1% 18% +0% 58% +0% 72%

mpegaudio −0% 84% −3% 0% +0% 26% +5% 0% +0% 69% +0% 50% +0% 31%
scimark.fft.large −3% 1% −2% 3% −3% 2% −1% 19% −3% 0% −2% 7% −1% 49%
scimark.fft.small −1% 44% +2% 33% −3% 9% −1% 65% −2% 22% −3% 4% −1% 68%
scimark.lu.large −0% 11% −0% 57% −0% 8% +69% 0% +29% 0% −0% 6% +0% 81%
scimark.lu.small +0% 40% +1% 0% +0% 16% +137% 0% +58% 0% +0% 92% +0% 1%

scimark.monte_carlo +2% 30% +7% 0% −0% 83% −0% 83% +0% 89% +1% 61% +1% 62%
scimark.sor.large +0% 4% −0% 21% +0% 0% +34% 0% −0% 25% +0% 13% −0% 44%
scimark.sor.small −0% 64% −0% 44% +0% 65% +36% 0% +0% 20% −0% 32% +0% 38%

scimark.sparse.large +0% 4% +1% 0% +0% 4% +16% 0% +0% 2% +0% 46% +0% 16%
scimark.sparse.small −0% 2% −0% 0% −0% 6% −10% 0% −0% 0% +0% 1% −0% 6%

serial +0% 94% +2% 0% +1% 4% +4% 0% +1% 5% −1% 11% +0% 39%
sunflow +1% 32% +2% 1% +1% 19% +1% 17% +2% 1% +1% 29% +1% 16%

xml.transform +0% 73% +2% 0% −0% 60% +3% 0% +0% 24% +0% 83% +0% 54%
xml.validation −1% 0% +1% 6% −1% 10% −1% 13% −1% 1% −1% 2% −1% 5%

Table 15. Optimization impact – SPECjvm2008 benchmarks.

optimization compilation time change
Atomic-Operation Coalescing 0.6%
Dominance-Based Duplication Simulation 19.6%
Loop-Wide Lock Coarsening 6.7%
Method-Handle Simplification 7.2%
Speculative Guard Motion 5.8%
Loop Vectorization 5.1%
Escape Analysis with Atomic Operations 6.9%

Table 16. Compilation time associated with individual optimizations.

	Abstract
	1 Introduction
	2 Motivation and Benchmark Selection
	2.1 Selection Methodology
	2.2 Renaissance Benchmarks and Harness

	3 Characterizing Metrics
	3.1 Description of the Metrics
	3.2 Normalization
	3.3 Metric Collection

	4 Diversity
	4.1 Benchmark Suites
	4.2 Methodology
	4.3 Analysis

	5 Optimization Opportunities
	5.1 Escape Analysis with Atomic Operations
	5.2 Loop-Wide Lock Coarsening
	5.3 Atomic-Operation Coalescing
	5.4 Method-Handle Simplification
	5.5 Speculative Guard Motion
	5.6 Loop Vectorization
	5.7 Dominance-Based Duplication Simulation

	6 Performance Evaluation
	7 Code Complexity
	7.1 Software Complexity Metrics
	7.2 Compiled Code Size

	8 Related Work
	9 Conclusion
	References
	A Analyzed Benchmarks
	B Experimental Setup for Metric Profiling and Principal Component Analysis
	C Experimental Setup for Performance Evaluation
	D Collected Metrics
	E Principal Component Analysis
	F Additional Data for the Software Complexity Metrics
	G Additional Data for the Optimization Impact Measurements

