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Abstract. The reactor model is a foundational programming model for
distributed computing, whose focus is modularizing and composing com-
putations and message protocols. Previous work on reactors dealt mainly
with the programming model and its composability properties, but did
not show how to schedule computations in reactor-based programs.
In this paper, we propose a pluggable scheduling algorithm for the reac-
tor model. The algorithm is customizable with user-defined scheduling
policies. We define and prove safety and progress properties. We compare
our implementation against the Akka actor framework, and show up to
3× performance improvements on standard actor benchmarks.

1 Introduction

The recently proposed reactor model [3] [31] [26] uncovered a new route to com-
posable distributed computing. Instead of composing message protocols across
multiple actors, the reactor model advocates protocol composition within a sin-
gle unit of concurrency called a reactor. This composition is achieved by exposing
multiple typed first-class event streams instead of a static receive statement.

The original reactor model proposal [31] dealt only with the programming
model, but did not discuss the underlying implementation. The existence of
multiple event streams within a single reactor poses a scheduling problem that
differs from scheduling in the standard actor model, in which each actor has a
single mailbox. In the reactor model, the fundamental constraint is the following:
events from different event streams must be scheduled fairly, but serially for any
two event streams that belong to the same reactor.

The goal of this paper is twofold. First, we propose a scheduler for the re-
actor model, identify its properties and show correctness. Second, we make the
scheduler pluggable, allowing clients to implement custom scheduling policies.

There are several reasons why a scheduler should be pluggable. First, it is
expensive and time consuming to develop an optimal scheduler. A more prudent
plan is to develop a system with a sub-optimal scheduler, and then (let clients)
improve it incrementally when concrete requirements arise.

Second, not every scheduler is a perfect fit for every situation. A scheduler
can be Pareto-optimal, meaning that there is no other scheduler that is equal
or better on all workloads. However, there may exist another scheduler that is
better on one particular workload, but worse on some other workloads.



For example, in the Ping-Pong benchmark [15], a message is likely to arrive
soon, and it helps to keep a (re)actor activated even when there are no pending
messages to handle. However, in the Thread Ring benchmark, the same heuristic
wastes processor time, as it is in most cases unlikely that a message will arrive
soon. In these cases, users should be able to decide which scheduling policy is
more appropriate for their workload, or implement adaptive schedulers that can
dynamically adjust themselves to the conditions in the program.

Third, certain scheduling policies are application-specific and rely on explicit
domain knowledge. For example, if a reactor needs a special system-wide resource
(such as a GPU, a DSP or a temperature sensor reading), then the scheduler
needs to negotiate the availability of the resource with the OS. A generic sched-
uler cannot do this, and this warrants a user-defined scheduling policy, which
embeds such domain-specific knowledge into the scheduling mechanism.

This paper brings forth the following contributions:

– Detailed description and implementation of a scheduling algorithm for the
reactor programming model (Sect. 3).

– A list of safety- and progress-related properties that a reactor scheduler
must satisfy. We analyze the proposed scheduling algorithm, and show that
it satisfies these properties under specific assumptions on the user-defined
scheduling policy (Sect. 2.1 and 3.3).

– A pluggable mechanism for user-defined scheduling policies, which can em-
bed application-specific knowledge (Sect. 4).

– An overview of optimization techniques used in our implementation, which
was added to this extended version of the original paper [24] (Sect. 5).

– A performance comparison on the Savina benchmark suite [15] with the
widely adopted Akka actor framework. We show that our reactor implemen-
tation outperforms Akka on 6 out of 8 benchmarks by a factor of 1.1−3.3×,
and otherwise has comparable performance (Sect. 6).

This work focuses on scheduling reactors in a single reactor system, on a
single shared-memory machine. Scheduling reactor execution in a fault-tolerant
distributed setting is not the goal. That problem is based on an entirely different
set of assumptions (such as faults, preemptions, network delay, lack of shared
memory), and consequently results in different abstractions. In practice, this is
the task of the cluster manager [14] [38], and not the reactor scheduler. However,
effective single-machine scheduling is likely a prerequisite for efficient distributed
computations, since it ensures a better utilization of each machine.

This paper is an extended version of the previous work on pluggable schedul-
ing for the reactor programming model [24]. In this version, we present an
overview of optimization techniques that were used to improve the performance
of our scheduler: explicit work stealing, lazy task scheduling, reanimation threads,
message arrival speculation and actor class profiling (Sect. 5).

Code examples are written in Scala [20], a statically compiled language, pri-
marily targetting the JVM. Syntax is similar to Java, but more concise. Vari-
ables and final variables are defined with keywords var and val, respectively,
and methods with the def keyword, as in Python. Type annotations come after



a : following an identifier, similar to Pascal. Function objects are declared with
a list of parameters, followed by => and a body. Partial functions are declared
as a list of case statements, and are defined for the values matched by at least
one of the cases. Traits and the with keyword are equivalents of Java interfaces
and implements. Type parameters are enclosed in square brackets, []. Opera-
tors, such as !, are normal methods with symbolic names. Critical sections are
delimited with a synchronized block.

We start by describing the reactor model in more detail in Sect. 2, and we
then show the proposed scheduling algorithm in Sect. 3.

2 Reactor Model

The reactor programming model [31] is a generalization of the standard actor
model [2] [4]. There are three major differences between these models. First,
the reactor model exposes multiple first-class event streams instead of a static
receive statement. Second, in the reactor model, a computation can wait for
events from multiple event streams simultaneously, whereas an actor can be
suspended on a single receive statement at a time. Third, targets of message
sends are typed channels instead of untyped actor references1. As argued before
[31], these three fundamental differences allow modularity and composition of
message protocols within a single reactor, a feature that was previously not
possible with actors alone. For example, reactor model allows defining best-effort
and reliable broadcasts, failure detectors [10] [18] and CRDTs [34], and exposing
them as reusable components, that can be either embedded into a reactor, or
further composed into more complex components.

In the reactor model, the principal unit of concurrency is called a reactor.
Analogous to how an actor can process at most a single message at once, a
reactor can process at most a single event at any point in time. This serializability
property is one of the major strengths of (re)actors, as it allows users to access
local state without synchronization.

Consider a reactor that counts how many events it received. The following
code snippet declares a reactor template AnalysisReactor that tracks how many
string events it received. Field numEvents is part of the reactor’s state:

class AnalysisReactor extends Reactor[String] {
var numEvents = 0 }

Defining a reactor template does not yet start a reactor instance. Before we
see how to do that, we need to define how the reactor receives events. Entities
that allow handling incoming events are called event streams. Every reactor gets
a default event stream called main.events when it is created. To receive an event,
users need to pass an event handler to the stream’s onEvent method. We extend
the body of the previous reactor template with a call to onEvent:

main.events.onEvent { x => numEvents += 1 }

1 In Erlang, actor references are called process IDs.



Generally, an event stream has the type Events[T], indicating that it delivers
events of type T. In our case, main.events has the type Events[String], because
we declared a reactor of type Reactor[String].

Unlike processes in the π-calculus [19], where a process can block until a
message arrives on a channel, or join calculus [8], where a process can decide to
block until another process sends a matching message, a reactor is not limited
to receiving events on a single event stream. During its lifetime, a reactor can
receive from any number of event streams. Effectively, a reactor has multiple
synchronous control flows. Concretely, apart from the main event stream, every
reactor has a system event stream called sysEvents that delivers lifecycle events
– for example, when the scheduler assigns execution time to the current reactor,
or the reactor terminates. We can react to a subset of system events by passing
a partial function to onMatch method of the event stream. In the following, we
expand the earlier reactor template with a variable numSch, and count the number
of times the reactor was assigned execution time. We expect that each time the
reactor is scheduled, it handles several events. When the reactor terminates, we
print the average number of events handled each time it got scheduled:

var numSch = 0
sysEvents.onMatch {
case Scheduled => numSch += 1
case Stopped => print(numEvents / numSch) }

Every event stream has a corresponding channel. A channel is the writing
end of the event stream. It has the type Channel[T], where T corresponds to the
event stream type. Whereas an event stream can be used only by the reactor that
owns it, a channel can be shared with any other reactor. The basic operation on
a channel is an event send !. In the following, we extend the reactor template to
send a message to the main channel when the reactor starts:

sysEvents.onMatch { case Started => main.channel ! "started" }

To create additional channels and event streams, a reactor can use the open

statement. Given the type of events, say Int for integers, the open statement
returns a fresh pair of a channel and the corresponding event stream:

val (numberEvents, numberChannel) = open[Int]

To create a running reactor instance from a template, we call the spawn

method of the reactor system. Spawning a reactor returns its main channel:

val ch: Channel[String] = system.spawn(Proto[AnalysisReactor])

Proto is a wrapper around the specific reactor class, used to set properties
such as the textual name of the reactor, or its scheduling policy.

We claimed earlier that reactors generalize actors. To validate this, we encode
an Akka-style [1] actor using a reactor from the Reactors.IO framework [3]. The
reactor receives events of type Any, which is the top type in Scala. Any event x

from the main event stream is forwarded to the partial function receive if the
partial function is defined for it. Otherwise, the event is discarded.



abstract class AkkaActor extends Reactor[Any] {
def receive: PartialFunction[Any, Unit]
main.events.onEvent { x =>
if (receive.isDefinedAt(x)) receive(c)

} }

Exact formal semantics of the reactor model can be found in related work
[31]. In a nutshell, the reactor model consists of the following components:
– Defining and starting computations: reactor templates that define re-

actors, and the spawn method used to start them.
– Receiving events: event streams and the onEvent method, used to sub-

scribe to incoming events and eventually handle them.
– Sending events: channels and the ! operator, used to asynchronously send

events to other reactors.
– Modularising protocols: the open method, used to create supplementary

channels in the current reactor2.
The main difference with the actors is that there are multiple event streams

in each reactor, and events can be delivered on any of them. Before examining
the proposed scheduling algorithm, we examine its essential properties.

2.1 Properties of a Reactor Scheduler

We now explore important properties that a reactor scheduler should satisfy.
In what follows, we say that an event is delivered if it is enqueued on an event
queue. We say that a reactor is activated when it becomes scheduled to execute
and process some of its delivered events. We say that an event is handled when
the event handlers from corresponding event streams get invoked for that event.

Serializability states that a reactor at any point in time runs at most one of
its event handlers. Processing events serially, in sequence, prevents data races
that would otherwise result from simultaneously manipulating reactor state, and
obviates the need for user-level synchronization. Importantly, serializability ap-
plies to events received on all event streams belonging to the same reactor – at
most one handler across all event streams may be active at a time.

Fairness states that if an event is delivered to the reactor on some event
stream, then the corresponding event handler is eventually invoked, unless the
event stream gets sealed by user code3. An important assumption that we make

2 It was shown that encoding multiple protocols in the actor model using a single
actor is possible, but made easier with custom protocol description languages [37].
Conversely, protocol modularisation can also be achieved by encapsulating groups
of actors, each of which handles one aspect of the protocol. A custom architecture
description language was made to facilitate this type of encapsulation [5]. One goal
of the reactor model is to allow modularisation in the core model, without relying
on another language layer.

3 Users can do this explicitly in the reactor programming model, in which case the
undelivered events are dropped. It is unclear to us how to achieve this using auto-
matic GC, since there always exists a reference from the onEvent callback to the
event stream object.



is that no reactor executes an infinite loop, i.e. the handling of every event
consists of a finite number of steps.

Although fairness ensures that delivered events are eventually handled, a
stronger guarantee is sometimes more useful. Whenever possible, a scheduler
should avoid a scenario in which a set of events delivered to one event stream
grows indefinitely4. This can, for example, occur in a multiple producer, single
consumer setting. Fairness only ensures that the single consumer is eventually
scheduled, but does not prevent its event queue from growing indefinitely. To
be fair, a scheduler must ensure that some event streams get processed more
often than others. We formulate bounded delivery time fairness as follows – for
any two events x and y, such that x is the dx-th event delivered globally and
y is dy-th, and x is the hx-th event handled globally and y is hy-th, difference
hx−hy must be bound by dx−dy +C, where C is a constant. This is essentially
a global relaxed FIFO condition.

Aside from being fairly executed, reactors must be able to exploit parallelism
in the system. A reactor scheduling system is scalable if it meets the following
conditions. First, event handling must not contend with concurrent event deliv-
ery. Second, event delivery time must be O(1) when there are P events delivered
concurrently on any subset of event streams. Third, event delivery time must be
O(1) irrespective of the number of event streams E in the system.

The scheduling sytem must be efficient – the absolute execution time spent
in scheduling must be negligible, or be amortized by the execution time of user
code. This property is checked with an empirical evaluation.

The last important concern is pluggability. Clients that possess domain knowl-
edge must be able to apply this knowledge to a custom scheduler to make the
system more efficient. Pluggability allows manually controlling when a specific
reactor is executed, and how much execution time it gets.

Some of these properties, such as serializability, ensure that a program never
violates semantics of the reactor model. We refer to them as safety properties,
as they guarantee that nothing bad happens. Other properties, such as fairness,
bounded delivery time fairness and scalability, improve progress of a reactor-
based program. Their absence can in worst case prevent the program from com-
pleting, but does not violate semantics or cause incorrect behavior. As we will
see in Sect. 3, the proposed pluggable scheduling system enforces safety prop-
erties. Progress properties are good-to-have, but not essential for all programs.
For such properties, the scheduling system establishes a well-defined foundation,
and delegates the decision of fulfilling them to other components.

4 This is not always possible – there exist programs in which the number of events
grows over time. For example, if every reactor upon receiving an event sends out
two events in response, then the overall number of messages in the program grows
exponentially over time. However, if there exist an execution schedule in which the
number of messages in the program at any given point is bounded, then the scheduler
should use that execution schedule.



3 Scheduling Algorithm

In this section, we describe the proposed pluggable scheduling algorithm. We
start by describing the internals of our reactor system implementation, and then
show the algorithm itself. Finally, we prove that the algorithm satisfies serializ-
ability and fairness, and, under specific assumptions, can also achieve bounded
delivery time fairness.

3.1 Reactor System Internals

An event queue contains a set of delivered, but not yet processed events for a
particular event stream. Since events must be handled serially within a reactor,
an event queue serves as a buffer between the reactor and the senders. An event
queue is an equivalent of an actor mailbox.

In the following, we show the EventQueue trait. Method enqueue atomically
enqueues an event to the event queue and returns the event queue size. It can
be called by any number of threads concurrently. Method dequeue atomically
removes an event, emits it on an event stream events, and returns the number
of remaining elements at the point when the event was removed. Method dequeue

is quiescently consistent [13] – it can be called by at most a single thread at
a time. When dequeue emits the event on the associated event stream, control
transfers from the scheduler to the event handlers installed by the user code.

trait EventQueue[T] {
def enqueue(x: T): Int
def dequeue(): Int
def events: Events[T]
def size: Int }

A connector of type Connector[T] is a wrapper that binds an event stream,
a channel and an event queue together. Calling open creates a new connector.

Different reactors have different textual names, used to retrieve their chan-
nels. The set of all possible names comprises the namespace of the reactor system.
At any point in time, at most a single reactor can have any single name.

When created, every reactor is assigned a unique numeric ID. The set of all
possible UIDs forms the UID space. During the entire lifetime of the system,
every UID can be assigned to at most one reactor, and cannot be reused.

A reactor system is an entity that contains a set of reactors, the scheduling
system, and a single namespace and UID space. Usually, there is a single reactor
system per process, but users can create additional reactor systems if necessary.
Configuration properties such as pickling and network resources are set when
creating the reactor system. A prototype, represented with the Proto[T] type, is
a configurable wrapper around the reactor template. It allows configuring the
textual name and the scheduling policies of the reactor instance, and is passed as
an argument to spawn. Immediately before the reactor instance starts, the reactor
system creates a frame object of type Frame, used to hold internal reactor state –
reactor name, UID, scheduling policy, connectors, lifecycle state and information
on whether the respective reactor is currently executing.



1 def spawn[T](
2 system: ReactorSystem, proto: Proto[T]
3 ): Channel[T] = {
4 val uid = system.reserveId()
5 val uname = system.acquire(proto.name)
6 val f = new Frame(uid, uname, proto, system)
7 try {
8 f.active = false
9 f.scheduler = proto.scheduler
10 f.lifecycle = New
11 f.connectors = new Map[String, Connector[_]]
12 f.pending = f.scheduler.newPendingQueue()
13 f.scheduler.initSchedule(f)
14 f.main = open(f, "main", f.queueFactory)
15 activate(f)
16 } catch { case t: Throwable =>
17 system.release(uname)
18 throw t }
19 f.main.channel }
20
21 def activate(f: Frame) {
22 var run = false
23 f.monitor.synchronized {
24 if (!f.active) {
25 f.active = true
26 run = true } }
27 if (run) f.scheduler.schedule(f) }

Fig. 1. Reactor creation

A reactor’s scheduling policy is captured in a Scheduler object. Method
initSchedule is called once when the reactor is created, and schedule is called
every time a reactor is activated. Method newPendingQueue creates a queue with
a list of active connectors, and allows the scheduler to express a queuing policy.

trait Scheduler {
def initSchedule(f: Frame): Unit
def schedule(f: Frame): Unit
def newPendingQueue(): Queue[Connector[_]] }

Queue exposes standard queue operations enqueue and dequeue. Note that its
implementation and queuing policy are different than that of an event queue. A
pending queue stores event queues, and the two are separate entities.

As we will see in the next section, user-defined Scheduler objects allow fine-
tuning how the scheduling system works.

3.2 Scheduling Algorithm Implementation

From a high-level standpoint, the algorithm works as follows. When a reactor
needs to execute, the active field in its frame is set to true, and the scheduler is
notified. The reactor then gets execution time. It repetitively removes an event
queue from the pending queue, and calls dequeue on the event queue until either
the scheduler tells it to stop, in which case a non-empty event queue is placed
back to the pending queue, or the event queue becomes empty, in which case the
pending queue is polled for the next event queue.



1 def execute(f: Frame) {
2 assert(f.active)
3 assert(f.isolationCount.compareAndSet(0, 1))
4 try lifecycleAndProcessBatch(f)
5 finally {
6 var repeat = false
7 f.monitor.synchronized {
8 if (!f.pending.isEmpty && f.lifecycle != Stopped) repeat = true
9 else f.active = false }
10 f.isolationCount.set(0)
11 if (repeat) f.scheduler.schedule(this) } }
12
13 def checkNew(f: Frame) {
14 var isNew = false
15 f.monitor.synchronized {
16 if (f.lifecycle == New) { f.lifecycle = Running; isNew = true } }
17 if (isNew) f.reactor = proto.create() }
18
19 def checkStopped(f: Frame, forced: Boolean) {
20 var stop = false
21 f.monitor.synchronized {
22 val isRunning = f.lifecycle == Running
23 val mustStop = f.pending.isEmpty && f.connectors.length == 0
24 if (isRunning && (forced || mustStop)) {
25 f.lifecycle = Stopped; stop = true } }
26 if (stop) f.system.release(name) }
27
28 def lifecycleAndProcessBatch(f: Frame) {
29 try { checkNew(f); processEvents(f) }
30 catch { case t: Throwable => checkStopped(f, true) }
31 finally checkStopped(f, false) }
32
33 def processEvents(f: Frame) {
34 f.schedulerState.onBatchStart(this)
35 val c = popPending(f); if (c != null) drain(c) }
36
37 def popPending(f: Frame): Connector[_] = f.monitor.synchronized {
38 if (f.pending.nonEmpty) f.pending.dequeue() else null }
39
40 @tailrec def drain(c: Connector[_]) {
41 val remaining = c.queue.dequeue()
42 if (f.schedulerState.onBatchEvent(c)) {
43 if (remaining > 0 && !c.isSealed) drain(c)
44 else {
45 val nc = popPending(f); if (nc != null) drain(nc) }
46 } else if (remaining > 0 && !c.isSealed)
47 f.monitor.synchronized { f.pending.enqueue(c) } }

Fig. 2. Reactor loop

There are two ways that a reactor can get execution time. First is when a re-
actor instance is created with spawn, and the second is when an event is delivered
to a reactor. In both cases, the reactor is activated and sent for execution.

We first consider the spawn operation, shown in Fig. 1. The method starts by
reserving a UID in line 4, and the reactor name in line 5. It then creates a Frame

object in line 6. In lines 8 through 11, frame is marked as not activated, reference
to the scheduler specified in the prototype is copied, the lifecycle state is set to



New, and a connector table is created. In line 12, the scheduler’s newPendingQueue
method returns the queue data structure that will hold non-empty event queues.
The scheduler is asked to set a custom state object in the frame’s schedulerState
field. This is done in the call to initSchedule in line 13, and the default connector
is allocated in line 14.

At this point, the frame is completely initialized and may begin execution.
A call to activate in line 15 activates the frame. This method acquires the
frame’s lock in line 23, and checks if the frame is already active in line 24. If
not, the active field is set to true in line 25. If the field active was set, the
scheduler’s schedule method is called in line 27. This indicates that there is a
newly activated frame that should be scheduled on some thread. The scheduler
should give the reactor execution time at the earliest opportunity.

When the scheduler assigns execution time on some thread, that thread must
call the execute method shown in Fig. 2. This method starts the reactor’s event
loop, and has several stages. First, it prepares the reactor context – it asserts that
the frame is active in line 2, and optionally sets thread-local state (not shown
in the code). Then, it calls lifecycleAndProcessBatch to continue executing the
reactor’s lifecycle. After the lifecycle method completes, either exceptionally or
normally, execute checks if the reactor should continue executing or not. Line
8 tests if there are any pending event queues with unprocessed events and the
reactor did not terminate. If so, the reactor is rescheduled, and otherwise its
active field is set to false.

The lifecycleAndProcessBatch method uses the auxiliary methods checkNew
and checkStopped to treat newly created and stopped reactors differently. Method
checkNew is called before event processing starts, and it atomically changes the
state from New to Running. If the state changes to running, it means that this is
the first time that the reactor was run, so the checkNew method needs to run the
reactor constructor. It is important to run the constructor asynchronously, and
not in the spawn method, to ensure non-blocking semantics. The constructor is
run in line 17 with a call to the prototype’s create method.

The checkStopped method similarly checks for termination, and is called after
handling the events. A reactor must terminate if it is in the Running state, its
pending queue is empty, and there are no more live connectors. If the forced

argument is set to true, it means that user code threw an exception, and the
reactor must be terminated regardless of its execution state. When the state
is atomically changed to Stopped, the reactor name is released in line 26. In
practice, all these methods emit lifecycle events on the system event stream, but
we omit them from Fig. 2 for brevity.

At this point, the reactor can start handling the delivered events. The method
lifecycleAndProcessBatch first calls the method processEvents, which in line
34 notifies the scheduler that a batch of events is about to be handled. The
processEvents method then calls popPending to dequeue a non-empty connec-
tor. If a reactor just started, it is likely that no events were yet delivered, and
popPending returns null. In this case, processEvents simply returns. If there is
a non-empty connector, processEvents calls the drain.



1 def send[T](c: Connector[T], x: T) {
2 val f = c.frame
3 val size = c.queue.enqueue(x)
4 var run = false
5 if (size == 1) f.monitor.synchronized {
6 f.pending.enqueue(c)
7 if (!f.active) {
8 f.active = true
9 run = true
10 }
11 }
12 if (run) f.scheduler.schedule(this) }

Fig. 3. Event send

The drain method calls dequeue on the event queue in line 41. This releases
an event on the corresponding event stream, and enters user code. After the event
handlers process the event, dequeue returns the number of remaining events at
the point in time when the event was removed. The drain method then asks
the scheduler if it should continue executing events in line 42. If the scheduler
decides that additional events should be batched, drain checks if the event queue
is non-empty, and calls itself tail-recursively in line 43, with the same connector.
If the current event queue is empty, drain attempts to pop the next non-empty
connector if there is one, and calls itself recursively in line 45. If the scheduler
denies processing additional events, the drain method puts the non-empty event
queue back to the pending queue in line 47.

Using the onBatchEvent method, the scheduler can decide how many events
to handle. Usually, a scheduler will handle a batch of events, to amortize the
cost of setting up the reactor context, as explained in Sect. 6.1.

A reactor is also activated when an event is delivered on one of its event
streams. This is done by the send method in Fig. 3, which first enqueues the
event on the respective event queue in line 3. If the event queue size after calling
enqueue is exactly 1, it means that the corresponding event stream was previosly
dormant, and it became active when the event was enqueued. In this case, the
reactor’s lock is acquired in line 5, and the event queue is placed on the pending
queue in line 6. If the reactor was not previously active, its active field is set to
true, and the reactor is scheduled for execution in line 12. The execute method
from Fig. 2 is eventually invoked on some thread.

Note that the implementation of the schedule method must be synchronized,
since multiple concurrent reactors can call send at the same time. We will show
several implementations of the schedule method in Section 4.

3.3 Analysis of the Scheduling Algorithm

Having seen the scheduling algorithm, we state several claims about its prop-
erties. We prove that the algorithm is safe with respect to the serializability
property. For space reasons, we skip other safety properties such as exactly-once
delivery. We then prove fairness and bounded delivery time fairness, with specific
assumptions about the Scheduler implementation.



Theorem 1 (Safety). Assume that schedule executes the reactor exactly once.
At any point in time, for a specific reactor, there exists at most a single event
handler that is executing.

Proof. No thread is initially running execute. The first call to schedule occurs
in the activate method in Fig. 1, and the second schedule occurs in the send

method in line 12 in Fig. 3. If either activate or send calls schedule, then the
active field was previously false and was atomically set to true by the same
thread. No other thread calls schedule until execute reaches line 11 in Fig. 2.

The execute method calls schedule in line 11 only if active was not set from
true to false. It follows that, for a specific reactor, there is always at most one
thread that left the active field in the true state, and that thread calls schedule.
By assumption, execute is called only once for every schedule call, and execute

calls dequeue for every event only once, so it follows that there is at most a single
event handler executing at any time5. ut

Lemma 1 (Deactivation). The reactor’s pending queue never contains an
event queue that is empty.

Proof. We show this inductively – the claim is initially true, and no operation
violates it. The pending queue is initially empty. The sendmethod puts only non-
empty event queues to the pending list. Events are only dequeued by the drain

method from Fig. 2, and this method never puts an empty event queue back to
the pending list. By Theorem 1, no other thread can interfere by concurrently
executing drain. ut

Lemma 2 (Activation). A non-empty event queue is either on the reactors’s
pending queue, or is put on the pending queue after a finite number of steps.

Proof. An event is delivered to the event stream in line 3 of the send method
shown in Fig. 3. If, in line 3, enqueue returns a size greater than 1, then there
is another thread T for which enqueue previously returned 1. Between the point
in time t0 when enqueue returned 1 for that other thread T , and the point in
time t1 when T puts the queue on the pending list, no other thread can drain
that event queue, because that event queue is not yet on the pending list. By
contradiction, assume that the event queue is on the pending list between t0
and t1. That would only be possible if, between t0 and t1, enqueue returned 1 for
some other thread in line 3, which would imply that the event queue size became
0 between t0 and t1. That would be a contradiction, because the event queue
can only be dequeued after being placed on the pending list, and, by Lemma 1,
the event queue was not on the pending list at time t0.

Now, consider the thread for which enqueue returns size 1 in line 3 of Fig.
3. That thread puts the event queue to the pending list after a finite number
of steps. Next, consider the thread that calls popPending. If the event queue is
non-empty when that thread subsequently calls dequeue in line 41, the event
5 In fact, check in line 3 of Fig. 2 ensures this even if schedule calls execute from
multiple threads.



queue is put back to the pending queue by the same thread after a finite number
of steps. By Lemma 1, the queue cannot become empty before this happens. ut

Theorem 2 (Fairness). Assume that schedule eventually executes the specified
reactor, and that every event queue added to the pending list gets removed after
calling dequeue on the pending list sufficiently many times. Then, if an event gets
delivered to an event stream belonging to some reactor, that event is eventually
handled by an event handler.

Proof. By Lemma 2, a non-empty event queue is on the pending queue, or will
be after a finite number of steps. By assumption, every reactor is eventually
executed, and every event queue on the pending queue is eventually dequeued.
For each such event queue, at least one event is handled. Consequently, every
event is eventually handled. ut

Achieving bounded delivery time fairness is deferred to the pluggable Scheduler
object. Accordingly, the proof of the bounded delivery time fairness makes heavy
assumptions on the Scheduler implementation.

Theorem 3 (Bounded delivery time fairness). Let S be the set of reactors
for which schedule was called. Assume that the scheduler always executes the
reactor from S with the least recent event ξ, that the dequeue call on the pending
queue of the respective reactor returns the event queue that contains ξ, and that
onBatchEvent returns true if the argument connector contains the most recent
event in the system. Then, the scheduling is fair with respect to the previous
definition.

Proof. Under the given assumptions, dequeue call in line 41 always returns the
oldest event in the system. Therefore, scheduling is fair for the constant C = 1
in the bounded delivery time fairness definition from Sect. 2.1. ut

4 Scheduling Policies

In this section, we go over several implementations of the Scheduler trait. There
are several ways in which a Scheduler governs the scheduling policy. First, it
decides when to execute frames submitted with the schedule method. Second,
it decides how long a scheduled reactor should execute with schedulerState.
Third, it decides which event stream to flush with the newPendingQueue method.

The schedulerState objects expose the onBatchStart and onBatchEventmeth-
ods. The former is called when a reactor starts handling a batch of events, and
the latter is called after handling each event of that batch. Most schedulers use
some variant of the DefaultState, which handles up to BATCH_SIZE events during
one scheduled frame execution.

class DefaultState extends State {
private var batch = 0
def onBatchStart() { batch = BATCH_SIZE }
def onBatchEvent(c: Connector[_]) = {

batch -= 1; return batch > 0 } }



The newPendingQueue method decides on the queuing policy of the active
event queues. Unless specified otherwise, the pending queue implements the
FIFO policy, as that trivially achieves the fairness property – at least one event
is eventually scheduled from each event queue.

Thread pool scheduler. Task schedulers, such as the Fork/Join pool [17]
from the JDK, are designed to multiplex a set of tasks across a set of worker
threads. It is useful to reuse the effort put into task schedulers when implement-
ing a reactor scheduler. In the following, we show the ExecutorScheduler, which
uses a JDK Executor to schedule reactor frames:

class ExecutorScheduler(val e: Executor)
extends Scheduler {

def initSchedule(f: Frame) =
f.schedulerState = new DefaultState with Runnable {
def run() = execute(f) }

def schedule(f: Frame) = executor.execute(f.schedulerState) }

The initSchedule method, called when the reactor starts, creates a default
state with the JDK Runnable interface mixed in, so the scheduler state is simul-
taneously used as a task. When run by a task scheduler, this task object calls the
execute method from Fig. 2. Method schedule passes this task to the Executor,
delegating the decision of when to run the reactor to a task-based scheduler.

Dedicated thread or process scheduler. In some cases, we want to give a
specific reactor a higher priority by assigning it a dedicated thread or a process.
Here, the decision of when to run is delegated to the underlying OS. Such a reac-
tor need not process events in batches, and can simply flush all its event streams
until they are empty, as shown in the following scheduler state implementation:

class DedicatedState extends State {
def onBatchStart() {}
def onBatchEvent(c: Connector) = true }

The ThreadScheduler uses an auxiliary method loop, which calls execute from
Fig. 2, and then waits inside a monitor until the reactor terminates or there is
a pending event queue. The loop ends when the reactor terminates.

def loop(f: Frame) = do {
execute(f)
f.monitor.synchronized {
while (!hasStopped(f) && !hasPending(f)) f.monitor.wait()

}
} while (!hasStopped(f))

When the reactor starts, the ThreadScheduler creates a DedicatedState ob-
ject with a thread that calls loop. The thread is started in schedule the first
time that the reactor is supposed to run, triggered by the spawn in Fig. 1.



class ThreadScheduler extends Scheduler {
def initSchedule(f: Frame) =

f.schedulerState = new DedicatedState {
val thread = new Thread {

override def run() = loop(f) } }
def schedule(f: Frame) =
f.monitor.synchronized {
if (!f.schedulerState.thread.isStarted)

f.schedulerState.thread.start()
f.monitor.notify() } }

The dedicated thread is subsequently notified whenever, during event deliv-
ery, the schedule method gets called from the send method from Fig. 3.

Piggyback scheduler. Normal programs are started by executing the main

function on the main thread of the program. A reactor-based program has no
notion of a main thread. It is therefore convenient to piggyback the existing main
thread to one of the reactors in the program. This is the task of the following
PiggybackScheduler implementation:

class PiggybackScheduler extends Scheduler {
def initSchedule(f: Frame) {}
def schedule(f: Frame) =

if (f.schedulerState == null) {
f.schedulerState = new DedicatedState
loop(f)

} else f.monitor.synchronized {
f.monitor.notify()

} }

The first time schedule is called by the spawn method, the piggyback sched-
uler executes the event loop, thus blocking the current thread. Subsequently,
schedule calls in the send method notify the thread that there are new events.

Scheduler with bounded delivery time fairness. The Scheduler imple-
mentations shown so far satisfy the fairness property, but they do not necessarily
have bounded time delivery. An OS kernel or a task scheduler can satisfy bounded
delivery time fairness across a set of threads or tasks. However, neither has in-
formation about the number and age of events delivered to different reactors,
and cannot give more time to reactors whose load is higher.

In the following, we show a scheduler that is fair according to the definition
from Sect. 2.1. We use an event queue factory that assigns a timestamp to an
event when it gets enqueued. The event queue itself respects the FIFO policy.
The timestamp of the oldest event can be obtained by calling headTime on the
queue. We define a pair of helper methods that return the numeric priority of a
connector and a reactor frame:

def cpriority(c: Connector[_]) = -1 * c.queue.headTime
def fpriority(f: Frame) = cpriority(f.pending.head)

The pending list implementation is a priority queue that sorts the event
queues using cpriority. The fair scheduler maintains another priority queue
tasks for the set of activated reactor frames, based on fpriority. When a reactor
is started, its event queue factory is replaced by a timestamping queue factory.
The scheduler state uses the same connector as long as its priority is higher



than the priority of the other activated frames, and other connectors of the
current frame. The schedule method enqueues a frame to the tasks queue, and
a separate thread dequeues and executes frames.

class BoundedDeliveryTimeFairScheduler extends Scheduler {
private val tasks = new PriorityQueue[Frame](fpriority) {
def newPendingQueue() = new PriorityQueue[Connector[_]](cpriority)
def initSchedule(f: Frame) {

f.queueFactory = new TimestampQueueFactory(f.queueFactory)
f.schedulerState = new State {
def onBatchStart() {}
def onBatchEvent(c: Connector[_]) =
cpriority(c) > fpriority(tasks.head) &&
cpriority(c) > cpriority(f.pending.head)

} }
def schedule(f: Frame) = tasks.enqueue(f)
startThread { while(true) execute(tasks.dequeue()) } }

This is a proof-of-concept implementation of a fair scheduler, which is nei-
ther scalable (because it is single-threaded) nor efficient (because C = 1). In
practice, it is useful to relax this requirement to some degree to achieve higher
performance.

Timer scheduler. Real-time computations, such as interactive graphics ren-
dering, must be scheduled at regular intervals. The following implementation is
based on the java.util.Timer, and it periodically schedules reactor execution.

class TimerScheduler(period: Long) extends Scheduler {
val timer = new java.util.Timer
def initSchedule(f: Frame) {

f.schedulerState = new DefaultState
val task = new java.util.TimerTask {

def run() {
if (hasStopped(f)) this.cancel()
else execute(f) } }

timer.schedule(task, period, period) }
def schedule(f: Frame) {} }

The initSchedule method creates a new TimerTask that periodically executes
the frame, or cancels itself if the reactor has terminated.

Resource scheduler. In some cases, a reactor must be scheduled only when
a specific resource is available. A resource can be an external hardware sensor,
an embedded coprocessor, or a general purpose GPU.

class ResourceScheduler extends Scheduler {
def initSchedule(f: Frame) { f.schedulerState = new DefaultState }
def schedule(f: Frame) { OS.requestResource(() => execute(f)) } }

When schedule gets called, ResourceScheduler requests an OS resource and
passes a callback that executes the frame once the resource becomes available.

5 Scheduler Optimizations

The previous sections described the scheduling algorithm, with the emphasis on
making it pluggable. The design is sufficient for making the scheduling generic,
but we did not explain how we achieve high throughput. In this section, we go
over several techniques that we used to improve the performance of the default



1 def stealSchedule() {
2 if (state == STEAL_SCHEDULE) {
3 return
4 }
5 state = STEAL_SCHEDULE
6 try {
7 var loopsLeft = STEAL_SCHEDULE_COUNT
8 while (loopsLeft > 0) {
9 val executedSomething = pollWorkQueueAndRunFrame()
10 if (executedSomething) {
11 loopsLeft -= 1
12 } else {
13 loopsLeft = 0
14 }
15 }
16 } finally {
17 state = ASLEEP
18 }
19 }

Fig. 4. Worker thread piggybacking

scheduler implementation in the Reactors framework. The main goal in these
techniques is to reduce the amount of time spent in the scheduler compared to
the amount of time spent in application code.

5.1 Explicit Work Stealing

In a typical task-based work stealing scheduler [6], there is a set of worker
threads, usually corresponding to the number of processors. Each worker thread
has an associated work stealing queue. When the program creates a new concur-
rent task of execution in some thread, it places that task onto the work stealing
queue. A task is removed from the queue either after the current task of the cor-
responding worker thread completes, or when another worker runs out of tasks
on its own queue and steals the task from a queue of its peer.

There are several overheads associated with work stealing. First, a task object
needs to be created and placed on the queue. Second, inactive worker threads
need to be notified that there is work available for them. Third, a previously
inactive worker thread must scan the work queues of other threads, and steal
an available task. The overhead of having to wait can be reduced by having the
active worker thread steal back the tasks it previously submitted as early as
possible. Some task-based work stealing schedulers expose the API that allows
the client code to explicitly start the work stealing process [17].

In our implementation, the worker thread dequeues the previously submit-
ted tasks immediately after completing event handling. This allows executing a
different reactor frame on the active worker thread before context switching the
current frame. After the line 35 of the code in Figure 2, the worker calls a special
method stealSchedule, shown in Fig. 4, which dequeues and runs frame tasks.

Piggybacking the worker thread can only have a single level of nesting. To
ensure this, each worker thread keeps a state field that initially has the value



1 val miniQueue = new AtomicReference[Frame](null)
2
3 @tailrec final def schedule(frame: Frame) {
4 val oldFrame = miniQueue.get
5 if (oldFrame eq null) {
6 if (!miniQueue.compareAndSet(oldFrame, frame)) {
7 schedule(frame)
8 }
9 } else {
10 if (!miniQueue.compareAndSet(oldFrame, null)) {
11 schedule(frame)
12 } else {
13 val task = createTaskFor(oldFrame)
14 pushToWorkQueue(task)
15 }
16 }
17 }

Fig. 5. Lazy scheduling of frame task objects

AWAKE, but switches to STEAL_SCHEDULE upon entering the stealSchedule method.
Recursive calls to stealSchedule check this field and immediately return. The
method then attempts to poll pending tasks up to STEAL_SCHEDULE_COUNT times.

This optimization is usually only beneficial if the time spent in the polling
method pollWorkQueueAndRunFrame is short, since the scheduler spends useless
cycles and slows the overall execution otherwise. For this reason, we only poll
the local queue of the current worker thread in our implementation.

5.2 Lazy Task Scheduling

The optimization in Sect. 5.1 improves throughput by reducing the context
switch pauses, but does not eliminate the cost of creating task objects. Compared
to starting a thread, spawning a task is much more lightweight, but creating a
task and pushing it onto a work stealing queue is still relatively expensive.

In this section, we describe an optimization that drastically reduces the num-
ber of tasks in some benchmarks. The optimization is based on the following
observation: in most (re)actor programs, an execution of an event handler is
relatively short (in fact, this is a recommendation in many frameworks, since
monopolizing the worker threads with long event handlers can lead to message
overflows). Furthermore, the longer the execution of an event handler is, the
more likely it is that it will send messages to other reactors. This means that the
time between sending two messages from a single event handler, and the time
between sending a message and exiting from an event handler, are both usually
short. Sending a message potentially results in scheduling a reactor frame, as
shown in Fig. 3, which results in creating a task object. Consequently, postpon-
ing the task creation until the next schedule call or until the completion of the
event handler usually does not have a negative performance impact.

To exploit the previous observation, we augment each worker thread with an
additional one-element queue, which we call a mini-queue, and use it to store
reactor frames that were activated, but whose scheduling was lazily postponed.



1 class ReanimationThread extends Thread {
2 setDaemon(true)
3
4 def run() {
5 var sleepPeriod = 0
6 while(true) {
7 Thread.sleep(sleepPeriod)
8 var count = 0
9 for (worker <- workers) {
10 val f = worker.miniQueue.get
11 if (f != null && worker.miniQueue.compareAndSet(f, null)) {
12 execute(f)
13 count += 1
14 }
15 }
16 sleepPeriod = adjust(sleepPeriod, count, workers.length)
17 }
18 }
19 }

Fig. 6. Reanimation thread implementation

Initially, when a reactor frame gets execution time on some worker thread, the
mini-queue is empty, i.e. set to null. When the reactor sends a message, and
that message requires scheduling the reactor frame, the reactor frame is instead
atomically placed on the mini-queue. If another reactor frame needs to be sched-
uled, the old reactor is first atomically removed, and then corresponding task
object gets created and pushed to the work queue. This is shown in Fig. 5.

The code in Fig. 4 is similarly adjusted to check not only for pending work
on the work stealing queue, but also flush the state of the mini-queue.

5.3 Reanimation Thread

The optimization from Sect. 5.2 trades latency for higher throughput. While in
most cases, the decrease in latency is not observable, it is possible to write a
program in which an event handler sends one message, but then does not return
control to the scheduler for a long time. In these cases, an activated frame gets
temporarily stuck on the mini-queue, and it cannot be stolen by other worker
threads, since it is not on the work stealing queue.

To prevent this scenario, our implementation uses an additional non-worker
thread, called a reanimation thread, that is usually in the sleep state, but oc-
casionally wakes up and scans the mini-queues of the worker threads. When
the reanimation thread finds a non-empty mini-queue, it atomically removes the
frame and executes it. This is shown in Fig. 6.

When it is unlikely that there are any benefits from scanning the mini-queues,
the reanimation thread should spend the least amount of CPU time possible.
For this reason, after the reanimation thread inspects all the worker threads, it
adjusts its sleep period to a new value that depends on the previous value, the
number of removed frames and the total number of workers, as specified by the
following equation:
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Fig. 7. Impact of the parallelism level on different benchmarks with message arrival
speculation enabled (running time vs. number of reactors)

adjust(period, count, workers) = 2 · period · workers− count
workers

(1)

In the above equation, if the count is low, then the new period value is in-
creased by up to 2×. On the other hand, if the count is high, the period is rapidly
decreased. The net effect is that when the reanimation thread helps almost all
workers, the period is almost immediately reduced to a minimum value, and
otherwise slowly decays towards the maximum value. When the benefit of flush-
ing mini-queues is small, this approach reduces the overall CPU time spent by
the reanimation thread. The new period is clamped between some minimum and
maximum value, which is in our case between 1 millisecond and 200 milliseconds.

5.4 Message Arrival Speculation

After a reactor executes an event handler, it normally undergoes a context switch
and returns the control to the scheduler. In applications in which pairs of reactors
exchange values, a message frequently arrives to the reactor shortly after it had
begun its context switch. In these cases, it pays off to speculate on the arrival
of the message and delay the context switch. This speculation is based on the
bet that the message arrival time is lower than the time required for the context
switch. To estimate the message arrival time, each reactor does sampling – a
reactor occasionally spins before its context switch and counts the number of
messages that arrived during spinning. The sampling frequency must be low
to avoid slowing down the program. After accumulating a set of samples, the
reactor decides whether to regularly spin before the context switch, or not.

Importantly, message arrival speculation is dynamic – it is only applied if the
scheduler detects that it is likely to improve performance. If during the sampling
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period, a reactor does not notice any benefits from delaying the context switch,
then it will not apply speculative spinning.

Concretely, a reactor decides to speculate that a message will arrive as follows.
Define the time period δ as the ration between the context switch delay d and the
total time required to do the context switch c (which is estimated experimentally,
by sending messages to a reactor with an empty event handler). The reactor
decides to delay context switches by a relative delay δ if and only if the percentage
of arrivals p̂ during sampling satisfies:

δ ≤ p̂ (2)
The intuition behind this is that delaying the context switch potentially slows

down the program. To make up for this slowdown, the relative delay must be
smaller than the percentage of cases in which it accurately predicted that a
message will arrive, avoiding the full context switch. The reactor must pick the
optimal value for δ, so it collects a sample for a range of values δi and p̂i, and
picks the one for which the following expression is minimized:

δi − p̂i (3)
After deciding on the context switch delay, the reactor continues sampling

the delay benefits, and repetitively revisits the speculation decision after collect-
ing new sample sets. This way, if message arrival pattern changes during the
execution, the reactor adjust the context switch delay.

In Fig. 7, we show the performance of two benchmarks from the Savina suite
[15] for which message arrival speculation is particularly effective. In the Fork
Join Throughput benchmark, a reactor allocates K other reactors, and sends
each of them a message in a round-robin manner. The performance improvement
on the Fork Join Throughput benchmark is high when K is above 8, which is
the number of processors on the test machine. The reason is that when there is
a higher number of reactors, speculative spinning allows messages to pile up at
some of the reactors, so when the reactor gets scheduled, the batch of messages
it can process is larger. For K below 8, performance becomes close to that of
the Akka framework. The Thread Ring benchmark allocates R reactors that
pass a token around in a ring pattern. Here, the situation is reversed – it only



makes sense to spin and wait for the next message if each reactor can be pinned
to a processor (which is true if the ring size R is small). Otherwise, spinning
delays the assignment of a processor to inactive reactors, and slows down the
program overall. We show the performance of Reactors compared to Akka, when
speculative spinning is disabled, when it is enabled, and when we additionally
apply the lazy task scheduling optimization (mini-queue).

For other benchmarks, message arrival speculation does not yield any bene-
fits. Nevertheless, it is important to ensure that the sampling overhead does not
compromise overall performance, so the sampling frequency ϕ is initially kept
at a low value, in our case 0.2%. The downside of doing this is that it takes a
long time to collect a sample set when speculation is beneficial. To retain the
best of both worlds, a reactor adapts the sampling frequency according to the
belief that arrival speculation helps. When and if a reactor notices an arrival of
a message (but before it has gathered a full sample needed for its speculation
decision), it adaptively increases the sampling frequency. A reactor is allowed
to do this, since sampling is itself a context switch delay – a higher sampling
frequency is therefore not detrimental when context switch delays help.

In Fig. 8, we show some of the benchmarks on which speculation does not
help, namely Thread Ring (with R� #processors), Streaming Ping-Pong, Big
and Fibonacci. We plot the running time of the benchmark with respect to the
initial sampling frequency ϕ0. Based on these benchmarks, we decided to keep
ϕ0 at the value 0.2%.

A theoretical model of the message arrival speculation optimization was de-
scribed recently, along with a more in-depth performance analysis [25]. For more
information, we refer the readers to related work.

5.5 Class-Based Reactor Profiling

Speculation described in Sect. 5.4 works well only if the lifetime of a reactor is
sufficiently long to gather a sample that estimates the benefits of delaying context
switches. In many applications, the average lifetime of a reactor is shorter than
that, so reactors do not manage to effectively estimate speculation benefits. This
is true even if a reactor adaptively adjusts the sampling frequency as described
in Sect. 5.4. To accomodate these cases, our implementation periodically profiles
the stable sampling frequency with respect to the class of the reactor. This
information is stored in a per-class histogram, and used as the initial sampling
frequency when a reactor gets created. This way, the information about the ideal
sampling rate gets shared among reactors of the same type, and applications with
short reactor lifetimes can also benefit from speculation. In our implementation,
the lifetime of the sampling frequency profile is specific to a single execution of
a program.

When profiling numeric values such as the sampling frequency, the more
recent information must be given a higher importance. The intuition is that the
applications are going through phases, and the optimal values may change over
time. We use the following expression to update the sampling frequency:
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Fig. 9. Running time on standard actor benchmarks (lower is better)

record(oldRate, newRate) = 0.8 · oldRate+ 0.2 · newRate (4)
By using the expression (4), the more recent profiling information quickly

starts dominating, and the old value tends to decay and become less important
over time. Every profiled value is continuously interpolated in this way.

6 Evaluation

We used standard actor benchmarks from the Savina suite [15] to test the per-
formance of our scheduler (code online [3]) against the industry-standard Akka



framework [1]. We used established evaluation methodologies [9] [22]. Bench-
marks were done on a quad-core 2.8 GHz Intel i7-4900MQ processor with 32 GB
of RAM, and the results are shown in Fig. 9.

Ping-Pong. In this benchmark, one (re)actor sends a preallocated ping mes-
sage to another (re)actor, which then responds with a pong message. This is
repeated N times. This benchmark is designed to test how fast the scheduling
system exchanges the context between two (re)actors, when it is likely that they
each will be reactivated soon after deactivation. Our reactor implementation is
around 1.6× faster when compared to Akka.

Streaming Ping-Pong. The Akka project [1] often uses an alternative form
of the Ping-Pong benchmark in which the first actor starts by sending W ping
messages, instead of a single one. Whereas in the Ping-Pong benchmark each
actor waits for the reply before sending the next message, in Streaming Ping-
Pong, the two actors keep a sliding window of messages and usually do not yield
control to the scheduler. Our reactor system is 1.3− 1.4× faster than Akka.

Thread Ring. Here, R (re)actors are arranged in a ring, and each waits
for a message before sending it to the next (re)actor in the ring. The program
ends after the message is forwarded N times. When R is much larger than the
processor count, the benchmark tests context switching when it is unlikely that a
(re)actor will be reactivated soon after deactivation. When R = 1000, depending
on N , our system is in some cases as fast as Akka, and sometimes up to 1.2×
slower. For R = 8, our system is up to 1.7× faster compared to Akka.

Counting Actor. A producer actor sends N numbers to a counter actor.
The counter actor accumulates the sum of the numbers, and terminates. The
benchmark is somewhat similar to Streaming Ping-Pong, but also evaluates the
efficiency of allocating messages. Reactors have typed channels that can special-
ize on the message type, and can avoid boxing. In our implementation, we rely
on the type specialization optimization in Scala [7] that avoids boxing primitive
types such as integers. For this (scheduler-unrelated) reason, our implementation
is around 3× faster than Akka.

Fork Join (Throughput). A single (re)actor allocates K (re)actors that
count incoming messages, and sends them N messages in a round-robin man-
ner. The benchmark evaluates messaging throughput, and quality of batching
messages. Our system is 2.5− 3.0× faster than Akka.

Fork Join (Creation). Benchmark creates N (re)actors, and sends a mes-
sage to each of them. After a (re)actor receives a message, it terminates. This
benchmark tests actor creation performance. Depending on N , our system is as
fast as Akka, and sometimes up to 1.3× faster.

Fibonacci. This benchmark computes Fibonacci numbers recursively, where
each recursive call creates a (re)actor that sends the result to its parent. For
sizes N < 2, leaf actors send 1 immediately after creation. This benchmark tests
dynamic actor creation performance. Results are shown in logarithmic scale in
Fig. 9. Our system is 1.1− 2.0× faster than Akka, depending on N .

Big. This benchmark creates a large set of (re)actorsN , each sending P pings
to P randomly chosen (re)actors, awaiting a reply for each ping. The benchmark



0 10 20 30 40 50
0

50

100

150

Batch Size

R
un

ni
ng

T
im

e/
m
s

Streaming Ping-Pong (N=25k)
Counting Actor (N=250k)

Fork Join (Throughput) (N=2500,K=128)
Fork Join (Throughput) (N=2500,K=32)

Fig. 10. Dependence of the running time on the batch size for benchmarks with a high
message load (lower is better)

tests many-to-many message passing. Depending on P , our system is in some
cases 1.1− 1.6× slower than Akka, and in some cases 1.1× faster than Akka.

6.1 Effect of Batch Size on Performance

In benchmarks that have high average message count per actor, exchanging
contexts between actors frequently can be detrimental. Each context switch re-
quires relatively expensive state checks from Fig. 2, and a call to the schedule

method. Amortizing these costs by handling multiple events in one scheduling
batch greatly increases performance.

As argued in Sect. 2.1, batch size must be bound to ensure bounded de-
livery time – large batch sizes have a negative effect of delaying execution of
other reactors. Batching must amortize context switch costs, but also prevent
starvation.

In Fig. 10, we show a selection of benchmarks where batch size affects the
benchmark running time. In Streaming Ping-Pong and Counting Actor, the in-
flection point is around batch size 5, but performance converges above 40. We
show the Fork Join Throughput benchmark for different choices of the number
of reactors K. We leave out out-of-scale points below batch size 10 for K = 128.
For K = 32, we can see a steep jump around 7. Here, the batch size is just large
enough to give inactive reactors sufficient time to fill their event queues. By the
time a reactor is reactivated, it has sufficiently many pending events to benefit
from batching. Based on these benchmarks, we keep the BATCH_SIZE constant
from Sect. 4, at value 50.

6.2 Event Stream Scalability

The last thing to show is that the system scales with the number of event streams
per reactor. In Fig. 11, we show our custom Roundabout benchmark, in which the
roundabout actor receivesN messages onK different event streams. The running
time remains almost constant while increasing the number of event streams –
the gentle upward slope is a consequence of decreasing cache-locality.
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7 Related Work

The actor programming model was proposed by Agha [4], and has gone through
many variants since then. One of the most notable applications of the actor model
is the Erlang programming language [2]. On the JVM, Scala Actors attempted to
mimic the Erlang model [11] – since JVM does not have continuations, semantics
of the Erlang-style receive statement could not be completely imitated. Akka is
a widely adopted actor-based framework [1], which takes a step away from the
Erlang model in that it supports only a single top-level receive statement. Kilim
[36] is another JVM actor framework that takes a more sophisticated approach
by exposing the @pausable annotation, used to mark and transform methods
that potentially suspend. The Reactors.IO framework exposes event streams
as first-class objects. The advantage of first-class streams is that suspendable
computations can be chained as a sequence of callbacks [3] [28] [31].

Selector model is an actor model variant with multiple mailboxes [15]. In
this model, there are multiple guarded mailboxes that the actor can program-
matically activate or deactivate. Although the abstract selector model allows
a dynamic number of mailboxes, the current selector implementation requires
specifying the number of mailboxes before the selector starts [16]. The schedul-
ing algorithm is based on the multi-level queue scheduling [35], used to separate
mailboxes into priority levels. This separation does not necessarily ensure fair-
ness, so authors mention LRU round-robin scheduling as necessary future work.

The Kilim framework introduced the concept of scheduler hopping. Here, an
actor can programmatically change the scheduling policy during the lifetime of
an actor. Neither Akka, nor Reactors.IO allow changing the policy after actor
creation. We believe that it is easy to add scheduler hopping to Reactors.IO.

Most actor schedulers are built on top of a task scheduler, such as the
Fork/Join framework [17]. Depending on the task scheduler implementation,
this approach ensures fairness. However, bounded delivery time fairness, as de-
fined in Sect. 2.1, is not necessarily ensured – giving all actors equal execution
times can cause starvation when the message-load is non-uniform. We have not
yet found programs where this is problematic, and the prebundled schedulers
in Reactors are not fair. On the other hand, it is common to have schedulers



that extend the Fork/Join task scheduler with domain-specific knowledge, and
this was done for actor systems [1], asynchronous programming frameworks [12],
streaming frameworks [29], and for data-parallel collections [27] [30].

Many frameworks use pluggability to defer some scheduling decisions to the
client. For example, message scheduling in Akka [1] uses the underlying task
scheduler to assign equal execution chunks to actors, but this does not guar-
antee message handling bounded delivery time fairness. It is the client’s job to
implement a fair dispatcher if that is necessary. Aside from custom dispatchers,
both Akka and Reactors allow users to inject their own message queue imple-
mentations. This is advantageous in use-cases such as message persistence, for
which more efficient queue data structures exist [32] [23]. Parallel actor monitors
[33] for the AmbientTalk language [21] expose a user API that can optionally
enable parallelism within an actor. Ensuring scalability is thus deferred to the
client-side. The Mesos cluster runtime [14] has a very thin scheduler based on
resource offers, which does not even guarantee fairness. This may be an indica-
tion that programs where fairness is an issue are in practice rare, and can be
dealt on a case-by-case basis. At the same time, pluggable schedulers are useful,
as they allow clients to deal with pathological edge cases when they occur.

8 Conclusion
We described a scheduler algorithm for the reactor programming model, and pre-
sented its implementation. We showed that the scheduler satisfies safety prop-
erties such as handling at most one message in a reactor at a time, and also
guarantees fairness and bounded delivery time fairness with specific guarantees
from the scheduling policy. Scheduling policies are pluggable – in addition to the
default policies shown in Sect. 4, users can define their own custom policies. We
empirically showed that the scheduler is scalable and efficient by comparing our
implementation against the industry-standard Akka framework, on the Savina
actor benchmark suite.

An interesting area of future work is scheduling reactor programs that ad-
ditionally use heterogeneous resources of the host system, such as GPUs, DSPs
and external sensors. Achieving scalability and good performance in such non-
uniform computations is more challenging, but also potentially more rewarding.
We believe that our pluggable scheduler infrastructure is well suited for this task.
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