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Abstract—High-level data-structures are an important foun-
dation for most applications. With the rise of multicores, there
is a trend of supporting data-parallel collection operations
in general purpose programming languages. However, these
operations often incur high-level abstraction and scheduling
penalties.

We present a generic data-parallel collections design based
on work-stealing for shared-memory architectures that over-
comes abstraction penalties through callsite specialization
of data-parallel operation instances. Moreover, we introduce
work-stealing iterators that allow more fine-grained and efficient
work-stealing. By eliminating abstraction penalties and making
work-stealing data-structure-aware we achieve several dozen
times better performance compared to existing JVM-based
approaches.

Keywords-data parallelism; work-stealing collections; callsite
specialization; domain-specific work-stealing

I. INTRODUCTION

While the declarative nature of data-parallel programming
makes programs easier to understand and maintain, imple-
menting an efficient data-parallel framework remains chal-
lenging. This task is made hard by the fact that data-parallel
frameworks offer genericity on several levels. First, parallel
operations are generic both in the type of the data records
and in the way they are processed. Orthogonally, records are
organized into data sets in different ways depending on how
they are accessed – as arrays, hash-tables or trees. Let us
consider an example of a subroutine that computes the mean
of a set of measurements. We show both its imperative and
data-parallel variant.
def mean(x: Array[Int]) = {1

var sum = 02

while (i < x.length) {3

sum += x(i); i += 1 }4

sum / x.length }5

def mean(x: Array[Int]) = {6

val sum = x.par.fold(0) {7

(acc, v) => acc + v8

}9

sum / x.length }10

The data-parallel operation that the declarative-style mean
subroutine relies on is fold, which aggregates multiple
values into a single one. This operation is parametrized
by the user-specified aggregation operator. The data set
is an array and the data records are integers. A naive
implementation of fold might be as follows:

def fold[T](xs: Iterable[T], z: T,11

op: (T, T) => T) = {12

var it = xs.iterator, sum = z13

while (it.hasNext) sum = op(sum, it.next())14

sum } }15

We focus on the lines 13 through 15. Note that the while
loop in those lines resembles the imperative variant of the
method mean, with several differences. The neutral element

of the aggregation z is generic and specified as an argument.
Instead of comparing a local variable i against the array
length, method hasNext is called, which translates to a
dynamic dispatch. The second dynamic dispatch updates
the state of the iterator and returns the next element and
another dynamic dispatch is required to apply summation
to the integer values. In languages like Java or C++ the
dynamic dispatch amounts to reading the address of the
virtual method table and then the address of the appropriate
method from that table. Moreover, the method next must
read an integer field, check the bounds and write the new
value back to memory before returning the corresponding
value in the array, where the imperative implementation
just reads the array value and updates i in the register.
Another overhead is related to generic method parameters.
In languages like Java, Scala and OCaml primitive values
passed to generic methods are boxed into heap objects. We
refer to all inefficiencies above as the abstraction penalties.

Irrespective of eliminating abstraction penalties, to
achieve parallel speedups proper load balancing is required.
So far, work-stealing has proven an efficient runtime load
balancing technique for irregular problems, and the collec-
tions design we propose adopts it. Our design integrates
work-stealing with the shape of the data-structure, allowing
the size of the batches to adapt to the workload. As we
will show, existing approaches incur scheduling penalties
by relying only on general-purpose work-stealing and not
making work-stealing data-structure-aware [7].

The goal of this paper is to twofold. First, we show how
the aforementioned abstraction penalties can be eliminated
for different data-structures and data-parallel operations,
achieving near optimal performance. We rely on an ab-
straction called a kernel of a data-parallel operation, which
consists of the specialized code for traversing and processing
a batch of data for a specific data-parallel operation instance.
Second, we show how to minimize the scheduling penalties
by employing fine-grained work-stealing for different data-
structures in a generic, efficient and lock-free manner. We
will introduce the concept of work-stealing iterators, which
abstract over how work is divided into batches and how
it is stolen. Neither kernels nor work-stealing iterators are
required knowledge for the data-parallel framework user, but
they allow extending the framework with new operations
and collections. Finally, these goals are not orthogonal, as
eliminating abstraction penalties is necessary to realistically
assess the scheduling quality – high abstraction penalties



could entirely mask scheduling penalties.
The rest of the paper is organized as follows. Section

II describes work-stealing iterators and kernel abstractions
for different data-structures and data-parallel operations. In
Section III we evaluate the performance of data-parallel
collection operations on a range of benchmarks. Section IV
presents the related work. Finally, Section V concludes.

II. DESIGN AND IMPLEMENTATION

Tasks often recursively spawn subtasks in task parallel
programming, potentially generating additional work to be
stolen. This fact drives the design of many work-stealing
based runtimes [4] – only a single task is stolen, the execu-
tion of which hopefully creates more subtasks. Conversely,
parallelism units in data parallel programming are not tasks
but individual collection elements that do not generate more
work, so stealing must proceed in batches to reduce the
scheduling penalty. The work-stealing tree scheduler [8]
exploits this observation by dividing the workload between
the stealer and the victim when a steal occurs. This lock-
free scheduling algorithm is based on the CAS (compare-
and-swap) instructions. Advantages of CAS-based lock-free
algorithms are well known and they are still an active area
of research. Absence of locks is important for work-stealing
data-parallel workloads as well – a stealer should not wait
for the worker to allow stealing, as the worker could work
on an unknown workload indefinitely long.

In workstealing-tree scheduling, each worker keeps the
loop iteration index and updates it to inform potential
stealers of its progress. The iteration index is kept in the
work-stealing node owned by a specific processor. A stealer
invalidates this index atomically, in a lock-free manner,
to prevent the victim from further increments. Subsequent
updates to the index are disallowed and the work-stealing
node is split into two child nodes, each of which holds half
of the yet non-traversed elements.

We omit the details of how the scheduler uses the work-
stealing tree, i.e. expands it or assigns workers to specific
nodes – this was already discussed in detail in related
work [8]. We examine a worker executing a parallel loop.
The worker is assigned a batch determined by start≥ 0
and until≥start. It also maintains a globally visible
progress field which it updates atomically with a CAS.
This value denotes the first loop element within [start,
until) that the worker is not obliged to process. The code
we show is in Scala, but relies on language features available
in modern general-purpose programming languages.

def work() = {1

var loop = true2

while (loop) {3

val p = READ(progress)4

if (p >= until || p < 0) loop = false else5

if (CAS(progress, p, min(until, p + step)))6

apply(p, min(until, p + step)) } }7

The algorithm uses a value step to decide how many loop
elements to commit to in each iteration. Choosing the step

value and its effect on scheduling was studied elsewhere
[8] [3] [5], but it suffices to say that this value has to be
varied to achieve the best speedup. In each loop iteration the
worker reads the value of progress and tries to atomically
increment it with a CAS. If it succeeds, it is committed
to process all elements smaller than the last value written
to progress. It does so by calling apply in line 7,
which executes a user-specified operation on each element
within the specified range. Section II-B shows how apply
corresponds to a specific operation instance. The stealer
invalidates the progress by executing the following.

def markStolen() = {8

val p = READ(progress)9

if (p < until && p >= 0)10

if (!CAS(progress, p, -p - 1)) markStolen() }11

Neither the worker nor any of the stealers write to
progress after it becomes negative. We do not show how
the remaining work is split after markStolen completes
– at this point there is sufficient information to reach a
consensus on that in a lock-free way.

The method above is limited to parallel integer ranges. We
therefore introduce work-stealing iterators that allow work-
stealing tree scheduling on arbitrary data-structures.

A. Work-stealing Iterators

This section augments the iterator abstraction with the
facilities that support work-stealing. The previously shown
progress value served this purpose for parallel ranges.

There are several parts of the presented work-stealing
scheduler that we can generalize. We read the value of
progress in line 4 to see if it is negative (indicating a
steal) or greater than or equal to until (indicating that the
loop is completed) in line 5. Here the value of progress
indicates the state the iterator is in – either available
(A), stolen (S) or completed (C). In line 6 we atomically
update progress, consequently deciding on the number
of elements that can be processed. This can be abstracted
away with a method nextBatch that takes the desired
batch size and returns an estimated batch size, or −1 if
there are no elements left. We show an updated version of
the loop scheduling algorithm that relies on these methods:

def work(it: StealIterator[T]) = {1

var step = 0; var res = zero2

while (it.state() == A) {3

val batch = it.nextBatch(step)4

if (batch >= 0)5

res = combine(res, apply(it)) }6

res }7

The complete work-stealing iterator interface is shown
below. The additional method owner returns the index of
the worker owning the iterator. The method next can be
called as long as the method hasNext returns true, just as
with the ordinary iterators. Method hasNext returns true
if next can be called before having to call nextBatch
again. Finally, the method split can only be called on
stolen iterators and returns a pair of iterators that traverse
the remaining elements of the original.



trait StealIterator[T] {8

def owner(): Int9

def state(): A ∨ S ∨ C10

def markStolen(): Unit11

def split(): (StealIterator[T], StealIterator[T])12

def nextBatch(step: Int): Int13

def hasNext: Boolean14

def next(): T }15

The contracts of these methods are formally expressed
below. We implicitly assume termination and a specific
iterator instance. Unless specified otherwise, we assume
linearizability. A method M is owner-specific (π-specific) if
and only if every invocation by a worker π is preceeded by
a call to owner returning π. For non-owner-specific method
M , owner returns ψ 6= π.

Contract owner. There exists a time t0, such that all
invocations at ∀t1 ≥ t0 return π.

Contract state. If an invocation returns s ∈ {S,C} at
time t0, then all invocations at t ≥ t0 return s, where S and
C denote stolen and completed states, respectively.

Contract nextBatch. A call at some time t0 is π-
specific and the parameter step ≥ 0. If the return value c
is −1 then a call to state at ∀t1 > t0 returns s ∈ {S,C}.
Otherwise, a call to state at ∀t−1 < t0 returns s = A.

Contract markStolen. A call at t0 is non-owner-
specific and calls to state at t1 > t0 returns s ∈ {S,C}.

Contract next. A non-linearizable π-specific invocation
exists at time t1 if there is a hasNext invocation returning
true at t0 < t1 and there are no nextBatch and next
invocations in the interval 〈t0, t1〉.

Contract hasNext. If a non-linearizable π-specific call
returns false at time t0 then ∀t1 > t0 hasNext returns
false, and there are no nextBatch calls in 〈t0, t1〉.

Contract split. If a call returns a pair (n1, n2) at time
t0 then the call to state returned S at some time t−1 < t0.

Traversal contract. Define X = x1x2 . . . xm as the
sequence of return values of next calls at times t′1 < t′2 <
. . . < t′m. If a call to state at t > t′m returns C then
the sequence e(i) traversed by an iterator i is e(i) = X .
Otherwise, if a split call on an iterator i returns (i1, i2),
the e(i) = X · e(i1) · e(i2), where · is concatenation. The
value e(i) is unique for valid sequences of nextBatch and
next calls. Less formally, for any combination of split
calls, i traverses the same sequence of elements e(i).

IndexIterator. This iterator is applicable to paral-
lel ranges, arrays, vectors and data-structures where in-
dexing is fast. The range implementation uses the fields
nextProgress and nextUntil. Since their contracts
ensure that only the owner calls next and hasNext, their
writes need not be globally visible.

trait RangeIterator extends StealIterator[Int] {16

val owner: Int; val until: Int17

var nextProgress; var nextUntil = -118

@volatile var progress: Int19

def state() = {20

val p = READ(progress)21

if (p ≥ until) C else if (p < 0) S else A }22

def nextBatch(s: Int): Int =23

if (state() 6= A) -1 else {24

val p = READ(progress)25

val np = math.min(p + s, until)26

if (¬CAS(progress, p, np))27

nextBatch(s)28

} else {29

nextProgress = p30

nextUntil = np31

np - p } }32

def markStolen() = {33

val p = READ(progress)34

if (p < until ∧ p ≥ 0)35

if (!CAS(progress, p, -p - 1))36

markStolen() }37

def hasNext = nextProgress < nextUntil38

def next() = {39

nextProgress += 140

nextProgress - 1 } }41

HashIterator. The implementation of work-stealing
iterators for hash-tables is similar to indexed iterator – state
can be represented with a single integer field progress,
and invalidated with markStolen. The nextBatch has
to compute the expected number of elements between using
the load factor lf as follows:

def nextBatch(step: Int): Int = {42

val p = READ(progress)43

val np = math.min(p + (step / lf).toInt, until)44

if (¬CAS(progress, p, np)) nextBatch(step)45

else {46

nextProgress = p47

nextUntil = np48

np - p } }49

TreeIterator. For the presentation of tree work-
stealing iterators, we refer the readers to related work [6].

B. Kernel Callsite Generation

The worker uses the work-stealing iterator to commit to
processing batches of elements. The apply call in line
6 conceals the details of how elements are processed. In
this section we describe how the apply implementation
is generated. We use Scala Macros [1] to manipulate
ASTs at the parallel operation callsites. This allows us to
inline generic components of the data-parallel operation
and choose a more efficient operation implementation
based on the collection type. Each data-parallel operation
callsite defines a kernel object that describes how a batch is
processed and what the resulting value is, how to combine
values from different workers and what the neutral element
is. The kernel interface is as follows:

trait Kernel[T, R] {50

def zero: R51

def combine(a: R, b: R): R52

def apply(it: StealIterator[T]): R }53

The method apply uses the iterator to traverse the
elements and compute the result of type R. The method
combine is used to merge two different results and zero
returns the neutral element. The fold operation from



def apply(i: ArrayIterator[T]) = {72

var sum = 073

var p = i.nextProgress74

val u = i.nextUntil75

while (p < u) {76

sum = sum + i.array(p)77

p += 1 }78

return sum }79

def apply(i: TreeIterator[T]) = {80

def trav(t: Tree): Int = {81

if (t.isLeaf) t.elem82

else trav(t.left) + t.elem + trav(t.right) }83

val root = i.getRoot84

trav(root) }85

Figure 1. Specialized kernel apply methods for the fold operation

the introduction that computes the sum of a sequence of
numbers xs:

xs.fold(0)((acc, x) => acc + x)54

has the following generic implementation
(invokeParallel creates a work-stealing tree and
notifies the worker threads):

def fold(i: StealIterator[Int],55

z: Int, op: (Int, Int) => Int) = {56

val k = new Kernel[Int, Int] {57

def zero = z58

def combine(a: Int, b: Int): Int = op(a, b)59

def apply(i: StealIterator[T]) = {60

var sum = zero61

while (i.hasNext) sum = op(sum, i.next())62

sum } }63

invokeParallel(i, k) }64

The macro inlines the body of the folding operator,
obtaining the following kernel:

new Kernel[Int, Int] {65

def zero = z66

def combine(a: Int, b: Int) = a + b67

def apply(i: StealIterator[Int]) = {68

var sum = 069

while (i.hasNext) sum = sum + i.next()70

sum } }71

While the inlining in this example avoids the function
object, the while loop still contains the work-stealing
iterator. Using the iterator prevents optimizations like
loop-invariant code motion. Inlining the iterator requires
statically knowing the underlying data structure and cannot
be performed by existing specialization techniques [2].
IndexKernel. Figure 1 shows the array kernel imple-

mentation for the fold example discussed earlier. Array
bounds checks inside a while loop are visible to the
compiler or a runtime like the JVM and can be hoisted out.
On platforms like the JVM potential boxing of primitive
objects resulting from typical functional object abstractions
is eliminated. Finally, the dynamic dispatch is eliminated
from the loop. The resulting loop has optimal performance
as shown in the evaluation in Section III.
TreeKernel. The tree work-stealing iterator [6] as-

sumes that any subtree can be traversed with the next
and hasNext calls by using a private stack, just like
the linearizable nextBatch relies on an atomic stack.
Batching can be achieved by traversing the subtree directly.
Figure 1 shows a kernel in which the root of the subtree
is traversed with a nested recursive method traverse.

III. PERFORMANCE EVALUATION

The goals of our design were to reduce abstraction
and scheduling penalties to negligible levels. This sec-
tion presents a performance improvement breakdown that
validates these goals by identifying each of the penalties
separately. We compare against programs written in Java, ex-
isting Scala Parallel Collections, a corresponding C version,
OpenMP and the Intel TBB library wherever a comparison
is feasible. We perform the evaluation on the Intel i7-
3930K hex core 3.4 GHz processor with hyperthreading, 4x
Xeon E5-4640 8-core 2.4 GHz with disabled hyperthreading
and a 8-core 1.2 GHz UltraSPARC T2 with 64 hardware
threads. An important difference between them is the mem-
ory throughput - i7 has a single dual-channel, while the
UltraSPARC T2 has four dual-channel memory controllers.

Abstraction penalties. The microbenchmarks in Figure
2 have a minimum cost uniform workload. These tests are
targeted at detecting abstraction penalties discussed earlier.
The microbenchmark in Figure 2A consists of a data-parallel
foreach loop. It shows a comparison between Parallel
Collections, a generic kernel and a kernel specialized for
ranges from Figure 1. In this benchmark, Parallel Collections
[7] do not incur boxing costs, but suffer from iterator and
function object abstraction penalties. Furthermore, the range-
specialized kernel outperforms the generic kernel by 25% on
the Xeon and 15% on the UltraSPARC (note the log scale).

Figure 2B evaluates parallel ranges and the fold opera-
tion from the introduction. Scala Parallel Collections suffer
from integer boxing in this benchmark. The speed gain for a
range-specialized kernel is 20× to 60× compared to Parallel
Collections and 2.5× compared to the generic kernel. Figure
2C shows the same fold microbenchmark applied to paral-
lel arrays. While Parallel Collections again incur the costs of
boxing, the generic and specialized kernel have a much more
comparable performance here. Furthermore, due to the low
amount of computation per element, this microbenchmark
spends most of the time fetching the data from the main
memory. This is particularly noticeable on the i7 – its dual-
channel memory architecture becomes a bottleneck, limiting
the speedup to 2×. UltraSPARC shows better scaling here
due to its eight-channel memory architecture.

The fold operation on binary trees is shown in Figure
2D. Here we compare the generic and specialized fold
kernels against a manually written recursive traversal sub-
routine. The performance difference between the generic and
the specialized kernel is 2− 3×.

Scheduling penalties. In Figure 3A we run a parallel
fold method on a step workload – the first 97% of elements
have no associated work, while the remaining 3% require a
high amount of computation. Intel TBB is about 25% slower
compared to the work-stealing tree scheduling. As shown in
Figure 3B, Intel TBB is up to 2× slower compared to work-
stealing tree scheduling for an exponential workload where
the work of the n-th element grows with the function 2

n
100 .
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IV. RELATED WORK

The fixed-size batching [3] was an early technique that
allowed a more fine-grained load-balancing for scheduling
data-parallel loops. This technique fails to load balance
irregular workloads well. Other variable size batching ap-
proaches were proposed like guided self-scheduling [5], and
TSS [9], but their static partitioning decisions have proven
detrimental. In work-stealing [4] each worker maintains its
own work queue and steals work from other workers when
its queue is empty. Work-stealing tree scheduling [8] is a
load balancing technique in which work is kept in a tree
rather than a work queue. Due to a work-stealing mechanism
closely tied to data-parallel loops and its tendency to keep
the worker in isolation as long as possible this technique
can efficiently schedule highly irregular workloads that tra-
ditional approaches [3] [5] [7] cannot cope with. Intel TBB
is a C++ data-parallel programming library based on work-
stealing. The largest difference with respect to our approach
is that the TBB auto-partitioner only allows the worker to
split the work, whereas in our approach stealers are also
allowed to split in a lock-free manner.

V. CONCLUSION

Whereas in traditional work-stealing basic units of paral-
lelism are parallel function calls, we proposed a set of spe-
cialized representations taking advantage of data-structure
specifics to allow more efficient scheduling. The key idea

is that, on one hand, these specialized representations can
be processed serially with near-optimal overheads, and,
orthogonally, these representations allow more fine-grained
work-stealing. This work-stealing proceeds in a lock-free
manner, allowing the idle worker threads to steal work from
busy workers without waiting for their cooperation.
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