
Cache-Tries: Concurrent Lock-Free Hash Tries with
Constant-Time Operations

Aleksandar Prokopec
Oracle Labs

aleksandar.prokopec@gmail.com

Abstract
Concurrent non-blocking hash tries have good cache locality,
and horizontally scalable operations. However, operations
on most existing concurrent hash tries run in O (logn) time.

In this paper, we show that the concurrent hash trie oper-
ations can run in expected constant time. We present a novel
lock-free concurrent hash trie design that exerts less pressure
on the memory allocator. This hash trie is augmented with
a quiescently consistent cache, which permits the basic op-
erations to run in expected O (1) time. We show a statistical
analysis for the constant-time bound, which, to the best of
our knowledge, is the first such proof for hash tries. We also
prove the safety, lock-freedom and linearizability properties.
On typical workloads, our implementation demonstrates up
to 5× performance improvements with respect to the previ-
ous hash trie variants.

CCS Concepts • Theory of computation → Concur-
rent algorithms; Shared memory algorithms; •Computing
methodologies→ Concurrent algorithms;

Keywords concurrent data structures, lock-free hash tries,
constant-time hash tries, expected constant time
ACM Reference Format:
Aleksandar Prokopec. 2018. Cache-Tries: Concurrent Lock-Free
Hash Tries with Constant-Time Operations. In PPoPP ’18: PPoPP ’18:
23nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, February 24–28, 2018, Vienna, Austria. ACM, New
York, NY, USA, 15 pages. https://doi.org/10.1145/3178487.3178498

1 Introduction
Since the first known proposal by Briandais [11], tries have
moved beyond their original string retrieval use-case. The
idea of guiding the search with individual string characters

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP ’18, February 24–28, 2018, Vienna, Austria
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-4982-6/18/02. . . $15.00
https://doi.org/10.1145/3178487.3178498

was applied to hash tries, which store arbitrary key types
using their hash-code bits [4, 6, 23]. The growing interest in
concurrent data structures lead to the first non-blocking hash
trie, named Ctrie [33], whose key advantage was improved
scalability [34]. Subsequent research focused on additional
non-blocking operations, such as multi-key transactions [43]
and lazy snapshots [36], as well as on enhancing perfor-
mance. In the context of concurrent Prolog, Areias described
an insert-only variant with improved scalability [1, 2]. Joisha
proposed another insert-only variant suitable for logging,
Bloom filters and garbage collection [19], and Steindorfer
described techniques for improving the memory footprint
and cache locality [44]. However, most existing research on
tries does not improve their asymptotic running time. Since
anecdotal evidence suggests that lookup is a predominantly
used dictionary operation [17, page 300], it remains unclear
if tries should replace concurrent hash tables.

In the past, it was frequently taken for granted that concur-
rent hash trie operations run in O (logn) time [3, 26, 34, 36].
This assumption is possibly based on the fact that the depth
of a perfectly balanced k-ary tree is Θ(logn). However, a
hash trie is not necessarily balanced and its depth can reach
O (n) – a trivial example involves a non-uniformly distributed
hash function. Furthermore, as shown before [26], hash trie
operations are not constrained by the hash trie depth, and
can execute in O (log logn) time.
In this work, we propose a novel concurrent, lock-free

hash trie design that uses fewer allocations and fewer indi-
rections compared to the original Ctrie [34]. We enhance the
new hash trie variant with an auxiliary data structure called
a cache. We call the resulting data structure a cache-trie. By
analyzing the key depth distribution, we show that, given a
universal hash function, the expected key depth in a hash trie
(and by extension cache-trie) isO (logn). We then prove that
when a cache-trie is augmented with a cache, its operations
run in expected O (1) time.
Concretely, we bring forth the following contributions:

• We present a novel lock-free concurrent hash trie de-
sign that uses fewer object allocations compared to
the previous variants [34] (Section 3.1 and 3.2).
• We describe the cache-trie data structure, which ex-
tends the concurrent hash trie with a quiescently con-
sistent cache. This allows insert, lookup and remove
to run in expected O (1) time (Section 3.4).

137

https://doi.org/10.1145/3178487.3178498
https://doi.org/10.1145/3178487.3178498
http://www.acm.org/publications/policies/artifact-review-badging#replicated
http://www.acm.org/publications/policies/artifact-review-badging#available
http://www.acm.org/publications/policies/artifact-review-badging#reusable
http://www.acm.org/publications/policies/artifact-review-badging#functional

PPoPP ’18, February 24–28, 2018, Vienna, Austria Aleksandar Prokopec

• We present a statistical analysis of the cache-trie oper-
ations and prove the O (1) time bound (Section 4.1).
• We prove that all the operations are correct, lineariz-
able and lock-free (Section 4.2).
• We evaluate the Scala implementation of the proposed
data structure against similar concurrent data struc-
tures, and show up to 5× performance improvements
with respect to previous hash trie variants (Section 5).

We then give a summary of related work in Section 6,
and conclude in Section 7. We start with an overview that
informally explains how cache-tries work.

2 Overview
Before showing the concrete implementation, we briefly
consider one specific cache-trie execution scenario. A cache-
trie is identified with a root reference, which points to an
array of pointers, called an array node. This array is initially
empty, but gets populated with pointers to single nodes as
keys get inserted. Consider the following cache-trie, which
contains a pointer to a single node whose key has a hash
code ending with 00012 = 110. The position of this key is
1, as dictated by the 4 lowest bits. Assume now that some
thread T1 decides to insert a key whose hash-code ends with
10000100. Thread T1 executes a CAS at the empty location
01002 = 410, and after that, another thread T2 can read it.

...10000100...0001

root

...10000100...0001

root
T1:CAS T2:READ

Assume now that the other thread T2 decides to insert
another key whose hash-code ends with 11110100. The loca-
tion 4 of the new key coincides with the previously inserted
key, so the cache-trie must be extended at the next level. T2
decides not to waste an array of length 16 on just two keys,
so it creates a new array of length 4, in which the previous
key occupies the position 10002%1002 = 002 = 010, and the
new key occupies the position 11112%1002 = 112 = 310. T2
then executes a CAS at the location 4 at the first level. After
the CAS completes, both keys are contained in the cache-trie:
root

...10000100

...0001

T2:CAS

root

...0001

...11110100

...10000100

...10000100 ...11110100

Let T2 now insert another key whose hash-code ends
with 00110100. Once more, T2 encounters a collision at level
0, and then encounters another collision at the next level.
Instead of immediately adding an array node at a deeper
level, T2 decides to replace the narrow array node of length
4 with another array node of length 16. However, T2 can-
not immediately execute a CAS at the position 4 at the root
– doing so would allow a race condition in which another
thread T3 modifies the narrow node after it was removed
from the root array. Instead, T2 must first atomically freeze

the narrow node to prevent further updates (details of freez-
ing are shown later). Only after the narrow node is frozen,
the pointer at the position 4 in the root can be swapped out.
root

0001 00110100

T2:FREEZE

10000100 11110100

root

0001

00110100 10000100 11110100

T2:CAS

Once the number of levels in the cache-trie grows suffi-
ciently, the majority of work consists of traversing the inner
nodes. The search gets progressively slower.

Cache. This is where we introduce our key contribution.
We observe that pointers to nodes that are close to the leafs
would likely boost the key search. We therefore extend the
cache-trie with a singly-linked list of arrays. Each array holds
pointers to nodes in one level of the trie, and the list is sorted
from the deeper levels to the root. We call this list of arrays a
cache. A fully populated cache of depthd has an array at each
level i , 1 ≤ i ≤ d , that is effectively a concatenation of all
the trie nodes at level i (including any missing ones). These
arrays do not perfectly match the trie because the cache is
populated lazily and because parts of the trie go deeper than
d . An example cache-trie is shown in the following figure:

...

root

...

cacheHead...... ..
.

...

..
.

...

...

...

...

..
.

...

...

...
...
...

 ...
...

 ...
...

The cacheHead pointer refers to the list of arrays (list
pointers are violet). An array entry is either null, or points
to a node at the respective level (each array has 16i entries,
so we omit some entries and use the ". . ." notation). A lookup
or an insert operation starts by inspecting the deepest level
of the cache and jumps to an inner node if a pointer exists,
or otherwise reverts to a slow search from the root.

Challenges. There are three obstacles with this design.
(1) It is unclear how to keep the trie and the cache synchro-
nized using single-word CAS instructions. In a non-blocking
concurrent data structure, efficiently updating multiple mem-
ory locations with a single CAS is not straightforward.
(2) It is not obvious if a cache level can be selected optimally.
A cache should target the level with the majority of keys (if
such a level exists). At the same time, the cache must not be
larger than the trie, since it is expensive to maintain.
(3) Finally, even if we knew how to pick the cache level based
on the key depth distribution, it is unclear how to retrieve
the distribution correctly and optimally.

The next section shows how to overcome these obstacles.

3 Design and Implementation
In this section, we present the implementation of the cache-
trie data structure. We start with the basic lookup and insert
operations that do not use the cache, and then explain how

138

Cache-Tries: Tries with Constant-Time Operations PPoPP ’18, February 24–28, 2018, Vienna, Austria

class SNode

val hash: Int

val key: KeyType

val value: ValueType

var txn: Any

type ANode = Array <Any >

val NoTxn

val FSNode

val FVNode

class FNode

val frozen: Any

class ENode

val parent: ANode

val parentpos: Int

val narrow: ANode

val hash: Int

val level: Int

var wide: ANode

class CacheTrie

val root = new ANode (16)

Figure 1. Basic Cache-Trie Data Types

the cache improves them. We then show how to manage the
cache, and discuss the remaining operations.
We use a simple pseudocode notation – data types are

declared with the class keyword, local variables and fields
are declared with the var keyword, and with val if they are
constant. Methods are declared with a def keyword, and
parameter types are denoted after the : sign. Pointer to any
object has the Any type, and an array of objects of some
type T has the Array<T> type. Arrays are indexed using the
[] notation. Atomic reads, writes and compare-and-swap
operations are in upper-case – READ, WRITE and CAS. We
use standard control flow constructs – if-else, while and
return, and new allocates an object and returns a pointer.
Data types. Figure 1 shows the basic cache-trie data types.

During any quiescent period, a cache-trie consists only of
SNode and ANode objects. An SNode is a leaf node – it holds a
single key-value pair, a copy of the corresponding hash code,
and a txn field that is initialized to a special value NoTxn. An
ANode is an inner node, defined with the type keyword as an
alias for an array of Any pointers. Cache-trie is a 16-way trie,
so ANodes can contain up to 16 pointers. Each node occupies
a specific level of the cache-trie, where levels are multiples
of 4 – the root ANode is at level 0, its pointees are at level 4,
and so on. At level ℓ, there can be up to 2ℓ nodes.

Invariant. A cache-trie that consists only of ANodes and
SNodes obeys the following invariant: if the cache-trie con-
tains an SNode that stores a key whose hash-code bits are h,
then this SNode is reachable with a chain of ANode pointers
a0

a0[p0]
−→ a1

a1[p1]
−→ . . .

an [pn]
−→ sn+1 starting from the root, such

that p0p1 . . .pn is a prefix of h.
The rest of the node types, summarized in Table 1, exist

only during an operation. FSNode, FVNode and FNode are
special values used to prevent modifications of other nodes,
as explained in Sections 3.2 and 3.3. The ENode is used to
mark an ANode for expansion, and is used for insertion.

1 def lookup(key: KeyType , hash: Int , level: Int ,

2 cur: ANode): ValueType =
3 val pos = (hash >>> level)⊙(cur.length - 1)

4 val old = READ(cur[pos])

5 if (old == null ∨ old == FVNode)

6 return null
7 else if (old ∈ ANode)

8 return lookup(key , hash , level + 4, old)

9 else if (old ∈ SNode)

10 if (old.key == key) return old.value

11 else return null
12 else if (old ∈ ENode)

13 val an = old.narrow

14 return lookup(key , has , level + 4, an)

15 else if (old ∈ FNode)

16 return lookup(key , hash , level + 4, old.frozen)

17
18 def lookup(key: KeyType): ValueType =
19 lookup(key , hash(key), 0, root)

Figure 2. Lookup Operation

Table 1. Summary of Node Types

Name Description
SNode holds a key-value pair
ANode inner node, holds pointers to other nodes
ENode used to announce that a node must be expanded
FNode prevents replacing an ANode entry
FSNode prevents replacing an SNode entry
FVNode prevents writing to an empty array entry

3.1 Lookup Operation
The goal of the lookup operation is to find the value asso-
ciated with the specified key. If the key is not a part of the
cache-trie, lookup must return the null value.
Summary. To find a value associated with a key, the

lookup operation relies on the invariant specified in the
previous section. The search works as follows – upon reach-
ing an ANode at level ℓ, hash-code bits [ℓ,ℓ+4⟩ are used as an
index to select the pointer to the next level. This is repeated
until reaching an empty entry or an SNode.
If the lookup operation encounters a special node, such

as an ENode, FNode, FSNode or an FVNode, then that node
contains sufficient information to determine the state of
the cache-trie when this node was created. For example, an
FNode contains the corresponding frozen ANode, which is
used to continue the search. Thus, the lookup operation does
not help a pending operation complete, and is wait-free.

Implementation. Figure 2 shows the pseudocode of the
tail-recursive lookup subroutine, which given a key, its hash,
the current level and the inner node cur, starts by extract-
ing the relevant position bits of the hash-code. The branching
factor of each ANode is either 4 or 16, so either 2 or 4 hash-
code bits, starting from level, are taken to compute the

139

PPoPP ’18, February 24–28, 2018, Vienna, Austria Aleksandar Prokopec

entry index pos in line 3 (⊙ denotes the bitwise-and oper-
ation). The index is used to atomically read the old value
from the cur array in line 4. If old is null or FVNode (i.e.
a non-modifiable version of null) in line 5, it means that
the hash-code hash does not have a corresponding key in
the cache-trie, so lookup returns null. If old is an ANode
(line 7), lookup continues recursively from the next level.
If old is an SNode (line 9), lookup checks if the SNode key
is exactly equal to the desired key, and returns either the
corresponding value or null. The remaining cases deal with
ENodes and FNodes, and are covered in lines 12 to 16.
Most of the time, the cache-trie consists only of ANodes,

SNodes and null values. Occasionally, during the execution
of other operations, cache-tries can contain other types of
nodes. The remaining code in lookup deals with these cases.
If old is an ENode (line 12), then lookup encountered an
expansion from a concurrent insert operation, as explained
shortly in Section 3.2. Rather than helping complete the ex-
pansion, lookup uses the unexpanded ANode version narrow
to continue the search. As shown in Section 4.2, this results
in a well-defined linearization point. Finally, if old is an
FNode (line 15), then lookup knows that the wrapped value
is an ANode (Section 3.2), and continues recursively.

3.2 Insert Operation
Given a key and a value, the insert operation adds a new
key-value pair if the cache-trie did not previously contain
the key. Otherwise, the existing key-value pair is replaced.

Summary. Inserting searches the trie analogous to lookup.
The goal is to find an ANode to which a new SNode can be
added, or an existing SNode to be replaced. Once the ANode
is found, one of the following scenarios occurs.
(1) If the corresponding ANode entry is empty, the key-value
pair is atomically added. If the entry is occupied by a differ-
ent key, then there is a collision.
(2) If there is a collision, and the ANode is wide, i.e. it has 16
slots, then insert creates a new ANode at the next level.
(3) Otherwise, if the ANode is narrow, i.e. it has only 4 slots,
then insert assumes that expanding the ANode will resolve
the collision. To correctly expand the narrow ANode, insert
must first prevent subsequent updates to the narrow ANode
by freezing it [29]. After the narrow ANode gets frozen (Sec-
tion 3.3), its values are copied into the wide ANode.
(4) It is also possible that the colliding entry is occupied
by the same key. In this case, the existing key-value pair is
atomically replaced. For reasons that will become obvious
once we introduce the cache in Section 3.4, insert uses two
CAS instructions to replace an SNode – it first does a CAS on
the txn field to announce the new SNode, and then another
CAS on the corresponding ANode.

A case that we skip for brevity is when two different keys
map to an identical hash-code. We resolve such collisions
with special list nodes, similar to the ones used in Ctries [36].

1 def insert(k: KeyType , v: ValueType , h: Int ,

2 lev: Int , cur: ANode , prev: ANode): Boolean =
3 val pos = (h >>> lev)⊙(cur.length - 1)

4 val old = READ(cur[pos])

5 if (old == null)
6 val sn = new SNode(h, k, v, NoTxn)

7 if (CAS(cur[pos], old , sn)) return true
8 else return insert(k, v, h, lev , cur , prev)

9 else if (old ∈ ANode)

10 return insert(k, v, h, lev + 4, old , cur)

11 else if (old ∈ SNode)

12 val txn = READ(old.txn)

13 if (txn == NoTxn)

14 if (old.key == key)

15 val sn = new SNode(h, k, v, NoTxn)

16 if (CAS(old.txn , NoTxn , sn))

17 CAS(cur[pos], old , sn)

18 return true
19 else return insert(k, v, h, lev , cur , prev)

20 else if (cur.length == 4)

21 val ppos = (h >>> (lev - 4))⊙(prev.length - 1)

22 val en = new ENode(prev , ppos , cur , h, lev)

23 if (CAS(prev[ppos], cur , en))

24 completeExpansion(en)

25 val wide = READ(en.wide)

26 return insert(k, v, h, lev , wide , prev)

27 else return insert(k, v, h, lev , cur , prev)

28 else
29 val sn = new SNode(h, k, v, NoTxn)

30 val an = createANode(old , sn , lev + 4)

31 if (CAS(old.txn , NoTxn , an))

32 CAS(cur[pos], old , an)

33 return true
34 else return insert(k, v, h, lev , cur , prev)

35 else if (txn == FSNode) return false
36 else
37 CAS(cur[pos], old , txn)

38 return insert(k, v, h, lev , cur , prev)

39 else if (old ∈ ENode) completeExpansion(old)

40 return false
41
42 def insert(k: KeyType , v: ValueType) =
43 if (! insert(k, v, hash(k), 0, root , null))
44 insert(k, v)

Figure 3. Insert Operation

Implementation. The insert subroutine in Figure 3
atomically reads the old value from the ANode. If old is
null (line 5), then insert handles the case (1) – it creates a
new SNode, and assigns it to the empty slot in line 7.

Next, if old is an SNode (line 11), then insert reads its txn
value (line 12) to check if another transaction is in progress
on that SNode. If txn is equal to NoTxn (line 13), then insert
first checks if the SNode has the currently inserted key. If so,
it proceeds according to the scenario (4) – it does a CAS on
the txn field in line 16 to announce the new SNode, and then
another CAS on the ANode in line 17 to commit.

If old is an SNode and does not contain the same key, then
insert checks if the current ANode is narrow (line 20), ac-
cording to the scenario (3). If so, insertmust replace the cur-
rent ANode curwith an equivalent wide ANode. A new ENode
is created to communicate the intention to other threads. If
the CAS that replaces cur in its parent prev succeeds in line

140

Cache-Tries: Tries with Constant-Time Operations PPoPP ’18, February 24–28, 2018, Vienna, Austria

23, then insertmanaged to announce its intention, and can
call the completeExpansion subroutine, shown shortly. The
insertion then restarts from the same level, but using the
new wide ANode that is stored in the wide field of the ENode.

Finally, if the current ANode is already wide (line 28), then
insert follows the case (2) – it creates a new ANode with
both the old SNode and the new one (this is done in the
createANode subroutine), and attempts to replace old with
the new ANode using the CAS instructions in lines 31 and 32.

Coming back to the txn field of the old SNode, if txn con-
tains the FSNode value, then this indicates that a concurrent
expansion froze that SNode and further updates are not al-
lowed. In this case, the search needs to be restarted from the
root to find the ENode that caused the freeze, so the insert
subroutine returns false to communicate this. Finally, if
txn contains any other value, such as an SNode or an ANode
written by a concurrent insertion, the current thread simply
helps complete that transaction with a CAS in line 37.

The remaining cases are as follows. Either old is an ENode,
in which case insert helps complete the concurrent expan-
sion; or old is an FVNode or an FNode, in which case insert
returns false, and finds the corresponding ENode to com-
plete the concurrent expansion. The user-facing insert sub-
routine checks if insertion returned false and restarts the
insertion from the root if necessary.

3.3 Freezing and Expansion
After the node is frozen, it is guaranteed that no operation
will ever modify that node again. A frozen node is effec-
tively immutable, and can be read and copied without race
conditions. This is important for expanding a narrow ANode.

Summary. Since all modifications to an SNode use its txn
field, freezing consists of assigning the special value FSNode
to txn. In the case of an ANode, freezing must prevent subse-
quent modifications at all the array entries. The entries are
therefore disabled one-by-one. The null values are replaced
with FVNode values, and child nodes are recursively frozen.

Note that, after freezing of an ANode starts, and before it
ends, other threads may encounter a frozen entry, in which
case they help complete the freezing, or see a regular entry, in
which case they modify it. In either case, freezing eventually
terminates in a lock-free manner. The linearization point is
the last successful modification by another thread.

Expansion implementation. After insertion adds an
ENode into the cache-trie to announce the expansion to other
threads, expanding a narrow ANode into a wide one proceeds
in three steps, as shown in the completeExpansion sub-
routine in Figure 4. First, the narrow ANode is frozen. The
freeze subroutine, used to prevent updates to the narrow
ANode, traverses the entries, and replaces each null with
FVNode, each ANode with an FNode wrapper, and puts the
FSNode value into the txn of each SNode. If freeze encoun-
ters nested ENodes, it completes those expansions before

1 def completeExpansion(en: ENode) =
2 freeze(en.narrow)

3 var wide = new Array <Any >(16)

4 copy(en.narrow , wide , en.level)

5 if (!CAS(en.wide , null , wide))

6 wide = READ(en.wide)

7 CAS(en.parent[en.parentpos], en , wide)

8
9 def freeze(cur: ANode) =
10 var i = 0

11 while (i < cur.length)

12 val node = READ(cur[i])

13 if (node == null)
14 if (!CAS(cur[i], node , FVNode)) i -= 1

15 else if (node ∈ SNode)

16 val txn = READ(node.txn)

17 if (txn == NoTxn)

18 if (!CAS(node.txn , NoTxn , FSNode)) i -= 1

19 else if (txn , FSNode)

20 CAS(cur[i], node , txn)

21 i -= 1

22 else if (node ∈ ANode)

23 val fn = new FNode(node)

24 CAS(cur[i], node , fn)

25 i -= 1

26 else if (node ∈ FNode)

27 freeze(node.frozen)

28 else if (node ∈ ENode)

29 completeExpansion(node)

30 i -= 1

31 i += 1

Figure 4. Freezing and Expansion

proceeding. For SNodes whose txn fields are not NoTxn, the
pending changes are committed first.

Next, a wide ANode is allocated, and the keys of the frozen
narrow ANode are sequentially transferred in the copy sub-
routine. The current thread then writes the wide ANode to
the ENode’s wide field in line 5. Finally, the wide ANode is
written into the parent in line 7.

3.4 Cache Data Structure
The lookup and insert operations from Sections 3.1 and 3.2
run in expected O (logn) time, as shown in Section 4.1. To
improve this, we augment the cache-trie data structure with
an additional data structure, which we call a cache. The cache
contains references to nodes close to where most of the keys
reside. Reading an entry from the cache allows skipping
O (logn) levels during the search. As shown in Section 4.1,
this improves the expected operation running time to O (1).

Summary.The cache is an array of pointers to ANodes and
SNodes at a specific level. The core challenge in maintaining
the cache is simultaneously removing the pointer from the
array when the corresponding node is removed from the
cache-trie. Without ensuring this, a thread could observe
a key that had previously been removed. Using the single
word CAS operations, it is difficult to efficiently update both
the cache and the trie at the same time (notably, multi-word

141

PPoPP ’18, February 24–28, 2018, Vienna, Austria Aleksandar Prokopec

1 type Cache = Array <Any >

2
3 class CacheNode

4 val parent: Array <Any >

5 val misses: Array <Int >

6
7 class CacheTrie

8 val root = new ANode (16)

9 var cacheHead: Cache = null
10
11 def createCache(level: Int , parent: Cache): Cache =
12 val cache = new Array(1 + (1 << level))

13 val misses = new Array(THROUGHPUT_FACTOR * #CPU)

14 cache [0] = new CacheNode(null , 8, misses)

15 return cache

Figure 5. Cache Data Types and Helper Functions

CAS constructions exist [15], but they require intermediate
object allocation, more costly than a single CAS).
To ensure simultaneous eviction, the cache relies on the

following two properties. First, if an SNode’s txn field con-
tains the NoTxn value, then there is a path from the root to
that SNode (in other words, the cache-trie contains the key).
Second, if an ANode contains at least a single entry that is
not frozen, then there is a path from the root to that ANode.
Therefore, as soon as an SNode contains a non-NoTxn value,
or an ANode contains a frozen entry, then the respective node
was likely removed, or is about to be removed.

To conclude, a pointer is entered into the cache lazily, and
after the respective node is added to the trie. The cache-
trie is designed so that the cache eviction is automatic – if
a removed node is read from the cache, then that node is
certainly in a state in which it is known that it was removed.

Data types. Figure 5 shows the basic cache trie data types.
The Cache type alias is defined as an array of pointers. The
first entry is a special CacheNode object, which contains the
pointer parent to another cache level. The parent chain
forms a list of caches, one for each level, such that the deep-
est level is at the head of the list. The misses array tracks
statistics about cache misses, as explained in Section 3.6.

Implementation. A cache-trie lookup uses the subrou-
tine fastLookup, shown in Figure 6. This subroutine reads
the cache pointer in line 20. If the cache pointer is null, the
normal lookup subroutine starts the search from the root.
Otherwise, fastLookup traverses the cache chain starting at
the deepest level. At each level, the value at the appropriate
entry is read (line 26). If the value is a live SNode (i.e. txn is
set to NoTxn), then fastLookup checks if the keys match or
not, and returns accordingly. If the value is an ANode, then
fastLookup first checks if the relevant entry in that ANode
is not frozen, and then resumes the search. Otherwise, this
process repeats with the next deepest level of the cache.
At this point, it becomes clear why insert from Figure

3 performs two CAS instructions to replace an SNode. The
first CAS modifies the txn field, which is visible both in the

1 def lookup(k: KeyType , hash: Int , lev: Int ,

2 cur: ANode , lastCachee: Any , cacheLevel: Int) =
3 if (lev == cacheLevel)

4 inhabit(cache , cur , hash , lev)

5 val pos = position(cur , hash , lev)

...

9 else if (old ∈ SNode)

10 if (lev < [cacheLevel, cacheLevel + 4])
11 recordCacheMiss ()

12 if (lev + 4 == cacheLevel)

13 inhabit(cache , old , hash , lev + 4)

14 if (old.key == key)

...

16 return lookup(key , hash , level + 4, old.frozen)

17
18 def fastLookup(k: KeyType): ValueType =
19 val h = hash(k)

20 var cache = READ(cacheHead)

21 if (cache == null)
22 return lookup(k, h, 0, root , null , -1)

23 val topLevel = countTrailingZeros(cache.length - 1)

24 while (cache , null)
25 val pos = 1 + (h⊙(cache.length - 2))

26 val cachee = READ(cache[pos])

27 val level = countTrailingZeros(cache.length - 1)

28 if (cachee ∈ SNode)

29 val txn = READ(old.txn)

30 if (txn == NoTxn)

31 if (cachee.key == k) return cachee.value

32 else return null
33 else if (cachee ∈ ANode)

34 val cpos = (h >>> level)⊙(cachee.length - 1)

35 val old = READ(cachee[cpos])

36 if (old == FVNode ∨ old ∈ FNode) continue

37 if (old ∈ SNode)

38 if (READ(old.txn) == FSNode) continue

39 return lookup(k, h, level , cachee , level)

40 cache = cache [0]. parent

41 return lookup(k, h, 0, root , null , topLevel)

Figure 6.Modified Lookup and the Fast Lookup Operation

cache and in the trie – by announcing the SNode replacement,
the cache entry is effectively invalidated. The second CAS
commits the change.

3.5 Cache Housekeeping
Summary. A successful fast search does not update the
cache – since the key is already in the cache, no further
actions are necessary (this is especially important for fast
lookups). To maintain the cache, every slow operation does
two things. First, if it encounters a node at the level that
corresponds to the deepest cache level, the operation inhabits
the cache with that node. Second, if the operation encounters
a level that is sufficiently far away from the cache, then it
records a cache miss. If sufficiently many cache misses occur,
then an operation considers adjusting the cache level.

Implementation.We modify the slow lookup operation
in Figure 6. When lookup encounters an ANode or an SNode
at the same level as the cache in lines 3 and 12, respectively,
it calls the inhabit subroutine, which adds the node to the
cache. When lookup encounters an SNodewhose level is not

142

Cache-Tries: Tries with Constant-Time Operations PPoPP ’18, February 24–28, 2018, Vienna, Austria

1 def inhabit(cache: Array[AnyRef], nv: Any ,

2 hash: Int , cacheeLevel: Int) =
3 if (cache == null)
4 if (cacheeLevel >= 12)

5 cache = createCache (8, null)
6 CAS(cacheHead , null , cache)

7 inhabit(cache , nv , hash , cacheeLevel)

8 else
9 val length = cache.length

10 val cacheLevel = countTrailingZeros(length - 1)

11 if (cacheLevel == cacheeLevel)

12 val pos = 1 + (hash⊙(cache.length - 2))

13 WRITE(cache[pos], nv)

Figure 7. Inhabiting the Cache

ℓc or ℓc + 4 in line 10, where ℓc is the level of the cache, it
calls the recordCacheMiss subroutine (Section 3.6).

The inhabit subroutine in Figure 7 takes the cache array,
the new cachee value nv, the hash-code hash of the cachee
node, and the cachee level. The cache-trie does not have a
cache when created, so inhabit first checks if a cache is
necessary. If the cachee level is 12, inhabit initializes the
cache at level 8. If the cache-trie already has a cache and
the cache is at the same level as the cachee, then inhabit
performs a WRITE in line 13. A CAS is not necessary, since
the cache need not be entirely consistent.

3.6 Adjusting the Cache Level with Depth Sampling
Challenge. The performance improvement from using the
cache is subject to placing it at the optimal level of the trie.
To determine the optimal level, it is necessary to compute the
distribution of keys across levels. This raises two challenges:
(1) On average, computing the distribution can take only a
small fraction of time compared to the main operations.
(2) It is hard to obtain a sequentially consistent view of a
concurrent data structure (such as the depths of all its keys).

Summary. To address the first challenge, we note that
it is not necessary to have an exact key depth distribution
– an approximate distribution is sufficient to decide about
the cache level with high confidence. To address the second
challenge, we note that the key depth distribution changes
are slow. If we can estimate the distribution during a small
enough time window, then the concurrent operations will
not significantly change the key depth.

To estimate the key depth distribution, we rely on periodic
depth sampling. When a fast operation, such as fastLookup
from Section 3.4, fails to obtain an SNode from the cache,
it falls back to a slow search and reports a cache miss. The
thread does not immediately start sampling, but instead in-
creases a counter. When the cache miss counter reaches a cer-
tain threshold (in our case, experimentally set to 2048), it trig-
gers a sampling pass. The thread picks a random hash-code,
uses it to traverse one path in the cache-trie, and records
the number of SNodes at different levels of that path. The
thread repeats this several times. Based on this sample, the

1 def recordCacheMiss () =
2 val cache = READ(cacheHead)

3 if (cache , null)
4 val cn = cache [0]

5 val counterId = THREAD_ID % cn.misses.length

6 val count = READ(cn.misses[counterId])

7 if (count > MAX_MISSES)

8 WRITE(cn.misses[counterId], 0)

9 sampleAndAdjustCache(cache)

10 else WRITE(cn.misses[counterId], count + 1)

11
12 def sampleAndAdjustCache(cache: Array <Any >) =
13 val histogram = sampleSNodesLevels ()

14 val best = findMostPopulatedLevel(histogram)

15 val prev = countTrailingZeros(cache.length - 1)

16 if (histogram[best] > histogram[prev] * 1.5)

17 adjustCacheLevel(best)

Figure 8. Recording Cache Misses and Sampling

thread then interpolates the distribution. Finally, the thread
determines the most populated pair of consecutive levels,
and adjusts the cache level if necessary. Importantly, in this
approach, the sampling overhead is paid less often when
the cache is well positioned. At the same time, sampling is
triggered more frequently if the cache is not well positioned.

Implementation. Figure 8 shows the recordCacheMiss
subroutine. To decrease contentionwhen counting themisses,
the subroutine uses the misses array of the CacheNode ob-
ject – the counter position is computed from the thread ID.
When the counter reaches MAX_MISSES, a sampling pass gets
triggered. The high-level pseudocode of the sampling pass is
shown in the sampleAndAdjustCache subroutine in Figure
8. Note that neither cache miss counting, nor depth sampling,
are linearizable. We found that the lack of consistency is tol-
erable – in the worst case, a race condition during sampling
could select an incorrect level, but this is rare, and it gets
corrected in the next sampling pass.

3.7 Other Operations
In the previous sections, we examined the lookup and the
insert operations. For reasons of space, we did not closely
examine the remove operation, which erases a key-value
pair from the cache-trie. The remove subroutine is similar
to the insert subroutine – it probes the cache, and then
searches the cache-trie until finding an existing SNode. If the
SNode key matches the specified key, the SNode is removed
by first setting its txn to null, and then setting the pointer
in the parent ANode to null. A more challenging aspect
of the remove operation is removing empty ANodes – if all
the entries of the ANode are null, then the ANode must be
reclaimed. For this reason, remove first checks if the affected
ANode is empty. If it is, remove freezes the ANode to prevent
further updates, and replaces it in its parent. This is called
compression, and it is similar to expansion from Section 3.3.

Concurrent maps typically provide some additional oper-
ations. For example, JDK also defines putIfAbsent, which

143

PPoPP ’18, February 24–28, 2018, Vienna, Austria Aleksandar Prokopec

adds a key only if it was previously not in the map, and
replace, which modifies an existing key-value pair. Since
these operations work on a single SNode, they are straight-
forward modifications of the insert subroutine.

4 Analysis
4.1 Running Time
In this section, we show that the expected running time of
the lookup, insert and remove operations is O (1). The proof
relies on establishing the key depth distribution. This leads
to the expected key depth, and the expected depth of the
cache, and consequently their expected distance. For reasons
of space, we only list the main theorems in the main part of
the paper, and keep the complete proofs in the respective
technical report [31].

We define the depthd of a node in the cache-trie asd = ℓ/4,
where ℓ is the node level. We say that a key occupies depth
d if its SNode is at the depth d .

Theorem 4.1. Given a universal hash function, and a cache-
trie that contains n + 1 keys, the probability that an arbitrary
key occupies a position at depth d is:

p (d,n) = (1 − 16−d−1)n − (1 − 16−d)n (1)

Proof sketch. Consider a particular key with a hash-code h
at the level ℓ. Each of the hash-code bits of the other keys
is chosen independently at random. By counting the events
in which at least one other key has the same ℓ-prefix of the
hash-code h, but not the same (ℓ + 4)-prefix, we get:

p (ℓ,n) =
n∑

k=1

(
n

k

) (1
16ℓ/4

·
15
16

)k (
1 − 1

16ℓ/4
)n−k

(2)

By simplifying this sum, the claim follows. □
The function p (d,n) defines a family of depth probability

distributions, each for a specific choice of n. Next, we show
that for sufficiently large n, most of the keys are expected to
occupy some pair of consecutive levels.

Theorem 4.2. When the number of keys n tends to infinity,
there exists a consecutive pair of levels for which the probability
that a key occupies them is in the interval ⟨0.8745,0.9746⟩.

Proof sketch. We define η(d,n) = p (d,n) + p (d,n + 1) and
µ (n) = maxd η(d,n). We then consider what happens when
n → ∞. For the upper bound, we require ∂µ (n)

∂n = 0. For the
lower bound, we require η(d,n) = η(d + 1,n). □
Note that the cache will target exactly the pair of levels

that contains the most keys. We now know that the cache
will cover a large percentage of keys. We still need to prove
that this level is a constant number of levels away from an
average key, so we determine the expected key depth next.

Theorem 4.3. In a cache-trie that contains n keys, the ex-
pected key depth is E[d](n) = log16 n +O (1).

Proof sketch. From the definition of expectation. □
Having the expected key depth, we can establish the con-

nection to the cache depth.

Theorem 4.4. The expected distance between the cache depth
and the key depth is O (1).

Proof sketch. We consider the probability that a key is at
d1 = log16 (n)−2 andd2 = log16 n, and conclude that the most
populated pair of consecutive depths must start between d1
and d2. We know the expected key depth E[d](n) is O (1)
steps away from d1 and d2, so the claim follows. □

4.2 Safety, Linearizability and Lock-Freedom
We first assume that the cache-trie does not use the cache,
and show that the operations are consistent with the se-
mantics of an abstract set. This helps us identify the CAS
instructions that are the linearization points, and establish
that the operations are linearizable. We then show that the
operations are lock-free. Finally, we examine the fast variants
of the operations, which use the cache, and show that they
are safe, linearizable and lock-free. We include the complete
proofs in the technical report [31].

Definition 4.5 (Consistency). Relation hasKey (n,k) holds
if n is an SNode that contains k , or if n is an ANode at level
ℓ whose entry i = hash(k)>>ℓ mod lenдth(an) containsm
such that hasKey (m,k). A cache-trie is consistent with an
abstract set A iff k ∈ A⇔ hasKey (root,k).

Lemma 4.6 (Presence). If a thread reads a single node sn at
time t0, then hasKey (root,sn.key) holds at t0.

Lemma 4.7 (Absence). If a thread searches for k and reads
null from an array node at time t0, or if a thread reads a node
sn at t0 such that sn.key , k , then hasKey (root,k) does not
hold at t0.

Lemma 4.8. CAS instructions in lines 17, 32, and 37 (Figure
3), and in line 20 (Figure 4), change the abstract set that the
cache-trie is consistent with. The rest of the CASes do not change
the corresponding abstract set.

Theorem 4.9 (Safety). At all times t , a cache-trie is consis-
tent with some abstract set. Cache-trie operations are always
consistent with abstract set operations.

Theorem 4.10. Cache-trie operations are linearizable.

Lemma 4.11. There is a finite number of execution steps be-
tween any two cache-trie modifications, and there can only be
finitely many consecutive modifications that do not change the
corresponding abstract set.

Theorem 4.12. Cache-trie operations are lock-free.

Theorem4.13 (Cache Safety). Both fast insert and fast lookup
are consistent with the abstract set semantics. Moreover, fast
insert and fast lookup are linearizable and lock-free.

144

Cache-Tries: Tries with Constant-Time Operations PPoPP ’18, February 24–28, 2018, Vienna, Austria

1
.6
×

2
.0
×

1
.5
×

1
.6
×

1
.6
×

1
.6
×

1
.6
×

1
.6
×

1
.6
×

1
.6
×

1
.5
×

1
.6
×

1
.4
×

1
.4
×

1
.4
×

1
.5
×

1
.5
×

1
.5
×

1
.5
×

1
.5
×

1
.5
×

1
.5
×

1
.4
×

1
.4
×

1
.4
×

1
.5
×

1
.5
×

1
.5
×

1
.5
×

1
.5
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.1
×

1
.0
×

1
.2
×

1
.1
×

1
.1
×

1
.0
×

1
.2
×

1
.1
×

100k

300k

500k

700k

900k

1100k

1300k

1500k

1700k

1900k

20
40
60
80
100
120
140

#k
ey
s

f ootprint/MB

cache-trie w/o cache Ctrie
skiplist CHM

Figure 9.Memory Footprint Comparison

5 Evaluation
In this section, we compare the memory footprint and the
running time of cache-tries against the Ctrie implementa-
tion from the Scala standard library [36], as well as the
JDK 8 ConcurrentHashMap and ConcurrentSkipListMap.
We also compare against a cache-trie variant that does not
use the cache (abbreviated w/o cache). ConcurrentHashMap
is a concurrent dictionary with the fastest lookup implemen-
tation, so we use it as a baseline.
We run the benchmarks on a 3.9 GHz Intel i7-4930MX

quad-core processorwith hyperthreading, andwith frequency
scaling turned off. We use the 4.10.0-32 Linux kernel and
Oracle JDK 8, and we set the heap size to 6 Gb.
We use standard performance evaluation methodologies

for the JVM [14], and rely on the ScalaMeter tool to conduct
the benchmarks [28]. We repeat each benchmark in a new
JVM process until warmup (we detect the warmup when the
coefficient of variance drops below a threshold). We then
repeat the benchmark 5 times, and record the execution
times. This is repeated 6 times in separate JVM processes,
and average value and standard deviation are reported.

Memory footprint. We start by comparing the memory
footprints of various concurrent data structures in Figure
9, which shows the number of keys on the x-axis, and the
footprint on the y-axis. Skip lists consume the least memory,
so themultipliers above the bars are normalized against them.
Since the cache duplicates a lot of pointers in the cache-trie,
we would expect a significant increase. However, it turns out
that the increase compared to the cache-less variant is small,
and typically below 10%.

In the corresponding technical report [31], we show that
most of the keys (> 87%) occupy some two consecutive levels
ℓ and ℓ + 1. Cache targets level ℓ, and contains only ∼10% of
those keys in the best case, or ∼ 79% of keys in the worst case.
On top of that, the relative overhead of a cache pointer is
small. The increase from those 10%−79% has to be divided by
∼5, because the overhead of a cache pointer is only 1 word,
and the footprint of an SNode is 5 words (object header, key
and value pointers, hash code and the txn field).

2
.1
×

1
.9
×

2
.0
×

2
.2
×

2
.1
×

2
.0
×

1
.7
×

1
.6
×

5
.2
×

4
.9
×

4
.9
×

5
.2
×

5
.2
×

5
.0
×

4
.9
×

5
.2
×

6
.6
×

6
.3
×

6
.9
×

7
.4
×

7
.4
×

6
.9
×

6
.3
×

7
.5
×

28
×

31
×

30
×

32
×

33
×

32
×

29
×

36
×

∼ ∼ ∼ ∼

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

100k 600k 1100k 1600k 2100k 2600k 3100k 3600k

200
400
600
800

1,000
1,200
1,400
1,600

#k
ey
s

time/ms (lookup; lower is better)
cache-trie w/o cache Ctrie
skiplist CHM

0
.9
×

1
.0
×

0
.9
×

0
.8
×

1
.0
×

1
.1
×

1
.1
×

0
.9
×

1
.0
×

1
.2
×

1
.1
×

1
.0
×

1
.2
×

1
.3
×

1
.3
×

1
.1
×

1
.4
×

1
.8
×

1
.5
×

1
.4
×

1
.6
×

1
.8
×

1
.8
×

1
.5
×

2
.4
×

4
.9
×

5
.3
×

5
.1
×

6
.1
×

7
.0
×

7
.2
×

6
.1
×

∼ ∼ ∼ ∼

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

100k 600k 1100k 1600k 2100k 2600k 3100k 3600k

200
400
600
800

1,000
1,200
1,400
1,600

#k
ey
s

time/ms (insert; lower is better)
cache-trie w/o cache Ctrie
skiplist CHM

Figure 10. Single-Threaded Lookup and Insert

Cache-tries themselves have a footprint almost identical
to Ctries, and they both take around 50% more memory
compared to hash tables.

Single-threaded running time.Next, we show the single-
threaded benchmark results in Figure 10. The lookup bench-
mark receives a data structure that already contains N keys
(shown on the x-axis), and then looks up each of the keys
once. The respective running time is shown on the y-axis.
We can see that cache-tries outperform Ctries, which are up
to 7.5× slower than concurrent hash tables. Skip lists have
the worst performance – they are up to 36× slower due to a
large number of cache misses caused by pointer hops. Cache-
trie lookups themselves are 1.6 − 2.1× slower than CHM –
the source of the overhead is the extra pointer hop that a
cache-trie undergoes after reading the cache (most keys are
distributed across two consecutive levels, by Theorem 4.2).

The insert benchmark starts with an empty data structure,
and sequentially inserts N different keys. For the chosen N ,
cache-tries are sometimes up to 20% faster than CHM, and
sometimes 10% slower. The cache-less variant is within a
margin of only 20% – for these sizes, allocating and replacing
the nodes takes longer than traversing the trie. Ctries are
around 50% slower, and skip lists are 6× slower than CHM.
Multi-threaded running time. In Figure 11, we repeat

the insertion benchmark with multiple threads, and for the
number of keys 50k , 200k and 600k . The threads insert the
same set of keys, in the same order, so we expect a high
contention. For N = 50k , cache-tries outperform CHM by
10% when there are 4 or less threads, and perform equally
for more than 4 threads. At N = 200k and N = 600k , cache-
tries are 10 − 30% slower. The slowdown is due to a higher
frequency of restarts on the slow path.

145

PPoPP ’18, February 24–28, 2018, Vienna, Austria Aleksandar Prokopec

0
.8
× 0
.9
× 0
.9
×

0
.9
×

1
.0
×

1
.0
×

0
.9
×

1
.0
×

0
.7
×

1
.1
× 1
.1
×

1
.1
×

1
.2
×

1
.4
×

1
.5
×

1
.5
×

1
.2
×

1
.2
× 1
.3
×

1
.2
×

1
.4
×

1
.3
×

1
.6
×

1
.6
×

2
.5
×

2
.0
×

2
.1
× 1
.8
×

1
.9
×

1
.8
×

2
.2
×

2
.2
×

∼

1
.0
×

1
.0
× 1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1 2 3 4 5 6 7 8

2
4
6
8
10
12

#C
P
U

time/ms (N = 50k ; lower is better)
cache-trie w/o cache Ctrie
skiplist CHM

0
.6
× 0
.9
× 1
.2
×

1
.2
×

1
.2
×

1
.2
×

1
.1
×

1
.1
×

0
.6
× 0
.9
× 1
.2
×

1
.2
×

1
.3
×

1
.4
×

1
.2
×

1
.4
×

1
.4
×

1
.5
× 1
.7
×

1
.6
×

1
.8
×

1
.6
×

1
.6
×

1
.6
×

2
.6
×

2
.0
× 3
.0
×

4
.2
× 4
.4
×

4
.0
× 2
.4
×

3
.0
×

∼

1
.0
×

1
.0
× 1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1 2 3 4 5 6 7 8

10
20
30
40
50
60
70
80

#C
P
U

time/ms (N = 200k ; lower is better)
cache-trie w/o cache Ctrie
skiplist CHM

0
.8
× 1
.4
× 1
.2
×

1
.2
×

1
.3
×

1
.2
×

1
.0
×

1
.1
×

0
.7
× 1
.4
× 1
.4
×

1
.3
×

1
.4
×

1
.2
×

1
.1
×

1
.2
×

2
.1
×

2
.8
×

3
.4
× 3
.0
×

3
.3
×

4
.5
×

4
.2
×

4
.3
×

∼

8
.1
×

6
.9
× 6
.8
×

5
.6
× 5
.5
×

6
.4
×

7
.9
× 6
.3
×

∼ ∼

1
.0
×

1
.0
× 1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1 2 3 4 5 6 7 8

20
40
60
80
100
120

#C
P
U

time/ms (N = 600k ; lower is better)
cache-trie w/o cache Ctrie
skiplist CHM

Figure 11.Multi-Threaded Insert With High Contention

Figure 12 also shows multi-threaded insertion, but this
time threads operate on disjoint sets of keys. Here, cache-
tries consistently outperform CHM by 30− 50% for 100k and
1M keys, and are up to 20% faster for 10M keys.

Finally, Figure 13 shows the multi-threaded version of the
lookup benchmark, for 1M keys. For the same reasons as in
Figure 10, cache-tries lookups are up to 60% slower compared
to CHM. Both cache-tries and CHM are much faster than all
other examined data structures.

6 Related Work
The trie data structure was proposed by Briandais [11] (and
later named by Fredkin [13]) as a way to efficiently store and
retrieve strings. The idea of guiding the trie search with hash-
code strings, and using the resulting data structure to im-
plement the dictionary data type, was mentioned in various
forms by at least several authors [4, 6, 23]. One advantage of
hash tries (not to be confused with hash trees [24]) is to imple-
ment immutable dictionaries, used in functional languages
such as Scala, Haskell or Clojure. A non-blocking concurrent
hash trie, called Ctrie, was first proposed by Prokopec et al.
[34] and proven correct [33] – in this design, the keys are
stored in external nodes, and fixed-size hash-code segments
are stored in internal nodes with a branching factor of 32. In
Ctries, synchronization between concurrent operations on

1
.3
×

0
.7
× 0
.5
×

0
.5
×

0
.4
×

0
.4
×

0
.5
×

0
.5
×

1
.5
×

0
.8
× 0
.6
×

0
.5
×

0
.5
×

0
.5
×

0
.5
×

0
.5
×

1
.4
×

0
.8
× 0
.7
×

0
.7
×

0
.7
×

0
.6
×

0
.6
× 0
.7
×

3
.1
×

2
.0
×

1
.5
× 1
.4
×

1
.3
×

1
.2
×

1
.2
×

1
.3
×

∼

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1 2 3 4 5 6 7 8

2
4
6
8
10
12
14
16
18
20
22

#C
P
U

time/ms (N = 100k ; lower is better)
cache-trie w/o cache Ctrie
skiplist CHM

0
.8
×

0
.7
× 0
.7
×

0
.7
×

0
.9
×

0
.7
×

0
.7
×

0
.7
×

1
.0
×

0
.9
× 0
.8
×

0
.9
×

1
.0
×

0
.7
×

0
.9
×

1
.0
×

1
.4
×

1
.3
× 1
.4
× 1
.4
×

1
.4
× 0
.8
×

1
.4
×

1
.4
×

∼

5
.8
×

5
.0
×

5
.4
×

5
.2
×

4
.7
×

3
.2
×

4
.3
×

4
.4
×∼ ∼ ∼ ∼

1
.0
×

1
.0
× 1
.0
×

1
.0
×

1
.0
×

1
.0
× 1
.0
×

1
.0
×

1 2 3 4 5 6 7 8

40
80
120
160
200
240

#C
P
U

time/ms (N = 1M ; lower is better)
cache-trie w/o cache Ctrie
skiplist CHM

1
.1
×

1
.0
× 0
.9
×

1
.0
×

0
.9
×

0
.9
×

0
.9
×

0
.8
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1 2 3 4 5 6 7 8

500
1,000
1,500
2,000
2,500
3,000

#C
P
U

time/ms (N = 10M ; lower is better)
cache-trie CHM

Figure 12.Multi-Threaded Insert With Low Contention

1
.5
×

1
.5
×

1
.6
×

1
.3
×

1
.2
×

1
.3
×

1
.3
×

1
.4
×

2
.5
×

2
.9
× 3
.5
× 2
.7
×

2
.2
×

2
.2
×

2
.4
×

2
.7
×

4
.4
×

4
.4
×

4
.3
× 3
.1
×

2
.7
×

2
.4
×

2
.8
×

2
.5
×

∼

19
.7
×

18
.6
×

18
.7
×

15
.3
×

12
.4
×

12
.7
×

14
.0
×

12
.2
×

∼ ∼ ∼ ∼

1
.0
× 1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1
.0
×

1 2 3 4 5 6 7 8

40
80
120
160
200

#C
P
U

time/ms (N = 1M ; lower is better)
cache-trie w/o cache Ctrie
skiplist CHM

Figure 13.Multi-Threaded Lookup

different trie levels is resolved by introducing special I-nodes,
which remain in the cache-trie even when the adjacent level
is modified. This improves concurrency, but also doubles the
number of pointer hops and increases the average number of
cache misses. Cache-tries eliminate the need for I-nodes in
two ways: first, each inner node has only two possible sizes
– 4 and 16. Second, when an inner node needs to be removed
from the trie, its modifiable locations are set to special non-
writable values – this is similar to the freezing technique
used in SnapQueues [29, 40], freezing in locality-conscious
lists [7], and sealing in FlowPools [37, 38].

Subsequent research on lock-free tries took several direc-
tions. One of the goals was to provide other non-blocking
atomic operations, such as the atomic two-keys replace op-
eration, first proposed in the context of Patricia trees [43].

146

Cache-Tries: Tries with Constant-Time Operations PPoPP ’18, February 24–28, 2018, Vienna, Austria

Ctries were extended with atomic lazy O (1) time snapshots
[36], which allowed implementing linearizable iterators, and
enabled linearizable data-parallel operations [27, 35, 41].
On a separate front, researchers aimed to improve per-

formance by specializing operations for specific use-cases.
Concurrent tries were found to be useful for tabling in con-
current Prolog, where tries store the results of redundant
subcomputations. Areias et al. describe several insert-only
implementations [1, 2], and show that they are more effi-
cient and scalable compared to the general counterparts.
Separately, a variant of non-blocking tries aimed at logging,
Bloom filters, and implementing the GC store buffer, was
shown to have a better performance when delete operations
are disallowed [19]. Steindorfer describes a data structure
specialization technique that automatically picks the optimal
hash trie tradeoffs for a given program [45].
Other research on hash tries focused on improving their

performance in general. In the context of PTries [18], the
authors noted that restructuring the bit string used for the
keys can sometimes improve the running time by a constant
factor. Steindorfer, describes the CHAMP data structure [44],
which improves thememory footprint of standard immutable
hash tries with compression, and at the same time improves
cache locality, but retains the same O (logn) bound. Tries
with O (log logn) running time bounds were proposed as
part of the SkipTrie data structure [26], which can be viewed
as a hash trie. To the best of our knowledge, O (log logn) is
the lowest previously known bound, and our work is the first
concurrent trie design with a proven expected O (1) running
time bound. In this work, we showed the O (logn) expected
hash trie key depth. Aside from the previous analysis of the
b-trie depth [20], we are unaware of any prior work on depth
bounds in concurrent hash tries.

Besides concurrent hash tries, many other concurrent data
structures were proposed in the past. Most high-level lan-
guages expose a concurrent dictionary implementation –
Java’s ConcurrentHashMap (CHM) initially had a lock-based
implementation, which was replaced in JDK 8 with a closed-
addressing concurrent hash table [22], similar to Maged’s
original proposal [25]. The JDK 8 CHM also has a highly
optimized, wait-free lookup operation. Furthermore, the JDK
8 CHM uses a parallel resize operation, triggered by inser-
tion operations when they run out of space (this is unlike
its pre-JDK 8 counterpart, which suffered scalability issues
in insertions). In terms of lookup, the CHM is the most effi-
cient and scalable concurrent dictionary that we are aware
of. Despite the fact that CHM is a flat data structure that
does not support fast linearizable snapshots (which makes a
direct comparison with tree-like data structures unfair), we
decided to use it as a baseline in our benchmarks.

Click showed an alternative open-addresing implementa-
tion [10], but not as efficient as the JDK 8 hash table (original
Ctries were shown more scalable [36]). Java also exposes
ConcurrentSkipListMap, a concurrent lock-free skip list

implementation [16, 42]. One of the first concurrent binary
search trees was described by Kung [21], and a lock-based
concurrent AVL-tree is described by Bronson et al. [9]. The
first lock-free binary search tree variant is described by Ellen
et al. [12], and another is described by Braginsky and Petrank
[8]. Recently, a dictionary design optimized for wait-free lin-
earizable scan operations, similar to a B+-tree, was proposed
by Basin et al. [5].
A good overview of linearizability and lock-freedom, as

well as concurrent data structures, and other concurrency-
related topics is given by Herlihy and Shavit [17].

7 Conclusion
We described a novel concurrent hash trie design, and ex-
tended it with an auxiliary data structure called a cache. We
showed that the resulting data structure remains lineariz-
able in the presence of the cache, and that it is lock-free.
Furthermore, we proved that the expected running time of
all operations is bound by O (1), and we empirically showed
that cache-tries improve the performance of many previously
available data structures. On typical dataset sizes, lookups
are improved up to 5×, and inserts are improved up to 1.5×
compared to Ctries [34]. Due to a vastly lower number of
pointer hops in a typical operation, skip list lookups are out-
performed by a factor of 15−22×, and skip list insertions by a
factor of 6×. It seems likely that cache-tries outperform most
other tree-based concurrent data structures for the same
reasons. Moreover, unlike hash tables, cache-tries do not
require resizing a large underlying array, and this usually
gives rise to better scalability. In particular, cache-tries out-
perform concurrent hash maps by a factor of 1.1− 2.5× with
uncontended parallel insertions, but exhibit an overhead of
up to 1.8× when insertions are contended.

Based on this, can cache-tries completely replace concur-
rent hash tables?While the operations of both data structures
run in expected O (1) time, we observed that our lookup is
consistently 1.2 − 2.0× slower. The reason for this is that a
cache-trie typically needs two pointer hops to find the key
(as implied by Theorem 4.2), whereas a hash table needs only
one. Also, since cache-tries have about 50% higher memory
footprint compared to concurrent hash tables, their working
set spills out of the cache more frequently, which results in
a higher cache miss rate. While this overhead may be jus-
tified in applications where lookups are not of paramount
importance, a further investigation is necessary to see if the
cache can achieve better locality, e.g. by directly caching two
levels of the cache at once. Another deciding factor is the
availability of an efficient linearizable snapshot operation,
which is not available for concurrent hash tables – it remains
to show the exact snapshot implementation for cache-tries.
We plan to investigate these questions in future work.

147

PPoPP ’18, February 24–28, 2018, Vienna, Austria Aleksandar Prokopec

References
[1] Miguel Areias and Ricardo Rocha. 2014. On the Correctness and

Efficiency of Lock-Free Expandable Tries for Tabled Logic Programs.
In Proceedings of the 16th International Symposium on Practical Aspects
of Declarative Languages - Volume 8324 (PADL 2014). Springer-Verlag
New York, Inc., New York, NY, USA, 168–183. https://doi.org/10.1007/
978-3-319-04132-2_12

[2] Miguel Areias and Ricardo Rocha. 2016. A Lock-Free Hash Trie Design
for Concurrent Tabled Logic Programs. Int. J. Parallel Program. 44, 3
(June 2016), 386–406. https://doi.org/10.1007/s10766-014-0346-1

[3] Phil Bagwell. 2000. Fast And Space Efficient Trie Searches. Technical
Report.

[4] Phil Bagwell. 2001. Ideal Hash Trees. (2001).
[5] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-

Gueta, Eshcar Hillel, Idit Keidar, and Moshe Sulamy. 2017. KiWi:
A Key-Value Map for Scalable Real-Time Analytics. In Proceedings
of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’17). ACM, New York, NY, USA, 357–369.
https://doi.org/10.1145/3018743.3018761

[6] Douglas Baskins. 2000. The Judy Array Implementation.
http://judy.sourceforge.net/. (2000).

[7] Anastasia Braginsky and Erez Petrank. 2011. Locality-conscious
Lock-free Linked Lists. In Proceedings of the 12th International Confer-
ence on Distributed Computing and Networking (ICDCN’11). Springer-
Verlag, Berlin, Heidelberg, 107–118. http://dl.acm.org/citation.cfm?
id=1946143.1946153

[8] Anastasia Braginsky and Erez Petrank. 2012. A Lock-free B+Tree. In
Proceedings of the Twenty-fourth Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA ’12). ACM, New York, NY,
USA, 58–67. https://doi.org/10.1145/2312005.2312016

[9] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun.
2010. A Practical Concurrent Binary Search Tree. SIGPLAN Not. 45, 5
(Jan. 2010), 257–268. https://doi.org/10.1145/1837853.1693488

[10] Cliff Click. 2007. Towards a Scalable Non-Blocking Coding Style.
(2007). http://www.azulsystems.com/events/javaone_2007/2007_
LockFreeHash.pdf

[11] Rene De La Briandais. 1959. File Searching Using Variable Length Keys.
In Papers Presented at the the March 3-5, 1959, Western Joint Computer
Conference (IRE-AIEE-ACM ’59 (Western)). ACM, New York, NY, USA,
295–298. https://doi.org/10.1145/1457838.1457895

[12] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel.
2010. Non-blocking Binary Search Trees. In Proceedings of the 29th
ACM SIGACT-SIGOPS Symposium on Principles of Distributed Comput-
ing (PODC ’10). ACM, New York, NY, USA, 131–140. https://doi.org/
10.1145/1835698.1835736

[13] Edward Fredkin. 1960. Trie Memory. Commun. ACM 3, 9 (Sept. 1960),
490–499. https://doi.org/10.1145/367390.367400

[14] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically
Rigorous Java Performance Evaluation. SIGPLANNot. 42, 10 (Oct. 2007),
57–76. https://doi.org/10.1145/1297105.1297033

[15] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical
Multi-word Compare-and-Swap Operation. In Proceedings of the 16th
International Conference on Distributed Computing (DISC ’02). Springer-
Verlag, London, UK, UK, 265–279. http://dl.acm.org/citation.cfm?id=
645959.676137

[16] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. 2006. A
Provably Correct Scalable Concurrent Skip List. (2006).

[17] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Inc., San Francisco, CA, USA.

[18] P.G. Jensen, K.G. Larsen, and J. Srba. 2017. PTrie: Data Structure for
Compressing and Storing Sets via Prefix Sharing. In Proceedings of
the 14th International Colloquium on Theoretical Aspects of Computing
(ICTAC’17) (LNCS). Springer, 1–18. To appear.

[19] Pramod G. Joisha. 2014. Sticky Tries: Fast Insertions, Fast Lookups,
No Deletions for Large Key Universes. In Proceedings of the 2014 Inter-
national Symposium on Memory Management (ISMM ’14). ACM, New
York, NY, USA, 35–46. https://doi.org/10.1145/2602988.2602998

[20] Charles Knessl and Wojciech Szpankowski. 2000. A Note on the
Asymptotic Behavior of the Heights in b-Tries for b Large. Electr. J.
Comb. 7 (2000). http://www.combinatorics.org/Volume_7/Abstracts/
v7i1r39.html

[21] H. T. Kung and Philip L. Lehman. 1980. Concurrent Manipulation
of Binary Search Trees. ACM Trans. Database Syst. 5, 3 (Sept. 1980),
354–382. https://doi.org/10.1145/320613.320619

[22] Doug Lea. 2014. Doug Lea’s Workstation. (2014). http://g.oswego.edu/
[23] Franklin Mark Liang. 1983. Word Hy-phen-a-tion by Com-pu-ter. Ph.D.

Dissertation. Stanford University, Stanford, CA 94305. Also available
as Stanford University, Department of Computer Science Report No.
STAN-CS-83-977.

[24] Ralph C. Merkle. 1988. A Digital Signature Based on a Conventional
Encryption Function. In A Conference on the Theory and Applications
of Cryptographic Techniques on Advances in Cryptology (CRYPTO ’87).
Springer-Verlag, London, UK, UK, 369–378. http://dl.acm.org/citation.
cfm?id=646752.704751

[25] Maged M. Michael. 2002. High Performance Dynamic Lock-free Hash
Tables and List-based Sets. In Proceedings of the Fourteenth Annual ACM
Symposium on Parallel Algorithms and Architectures (SPAA ’02). ACM,
New York, NY, USA, 73–82. https://doi.org/10.1145/564870.564881

[26] Rotem Oshman and Nir Shavit. 2013. The SkipTrie: Low-depth Con-
current Search Without Rebalancing. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing (PODC ’13). ACM,
New York, NY, USA, 23–32. https://doi.org/10.1145/2484239.2484270

[27] Aleksandar Prokopec. 2014. Data Structures and Algorithms for Data-
Parallel Computing in a Managed Runtime. Ph.D. Dissertation. IC,
Lausanne. https://doi.org/10.5075/epfl-thesis-6264

[28] Aleksandar Prokopec. 2014. ScalaMeter Website. (2014). http:
//scalameter.github.io

[29] Aleksandar Prokopec. 2015. SnapQueue: Lock-free Queue with Con-
stant Time Snapshots. In Proceedings of the 6th ACM SIGPLAN Sym-
posium on Scala (SCALA 2015). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/2774975.2774976

[30] Aleksandar Prokopec. 2016. Pluggable Scheduling for the Reactor
Programming Model. In Proceedings of the 6th International Workshop
on Programming Based on Actors, Agents, and Decentralized Control
(AGERE 2016). ACM, New York, NY, USA, 41–50. https://doi.org/10.
1145/3001886.3001891

[31] Aleksandar Prokopec. 2017. Analysis of Concurrent Lock-Free Hash
Tries with Constant-Time Operations. ArXiv e-prints (Dec. 2017).
arXiv:cs.DS/1712.09636

[32] Aleksandar Prokopec. 2017. Encoding the Building Blocks of Com-
munication. In Proceedings of the 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Program-
ming and Software (Onward! 2017). ACM, New York, NY, USA, 104–118.
https://doi.org/10.1145/3133850.3133865

[33] Aleksandar Prokopec, Phil Bagwell, and Martin Odersky. 2011. Cache-
Aware Lock-Free Concurrent Hash Tries. Technical Report.

[34] Aleksandar Prokopec, Phil Bagwell, and Martin Odersky. 2011. Lock-
Free Resizeable Concurrent Tries. Springer Berlin Heidelberg, Berlin,
Heidelberg, 156–170. https://doi.org/10.1007/978-3-642-36036-7_11

[35] Aleksandar Prokopec, Phil Bagwell, Tiark Rompf, and Martin Odersky.
2011. A Generic Parallel Collection Framework. In Proceedings of
the 17th international conference on Parallel processing - Volume Part
II (Euro-Par’11). Springer-Verlag, Berlin, Heidelberg, 136–147. http:
//dl.acm.org/citation.cfm?id=2033408.2033425

[36] Aleksandar Prokopec, Nathan Grasso Bronson, Phil Bagwell, and Mar-
tin Odersky. 2012. Concurrent Tries with Efficient Non-blocking
Snapshots. (2012), 151–160. https://doi.org/10.1145/2145816.2145836

148

https://doi.org/10.1007/978-3-319-04132-2_12
https://doi.org/10.1007/978-3-319-04132-2_12
https://doi.org/10.1007/s10766-014-0346-1
https://doi.org/10.1145/3018743.3018761
http://dl.acm.org/citation.cfm?id=1946143.1946153
http://dl.acm.org/citation.cfm?id=1946143.1946153
https://doi.org/10.1145/2312005.2312016
https://doi.org/10.1145/1837853.1693488
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/1297105.1297033
http://dl.acm.org/citation.cfm?id=645959.676137
http://dl.acm.org/citation.cfm?id=645959.676137
https://doi.org/10.1145/2602988.2602998
http://www.combinatorics.org/Volume_7/Abstracts/v7i1r39.html
http://www.combinatorics.org/Volume_7/Abstracts/v7i1r39.html
https://doi.org/10.1145/320613.320619
http://g.oswego.edu/
http://dl.acm.org/citation.cfm?id=646752.704751
http://dl.acm.org/citation.cfm?id=646752.704751
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/2484239.2484270
https://doi.org/10.5075/epfl-thesis-6264
http://scalameter.github.io
http://scalameter.github.io
https://doi.org/10.1145/2774975.2774976
https://doi.org/10.1145/3001886.3001891
https://doi.org/10.1145/3001886.3001891
http://arxiv.org/abs/cs.DS/1712.09636
https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1007/978-3-642-36036-7_11
http://dl.acm.org/citation.cfm?id=2033408.2033425
http://dl.acm.org/citation.cfm?id=2033408.2033425
https://doi.org/10.1145/2145816.2145836

Cache-Tries: Tries with Constant-Time Operations PPoPP ’18, February 24–28, 2018, Vienna, Austria

[37] Aleksandar Prokopec, Heather Miller, Philipp Haller, Tobias Schlat-
ter, and Martin Odersky. 2012. FlowPools: A Lock-Free Deterministic
Concurrent Dataflow Abstraction, Proofs. Technical Report.

[38] Aleksandar Prokopec, Heather Miller, Tobias Schlatter, Philipp Haller,
and Martin Odersky. 2012. FlowPools: A Lock-Free Deterministic
Concurrent Dataflow Abstraction. In LCPC. 158–173.

[39] Aleksandar Prokopec and Martin Odersky. 2015. Isolates, Channels,
and Event Streams for Composable Distributed Programming. In 2015
ACM International Symposium on New Ideas, New Paradigms, and Re-
flections on Programming and Software (Onward!) (Onward! 2015). ACM,
New York, NY, USA, 171–182. https://doi.org/10.1145/2814228.2814245

[40] Aleksandar Prokopec and Martin Odersky. 2016. Conc-Trees for Func-
tional and Parallel Programming. Springer International Publishing,
Cham, 254–268. https://doi.org/10.1007/978-3-319-29778-1_16

[41] A. Prokopec, D. Petrashko, and M. Odersky. 2015. Efficient Lock-
Free Work-Stealing Iterators for Data-Parallel Collections. In 2015
23rd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing. 248–252. https://doi.org/10.1109/PDP.2015.
65

[42] William Pugh. 1990. Concurrent Maintenance of Skip Lists. Technical
Report. College Park, MD, USA.

[43] N. Shafiei. 2013. Non-blocking Patricia Tries with Replace Operations.
In 2013 IEEE 33rd International Conference on Distributed Computing
Systems. 216–225. https://doi.org/10.1109/ICDCS.2013.43

[44] Michael J. Steindorfer and Jurgen J. Vinju. 2015. Optimizing Hash-
array Mapped Tries for Fast and Lean Immutable JVM Collections.
SIGPLAN Not. 50, 10 (Oct. 2015), 783–800. https://doi.org/10.1145/
2858965.2814312

[45] Michael J. Steindorfer and Jurgen J. Vinju. 2016. Towards a Software
Product Line of Trie-based Collections. In Proceedings of the 2016
ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences (GPCE 2016). ACM, New York, NY, USA,
168–172. https://doi.org/10.1145/2993236.2993251

149

https://doi.org/10.1145/2814228.2814245
https://doi.org/10.1007/978-3-319-29778-1_16
https://doi.org/10.1109/PDP.2015.65
https://doi.org/10.1109/PDP.2015.65
https://doi.org/10.1109/ICDCS.2013.43
https://doi.org/10.1145/2858965.2814312
https://doi.org/10.1145/2858965.2814312
https://doi.org/10.1145/2993236.2993251

PPoPP ’18, February 24–28, 2018, Vienna, Austria Aleksandar Prokopec

A Artifact appendix
A.1 Abstract
This artifact description explains how to obtain the Scala source
code of the Cache Trie data structure, which is proposed in
the corresponding paper, as well as a set of runnable bench-
marks. The abstract contains instructions on how to run these
benchmarks. The expected result is to reproduce the perfor-
mance measurements from the paper. To run the benchmarks,
a quad-core Intel x86 processor with hyperthreading (or better)
is required. We advise using a Linux operating system with the
Oracle JDK 8 runtime installed (instructions included).

A.2 Description
A.2.1 How delivered

1. Ensure that you have a Linux operating system avail-
able.

2. Ensure that you have the Git version control system
installed. For example, to install Git on Ubuntu:

$ sudo apt install git

For other OSes, see https://git-scm.com.
3. Clone the Reactors.IO [30, 32, 39] repository from

GitHub:
$ git clone \

https :// github.com/reactors -io/reactors.git

The Reactors source code repository will appear in the
subdirectory reactors.

4. (Optional) If installing the Git version control system
was not successful, it is also possible to download the
source code directly from GitHub. At the GitHub page
of the project, look for a green button saying Clone or
download, click on it, and press Download ZIP.

A.2.2 Hardware dependencies
You should have a quad-core (or better) x86 processor with
hyperthreading. We advise using an Intel processor. We ad-
vise having at least 16GB of RAM memory.

A.2.3 Software dependencies
Ensure that you have the Oracle JDK 8 installed. For example,
to install JDK 8 on Ubuntu:

$ sudo add -apt -repository ppa:webupd8team/java

$ sudo apt -get update

$ sudo apt -get install oracle -java8 -installer

Then follow the instructions shown on the screen. We
advise using Ubuntu, since the installation process is very
simple. However if you are using a different OS, see Oracle
Downloads.
You should test if you have the correct JDK version by

running the following:
$ java -version

java version "1.8.0 _111"

Java(TM) SE Runtime Environment (build 1.8.0 _111)

Java HotSpot(TM) 64-Bit Server VM

Above, the Java version must start with 1.8 (the minor
versions are not important).

A.2.4 Data sets
There are no special datasets used in the evaluation. The
workloads are generated automatically, as specified in the
benchmark definitions (explained further below).

A.3 Installation
Enter the directory in which you cloned the Reactors source
code repository (in part A.2.1). Inside that directory, run the
./sbt script, which will start the sbt build tool:

$./sbt

The sbt build tool will lazily download all the dependen-
cies for you. Make sure that you are connected to the Internet,
and you are not behind a proxy or a VPN, and that you are
not using an anti-virus software that blocks specific HTTP
connections.
Once the sbt build tool is done loading (the first time, it

might take a bit longer; subsequently it is fast), it will enter
its own command shell. You will notice this by the fact that
the prompt changes to >:

> _

At this point, you can compile the project. Please use the
following command to compile the project:

> reactors -common -jvm/bench:compile

The sbt tool will download the appropriate version of
the compiler, build the compiler interface, download the
library dependencies, and then compile the project. Once
this is successful, you will be able to run the benchmarks.
You can test this by entering the following command, which
will show level occupancy histograms of the cache trie data
structure:

> reactors -common -jvm/bench:testOnly \

io.reactors.common.concurrent.BirthdaySimulations

A.4 Experiment workflow
The experiment consists of three parts. In the first part, we
test the hypothesis that most of the elements in the cache
trie occupy some two adjacent levels. In the second part, we
compare the memory footprint of the cache trie against the
related data structures. In the third part, we compare the
performance of different cache trie operations against the
related data structures.
In each part, an experiment is run by invoking a specific

command in the SBT shell. Each command runs a specific
benchmark definition. Once the command completes, it will
print information, such as the running time, in the terminal.

150

https://git-scm.com
https://github.com/reactors-io/reactors
https://github.com/reactors-io/reactors
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Cache-Tries: Tries with Constant-Time Operations PPoPP ’18, February 24–28, 2018, Vienna, Austria

A.5 Evaluation and expected result
A.5.1 Level occupancy histograms
In the paper, we claim that the distribution of keys across
levels of the cache trie data structure is such that most of
the keys occupy some two adjacent levels. This property is
formally proved in our technical report [31]. Our claim is
that the expected number of keys in the two most populated
levels is at least 87%. The property is important, since it
allows using an auxiliary table that targets those two levels
and speeds up searches in the cache trie.
To check this in practice, we prepared a command that

iteratively creates cache tries with more and more keys, and
prints the respective level occupancy histogram. The aim is
to show that, regardless of the number of elements, there
are some two levels that contain around 87% or more keys:

> reactors -common -jvm/bench:testOnly \

io.reactors.common.concurrent.BirthdaySimulations

You should see a series of histograms, each for a different
cache trie size. Here is an example histogram for a cache trie
with 800000 elements, in which most of the keys are at levels
20 and 24 (note that level indices increment by 4).

:: size 800000 ::

0: 0 (0%)

4: 0 (0%)

8: 0 (0%)

12: 0 (0%)

16: 8 (0%)

20: 370451 (46%) ******************

24: 390164 (48%) *******************

28: 38769 (4%) *

32: 608 (0%)

The source code of this command can be found under the
following path in the source code:

reactors/common/jvm/src/bench/scala/io/reactors/

common/concurrent/cache -trie -benches.scala

The test that prints out the histogram is defined at the end
of the file in the class called BirthdaySimulations, in the
test case called "per level distribution".

A.5.2 Memory footprint
In Section 5, we showed that the memory footprint of cache
tries is around 10% − 25% percent higher when the auxiliary
table for speeding up searches gets added. The footprint of
a cache trie is around 30% − 50% higher than that of a JDK
concurrent hash map and concurrent skip list, depending on
the number of keys stored.

To start the memory footprint measurements, please run
the following command:

reactors -common -jvm/bench:testOnly \

io.reactors.common.concurrent.CacheTrieFootprintBenches

In the final output, you will see the footprint of different
data structures shown next to the mean. This an example
output that we ran, which tests the memory footprint when
50000 keys are stored:

[info] - cache -trie.size.skiplist measurements:

[info] - at size -> 50000: passed

[info] (mean = 1798.92 kB , ...

[info] - cache -trie.size.ctrie measurements:

[info] - at size -> 50000: passed

[info] (mean = 2705.62 kB , ...

[info] - cache -trie.size.cachetrie measurements:

[info] - at size -> 50000: passed

[info] (mean = 2855.31 kB , ...

[info] - cache -trie.size.chm measurements:

[info] - at size -> 50000: passed

[info] (mean = 2121.54 kB , ...

The benchmark is set up to run for different data structure
sizes, ranging from 100000 to 2000000 keys.
Please note that the memory footprint is usually a very

stable, reproducible value, so this particular experiment is set
up to do only 1 iteration of the warmup, and 4 measurement
iterations.

A.5.3 Operation running time
Finally, in Section 5 we compared running times of cache
tries and the related data structures. The most important
observations were:
• Cache-trie lookups are 10×−33× faster than skip lists.
• Cache-trie lookups are 2 × −3× faster than standard
Ctries when there are 100k − 1M elements.
• Cache-trie lookups are 1.6 × −2.0× slower than con-
current hash map lookups.
• Cache-trie insertions have roughly the same perfor-
mance as concurrent hash map insertions.
• Parallel cache-trie insertions scale better than concur-
rent hash map insertions.

These benchmarks take a bit longer than the memory
footpring measurements. To start the running time measure-
ments, please run the following command:

reactors -common -jvm/bench:testOnly \

io.reactors.common.concurrent.CacheTrieBenches

This will run the following benchmarks:
• cache-trie.apply: Single-threaded lookup, number
of elements 50k to 500k .
• cache-trie.insert: Single-threaded insertion, num-
ber of elements 50k to 500k .
• cache-trie.par.lookup: Parallel lookup, 100k ele-
ments, 1-8 threads.
• cache-trie.par.insert: Parallel insertion, 100k el-
ements, 1-8 threads.

The output will be similar as before, with each benchmark
annotated with its name, and consisting of performance
reports for different data structures, and different number
of keys. For example, the following part of the output refers
to the parallel insertion benchmarks, and starts with the
performance report for cache tries.

[info] Test group: cache -trie.par.insert

[info] - cache -trie.par.insert.cachetrie measurements:

[info] - at pars -> 1: passed

[info] (mean = 10.65 ms ...

151

	Abstract
	1 Introduction
	2 Overview
	3 Design and Implementation
	3.1 Lookup Operation
	3.2 Insert Operation
	3.3 Freezing and Expansion
	3.4 Cache Data Structure
	3.5 Cache Housekeeping
	3.6 Adjusting the Cache Level with Depth Sampling
	3.7 Other Operations

	4 Analysis
	4.1 Running Time
	4.2 Safety, Linearizability and Lock-Freedom

	5 Evaluation
	6 Related Work
	7 Conclusion
	References
	A Artifact appendix
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result

