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Abstract
The data-parallel programming model fits nicely with the existing declarative-style bulk
operations that augment collection libraries in many languages today. Data collection
operations like reduction, filtering or mapping can be executed by a single processor
or many processors at once. However, there are multiple challenges to overcome when
parallelizing collection operations.
First, it is challenging to construct a collection in parallel by multiple processors. Tra-
ditionally, collections are backed by data structures with thread-safe variants of their
update operations. Such data structures are called concurrent data structures. Their
update operations require interprocessor synchronization and are generally slower than
the corresponding single-threaded update operations. Synchronization costs can easily
invalidate performance gains from parallelizing bulk operations such as mapping or filter-
ing. This thesis presents a parallel collection framework with a range of data structures
that reduce the need for interprocessor synchronization, effectively boosting data-parallel
operation performance. The parallel collection framework is implemented in Scala, but
the techniques in this thesis can be applied to other managed runtimes.
Second, most concurrent data structures can only be traversed in the absence of concurrent
modifications. We say that such concurrent data structures are quiescently consistent. The
task of ensuring quiescence falls on the programmer. This thesis presents a novel, lock-free,
scalable concurrent data structure called a Ctrie, which supports a linearizable, lock-free,
constant-time snapshot operation. The Ctrie snapshot operation is used to parallelize
Ctrie operations without the need for quiescence. We show how the linearizable, lock-free,
constant-time snapshot operation can be applied to different concurrent, lock-free tree-like
data structures.
Finally, efficiently assigning parts of the computation to different processors, or scheduling,
is not trivial. Although most computer systems have several identical CPUs, memory
hiearchies, cache-coherence protocols and interference with concurrent processes influence
the effective speed of a CPU. Moreover, some data-parallel operations inherently require
more work for some elements of the collection than others – we say that no data-parallel
operation has a uniform workload in practice. This thesis presents a novel technique
for parallelizing highly irregular computation workloads, called the work-stealing tree
scheduling. We show that the work-stealing tree scheduler outperforms other schedulers
when parallelizing highly irregular workloads, and retains optimal performance when
parallelizing more uniform workloads.
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Concurrent algorithms and data structure operations in this thesis are linearizable
and lock-free. We present pseudocode with detailed correctness proofs for concurrent
data structures and algorithms in this thesis, validating their correctness, identifying
linearization points and showing their lock-freedom.

Key words: parallel programming, data structures, data-parallelism, parallelization,
concatenation, scheduling, atomic snapshots, concurrent data structures, persistent data
structures, work-stealing, linearizability, lock-freedom
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Zusammenfassung
Daten-parallele Programmierung integriert sich gut in die existierenden deklarativen Bulk-
Operationen der Collection-Bibliotheken vieler Sprachen. Collection-Operationen wie
Reduktion, Filterung, oder Transformation können von einem einzigen oder von mehreren
Prozessoren gleichzeitig ausgeführt werden. Bei der Parallelisierung von Collection-
Operationen gibt es jedoch einige Herausforderungen zu meistern.
Erstens ist es schwierig Collections parallel mithilfe mehrerer Prozessoren zu erzeugen.
Traditionellerweise sind Collections implementiert mithilfe von Datenstrukturen, zu deren
Update-Operationen es Varianten gibt, die threadsafe sind. Solche Datenstrukturen
werden nebenläufige Datenstrukturen genannt. Deren Update-Operationen benötigen
Inter-Prozessor-Synchronisierung und sind im Generellen weniger effizient als die korre-
spondierenden sequentiellen Update-Operationen. Die Synchronisierungskosten können
etwaige Leistungsgewinne der Parallelisierung von Bulk-Operationen, wie Transformie-
ren oder Filtern, einfach zunichte machen. Diese Dissertation zeigt ein Framework für
parallele Collections mit einer Auswahl an Datenstrukturen, die benötigte Inter-Prozessor-
Synchronisierung minimieren, und so die Leistung daten-paralleler Operationen effektiv
steigern. Das Framework für parallele Collections ist in Scala implementiert, die Techniken
in dieser Dissertation können jedoch auf andere Laufzeitumgebungen angewandt werden.
Zweitens kann über die meisten nebenläufigen Datenstrukturen nur in Abwesenheit neben-
läufiger Änderungen iteriert werden. Wir nennen solche nebenläufigen Datenstrukturen
leerlauf-konsistent. Die Aufgabe für Leerlauf zu Sorgen fällt auf den Programmierer. Diese
Dissertation zeigt eine neuartige, lock-free Snapshot-Operation mit konstanter Zeitkom-
plexität. Die Ctrie Snapshot-Operation wird zur Parallelisierung von Ctrie-Operationen
verwendet, ohne Leerlauf zu benötigen. Wir zeigen, wie die linearisierbare, lock-free
Snapshop-Operation mit konstanter Zeitkomplexität auf verschiedene nebenläufige, lock-
free baumartige Datenstrukturen angewandt werden kann.
Schliesslich ist die Zuweisung von Teilen der Berechnung zu verschiedenen Prozessoren,
oder Scheduling, nicht trivial. Obwohl die meisten Computersysteme mehrere identische
CPUs haben, beeinflussen Speicherhierarchien, Cache-Koherenz-Protokolle, und Inter-
ferenz nebenläufiger Prozesse die effektive Leistung einer CPU. Ausserdem benötigen
einige daten-parallele Operationen inherent mehr Aufwand für bestimmte Elemente einer
Collection – wir sagen, dass keine daten-parallele Operation in der Praxis eine gleichver-
teilte Arbeitslast hat. Diese Dissertation zeigt eine neuartige Methode zur Parallelisierung
hochgradig ungleichverteilter Arbeitslasten, genannt Work-Stealing Tree Scheduling. Wir
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zeigen, dass der Work-Stealing Tree Scheduler andere Scheduler bei der Parallelisierung
hochgradig ungleichverteilter Arbeitslasten leistungsmässig übertrifft, und seine optimale
Leistung bei der Parallelisierung gleichverteilterer Arbeitslasten beibehält.
Die nebenläufigen Algorithmen und Datenstrukturen-Operationen in dieser Dissertation
sind linearisierbar und lock-free. Wir zeigen Pseudocode mit detailierten Korrektheits-
Beweisen für die nebenläufigen Datenstrukturen und Algorithmen in dieser Dissertation,
um deren Korrektheit zu bestätigen, Linearisierungspunkte zu identifizieren, und deren
Eigenschaft lock-free zu sein zu zeigen.

Stichwörter: Daten-parallele Programmierung, Datenstrukturen, Parallelisierung, Sche-
duling, Snapshots, nebenläufige Datenstrukturen, Work-Stealing, Linearisierbarkeit, Lock-
Freiheit
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1 Introduction

It is difficult to come up with an original introduction for a thesis on parallel computing
in an era when the same story has been told over and over so many times. So many
paper abstracts, technical reports, doctoral thesis and funding requests begin in the same
way – the constant improvements in processor technology have reached a point where the
processor clock speed, or the running frequency, can no longer be improved. This once
driving factor of the computational throughput of a processor is now kept at a steady rate
of around 3.5 GHz. Instead of increasing the processor clock speed, major commercial
processor vendors like Intel and AMD have shifted their focus towards providing multiple
computational units as part of the same processor, and named the new family of central
processing units multicore processors. These computer systems, much like their older
multiprocessor cousins, rely on the concept of shared-memory in which every processor
has the same read and write access to the part of the computer called the main memory.

Despite this clichéd story that every parallel computing researcher, and since recently the
entire developer community, heard so many times, the shift in the processor technology has
resulted in a plethora of novel and original research. Recent architectural developments
spawned incredibly fruitful areas of research and helped start entire new fields of computer
science, as well as revived some older research from the end of the 20th century that had
previously quieted down. The main underlying reason for this is that, while developing a
program that runs correctly and efficiently on a single processor computer is challenging,
creating a program that runs correctly on many processors is magnitudes of times
harder with the programming technology that is currently available. The source of
this difficulty lies mostly in the complexity of possible interactions between different
computations executed by different processors, or processor cores. These interactions
manifest themselves in the need for different processors to communicate, and this
communication is done using the above-mentioned main memory shared between different
processors.

There are two main difficulties in programming a multiprocessor system in which pro-
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cessors communicate using shared-memory. The first is achieving the correctness of an
algorithm or a program. Parallel programs that communicate using shared-memory
usually produce outputs that are non-deterministic. They may also contain subtle,
hard-to-reproduce errors due to this non-determinism, which occasionally cause unex-
pected program outputs or even completely corrupt the program state. Controlling
non-determinism and concurrency errors does not rely only on the programmer’s correct
understanding of the computational problem, the conceptual solution for it and the
implementation of that solution, but also on the specifics of the underlying hardware
and memory model.

The second difficulty is in achieving consistent performance across different computer
architectures. The specific features of the underlying hardware, operating systems
and compilers may cause a program with optimal performance on one machine to run
inefficiently on another. One could remark that both these difficulties are present in
classical single-threaded programming. Still, they seem to affect us on a much larger
scale in parallel programming.

To cope with these difficulties, a wide range of programming models, languages and
techniques have been proposed through the years. While some of these models rise
briefly only to be replaced with new ideas, several seem to have caught on for now and
are becoming more widely used by software developers. There is no single best among
these programming models, as each approach seems to fit better for a different class of
programs. In this thesis we focus on the data-parallel programming model.

Modern software relies on high-level data structures. A data structure is a set of rules
on how to organize data units in memory in a way such that specific operations on that
data can be executed more efficiently. Different types of data structures support different
operations. Data collections (or data containers) are software modules that implement
various data structures. Collections are some of the most basic building blocks of any
program, and any serious general purpose language comes with a good collections library.
Languages like Scala, Haskell, C#, and Java support bulk operations on collections, which
execute a certain computation on every element of the collection independently, and
compute a final result from all the computations. Bulk operations on collections are
highly parametric and can be adapted and composed into different programs.

This high degree of genericity does not come without a cost. In many high-level languages
bulk operations on collections can be quite far from optimal, hand-written code – we
explore the reasons for this throughout this thesis. In the past this suboptimality was
disregarded with the hope that a newer processor with a higher clock will solve all the
performance problems. Today, the case for optimizing collection bulk operations feels
more important.

Another venue of achieving more efficient collection operations is the data-parallel
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computing model, which exploits the presence of these bulk operations. Bulk collection
operations are an ideal fit for the data-parallel programming model since both execute
operations on elements in parallel.

In this thesis we describe how to implement a generic data-parallel computing framework
running on a managed runtime inside a host language – we cover a wide range of single-
threaded, concurrent thread-safe and reactive data structures to show how data-parallel
operations can be executed on their data elements. In doing so, we introduce the necessary
abstractions required for the generic data-parallel framework design, the implementations
of those abstractions in the form of proper algorithms and data structures, and compile-
and runtime techniques required to achieve optimal performance. The specific managed
runtime we focus on is the JVM, and the host language is Scala. We note that the
algorithms and data structures described in this thesis are applicable to other managed
runtimes. For programming languages that compile directly into native code most of the
data structures can be reused directly with minor modifications.

In this thesis we address the following problems:

• What are the minimal abstractions necessary to generically implement a wide range
of data-parallel operations and collections, and how to implement these abstractions
efficiently?

• What are good data structures for supporting data-parallel computing?

• How can the data-parallel programming model be applied to data structures that
allow concurrent modifications?

• How can the data-parallel programming runtime system efficiently assign work to
different processors?

1.1 The Data Parallel Programming Model

The driving assumption behind the data-parallel programming model is that there are
many individual data elements that comprise a certain data set, and a computation needs
to be executed for each of those elements independently. In this programming model the
parallel computation is declared by specifying the data set and the parallel operation. In
the following example the data set is the range of numbers from 0 until 1000 and the
parallel operation is a foreach that increments some array entry by 1:

(0 until 1000).par.foreach(i => array(i) += 1)

A nested data-parallel programming model allows nesting data-parallel operations arbi-
trarily – another foreach invocation can occur in the closure passed to the foreach

3



Chapter 1. Introduction

invocation above. The data-parallel programming model implementation in this thesis
allows nested data parallelism.

Generic data-parallelism refers to the ability of the data-parallel framework to be used for
different data structures, data element types and user-specified operators. In the example
above we chose the Scala Range collection to represent our array indices, but it could
really have been any other collection. In fact, instead of indices this collection could have
contained String keys in which case the lambda passed to the foreach method (i.e. the
operator) could have accessed a map of strings and integers to increase a specific value.
The same foreach operation should apply to any of these collections and data-types.
Many modern data-parallel frameworks, like Intel TBB, STAPL, Java 8 Streams or
PLinq, are generic on several levels. However, there are many data-parallel frameworks
that are not very generic. For example, the basic MPI implementation has a limited
predefined set of parallel operators and data types for its reduce operation, and some
GPU-targeted data-parallel frameworks like C++ AMP are very limited at handling
arbitrary data structures. The framework in this thesis is fully generic in terms of data
structures it supports, data element types in those data structures and user-defined
operators for different parallel operations.

1.2 Desired Algorithm Properties

When it comes to algorithm properties, a property usually implicitly agreed upon is their
correctness – given a set of inputs, the algorithms should produce outputs according to
some specification. For concurrent algorithms, the outputs also depend on the possible
interactions between concurrent processes, in addition to the inputs. In this thesis we
always describe what it means for an algorithm or an abstraction to be correct and strive
to state the specification as precisely as possible.

A standard methodology to assess the quality of the algorithms is by showing their
algorithmic complexity. The running time, memory or energy requirements for a given
size of the problem are expressed in terms of the big O notation. We will state the
running times of most algorithms in terms of the big O notation.

Concurrent algorithms are special in that they involve multiple parallel computations.
Their efficiency is dictated not by how well a particular parallel computation works,
but how efficient they are in unison, in terms of memory consumption, running time or
something else. This is known as horizontal scalability. There is no established theoretical
model for horizontal scalability. This is mainly due to the fact that it depends on a large
number of factors, many of which are related to the properties of the underlying memory
model, processor type, and, generally, the computer architecture characteristics such as
the processor-memory throughput or the cache hierarchy. We mostly rely on benchmarks
to evaluate horizontal scalability.
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There are two additional important properties that we will require from the concurrent
algorithms in this thesis. The first is linearizability and the second is lock-freedom.

1.2.1 Linearizability

Linearizability is an important property of operations that may be executed concurrently
[Herlihy and Wing(1990)]. An operation executed by some processor is linearizable if
the rest of the system observes the corresponding system state change as if it occured
instantaneously at a single point in time after the operation started and before it finished.
This property ensures that all the linearizable operations in the program have a mutual
order observed in the same way by the entire system.

While concurrent operations may generally have weaker properties, linearizability is
particularly useful to have, since it makes reasoning about the programs easier. Lineariz-
ability can be proven easily if we can identify a single instruction or sub-operation which
changes the data structure state and is known to be itself linearizable. In our case, we
will identify CAS instructions as linearization points.

1.2.2 Non-Blocking Algorithms and Lock-Freedom

In the context of this thesis, lock-freedom [Herlihy and Shavit(2008)] is another important
property. An operation op executed by some processor P is lock-free if and only if during
an invocation of that operation op some (potentially different) processor Q completes
some (potentially different) invocation of op after a finite number of steps. Taking
linearizability into account, completing an operation means reaching its linearization
point. This property guarantees system-wide progress, as at least one thread must always
complete its operations. Lock-free algorithms are immune to failures and preemptions.
Failures inside the same runtime do not occur frequently, and when they happen they
usually crash the entire runtime, rather than a specific thread. On the other hand,
preemption of threads holding locks can easily compromise performance.

More powerful properties of concurrent algorithms exist, such as wait-freedom that
guarantees that every operation executed by every processor completes in a finite num-
ber of execution steps. We are not interested in wait-freedom or other termination
properties in the context of this thesis – lock-freedom seems to be an adequate guar-
antee in practice, and wait-freedom comes with a much higher price when used with
primitives like CAS, requiring O(P ) space for P concurrently executing computations
[Fich et al.(2004)Fich, Hendler, and Shavit].
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1.3 Implications of Using a Managed Runtime

We rely on the term managed code to refer to code that requires a special supporting
software to run as a program. In the same note, we refer to this supporting software
as a managed runtime. This thesis studies efficient data structures and algorithms for
data-parallel computing in a managed runtime, so understanding the properties of a
managed runtime is paramount to designing good algorithms. The assumptions we make
in this thesis are subject to these properties.

We will see that a managed runtime offers infrastructure that is an underlying building
block for many algorithms in this thesis. However, while a managed runtime is a blessing
for concurrent algorithms in many ways, it imposes some restrictions and limits the
techniques for designing algorithms.

1.3.1 Synchronization Primitives

Most modern runtimes are designed to be cross-platform. The same program code should
run in the same way on different computer architectures, processor types, operating
systems and even versions of the managed runtime – we say that a combination of these is
a specific platform. The consequences of this are twofold. First, runtimes aim to provide
a standardized set of programming primitives and work in exactly the same way on any
underlying platform. Second, because of this standardization the set of programming
primitives and their capabilities are at least as limited as on any of these platforms. The
former makes a programmer’s life easier as the application can be developed only on one
platform, while the second makes the programming task more restrictive and limited.

In the context of concurrent lock-free algorithms, primitives that allow different processors
to communicate to each other and agree on specific values in the program are called
synchronization primitives. In this section we will overview the standardized set of syn-
chronization primitives for the JVM platform – we will rely on them throughout the thesis.
A detailed overview of all the concurrency primitives provided by the JDK is presented
by Goetz et al. [Goetz et al.(2006)Goetz, Bloch, Bowbeer, Lea, Holmes, and Peierls].

On the JVM different parallel computations are not assigned directly to different proces-
sors, but multiplexed through a construct called a thread. Threads are represented as
special kinds of objects that can be created programatically and started with the start
method. Once a thread is started, it will eventually be executed by some processor.
The JVM delegates this multiplexing process to the underlying operating system. The
thread executes its run method when it starts. At any point, the operating system may
temporarily cease the execution of that thread and continue the execution later, possibly
on another processor. We call this preemption. A thread may wait for the completion
of another thread by calling its join method. A thread may call the sleep method
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to postpone execution for approximately the specified time. An important limitation
is that it is not possible to set the affinity of some thread – the JVM does not allow
choosing the processor for the thread, similar how it does not allow specifying which
region of memory is allocated when a certain processor allocates memory. Removing
these limitations would allow designing more efficient algorithms on, for example, NUMA
systems.

Different threads do not see memory writes by other threads immediately after they
occur. This limitation allows the JVM runtime to optimize programs and execute them
more efficiently. All memory writes executed by a thread that has stopped are visible to
the threads that waited for its completion by invoking its join method.

To allow different threads to communicate and exchange data, the JVM defines the
synchronized block to protect critical sections of code. A thread that calls synchronized
on some object o has a guarantee that it is the only thread executing the critical section
for that object o. In other words, invocations of synchronized on the same object are
serialized. Other threads calling synchronized on o have to wait until there is no other
thread executing synchornized on o. Additionally, all the writes by other threads in the
previous corresponding synchronized block are visible to any thread entering the block.

The synchronized blocks also allows threads to notify each other that a certain condition
has been fulfilled. This is done with the wait and notify pair of methods. When a
thread calls wait on an object, it goes to a dormant state until another thread calls
notify. This allows threads to check for conditions without spending processor time
to continuously poll if some condition is fulfilled – for example, it allows implementing
thread pools.

The JVM defines volatile variables the writes to which are immediately visible to
all other threads. In Java these variables are defined with the volatile keyword
before the declaration, and in Scala with the @volatile annotation. When we present
pseudocode in this thesis, we will denote all volatile variables with the keyword atomic.
This is not a standard Scala keyword, but we find that it makes the code easier to
understand. Whenever we read a volatile variable x, we will use the notation READ(x)
in the pseudocode, to make it explicit that this read is atomic, i.e. it can represent a
linearization point. When writing the value v to the volatile variable, we will use the
notation WRITE(x, v).

A special compare-and-set or CAS instruction atomically checks if the target memory
location is equal to the specified expected value and, if it is, writes the new value, returning
true. Otherwise, it returns false. It is basically equivalent to the corresponding
synchronized block, but more efficient on most computer architectures.

A conceptually equally expressive, but in practice more powerful pair of instructions load-
linked/store-conditional LL/SC is not available in mainstream computer architectures.

7



Chapter 1. Introduction

Even though this instruction pair would simplify many algorithms in this thesis, we
cannot use it on most managed runtimes. LL/SC can be simulated with CAS instructions,
but this is prohibitively expensive.

We also assume that the managed runtime does not allow access to hardware counters
or times with submicrosecond precision. Access to these facilities can help estimate
how much computation steps or time a certain computation takes. Similarly, the JVM
and most other managed runtimes do not allow defining custom interrupts that can
suspend the main execution of a thread and have the thread run custom interrupt code.
These fundamental limitations restrict us from improving the work-stealing scheduler in
Chapter 5 further.

1.3.2 Managed Memory and Garbage Collection

A defining feature of most managed runtimes is automatic memory management. Au-
tomatic memory management allows programmers to dynamically allocate regions of
memory for their programs from a special part of memory called a heap. Most languages
today agree on the convention to use the new keyword when dynamically allocating
objects. What makes automatic memory management special is that the new invocation
that produced an object does not need to be paired with a corresponding invocation that
frees this memory region. Regions of allocated memory that are no longer used are freed
automatically – to do this, heap object reachability analysis is done at program runtime
and unreachable allocated memory regions are returned to the memory allocator. This
mechanism is called garbage collection [Jones and Lins(1996)]. While garbage collection
results in a non-negligible performance impact, particularly for concurrent and parallel
programs, it simplifies many algorithms and applications.

Algorithms in this thesis rely on the presence of accurate automatic memory management.
In all code and pseudocode in this thesis objects and data structure nodes that are
dynamically allocated on the heap with the new keyword are never explicitly freed. In
some cases this code can be mended for platforms without automatic memory management
by adding a corresponding delete statement. In particular, this is true for most of the
code in Chapters 2 and 3.

There are some less obvious and more fundamental ways that algorithms and data
structures in this thesis depend on a managed runtime. Lock-free algorithms and
data structures in this thesis rely on the above-mentioned CAS instruction. This
synchronization primitive can atomically change some location in memory. If this
location represents a pointer p to some other object a (i.e. allocated region) in memory,
then the CAS instruction can succeed in two scenarios. In the first scenario, the allocated
region a at p is never deallocated, thread T1 attempts a CAS on p with the expected value
a and succeeds. In the second scenario, some other thread T2 changes p to some other
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value b, deallocates object at address a, then allocates the address a again, and writes a
to p – at this point the original thread T1 attempts the same CAS and succeeds. There is
fundamentally no way for the thread T1 to tell these two scenarios apart. This is known
as the ABA problem [Herlihy and Shavit(2008)] in concurrent lock-free computing, and
it impacts the correctness of a lock-free algorithm.

The benefit of accurate automatic garbage collection is the guarantee that the object at
address a above cannot be deallocated as long as some thread is about to call CAS with
a as the expected value – if it were deallocated, then no thread would have a pointer with
the address a, hence no stale CAS could be attempted with address a as the expected
value. As a result, the second scenario described above can never happen – accurate
automatic memory management helps ensure the monotonicity of CAS writes to memory
locations that contain address pointers.

Modifying lock-free algorithms for unmanaged runtimes without accurate garbage collec-
tion remains a challenging task. In some cases, such as the lock-free work-stealing tree
scheduler in Chapter 5, there is a point in the algorithm when it is known that there
some or all nodes may be deallocated. In other cases, such as lock-free data structures in
Chapter 4 there is no such guarantee. Michael studied approaches like hazard pointers
[Michael(2004)] to solve these issues, and pointer tagging is helpful in specific cases, as
shown by Harris [Harris(2001)]. Still, this remains an open field of study.

1.3.3 Pointer Value Restrictions

Most managed runtimes do not allow arbitrary pointer arithmetic or treating memory
addresses as representable values – memory addresses are treated as abstract data types
created by the keyword new and can be used to retrieve fields of object at those addresses
according to their type. There are several reasons for this. First, if programmers are
allowed to form arbitrary addresses, they can corrupt memory in arbitrary ways and
compromise the security of programs. Second, modern garbage collectors do not just
free memory regions, but are allowed to move objects around in the interest of better
performance – the runtime value of the same pointer in a program may change without
the program knowing about it. Storing the addresses in ways not detectable to a garbage
collector (e.g. in a file) means that the programmers could reference a memory region
that has been moved somewhere else.

The algorithms in this thesis will thus be disallowed from doing any kind of pointer
arithmetic, such as pointer tagging. Pointer tagging is particularly useful when atomic
changes depend on the states of several parts of the data structure, but we will restrict
ourselves to a more narrow range of concurrent algorithm techniques.

There are exceptions like the D programming language, or the Unsafe package in Java
and the unsafe keyword in C#, that allow using arbitrary pointer values and some form
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of pointer arithmetic, but their use is limited. We assume that pointer values can only
be formed by the new keyword and can only be used to dereference objects. We call such
pointers references, but use the two terms interchangeably.

1.3.4 Runtime Erasure

Managed runtimes like the JVM do directly not allow type polymorphism, which is
typically useful when developing frameworks that deal with data. For example, Java and
Scala use type erasure to compile a polymorphic class such as class ArrayBuffer[T].
After type-checking, the type parameter T is simply removed and all its occurrences
are replaced with the Object type. While this is an extremely elegant solution, its
downside is that on many runtimes it implies creating objects when dealing with
primitives. This is the case with Scala and the JVM, so we rely on compile-time
techniques like Scala type-specialization [Dragos and Odersky(2009)] and Scala Macros
[Burmako and Odersky(2012)] to generate more efficient collections versions for primitive
types like integers.

1.3.5 JIT Compilation

Scala code is compiled into Java bytecode, which in turn is compiled into platform-specific
machine code by the just-in-time compiler. This JIT compilation occurs after the program
already runs. To avoid compiling the entire program and slowing execution too much,
this is done adaptively in steps. As a result, it takes a certain amount of warmup time
until the program is properly compiled and optimized. When measuring running time on
the JVM and evaluating algorithm efficiency, we need to account for this warmup time
[Georges et al.(2007)Georges, Buytaert, and Eeckhout].

1.4 Terminology

Before we begin studying data-parallelism, we need to agree on terminology. In this
section we present of overview of terms and names used throughout this thesis.

We mentioned multicore processors at the very beginning and hinted that they are in
principle different from multiprocessors. From a perspective of a data-parallel framework
in this thesis, these two abstractions really mean the same thing – a part of the computer
system that can perform arbitrary computation on its own. This is why we call any
separate computational unit a processor.

We have already defined a runtime as computer software that allows a specific class of
programs to run. The homonym runtime refers to the time during which a program
executes along with its entire state. We will usually refer to the latter definition of the
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term runtime.

We have already defined variables that contain memory addresses as pointers, and their
restricted form as references. We will use these terms interchangeably, as the distinction
is usually not very important. Note that references are not exactly the C++ language
references, but restricted pointers in a broader sense.

We will often use the term abstraction to refer to some isolated program state with clearly
defined operations that access and possibly change that state. For example, a stack
is an abstraction – it defines a string of elements along with a pair of operations push
and pop that extend this string by a single element and remove the last element in the
string, respectively. We will call a concrete program that allocates memory for this state
and manipulates it with a set of program subroutines an abstraction implementation.
A stack may be implemented with an array or a linked list – an abstraction can have
many implementations. A data structure is a specific class of allowed arrangements of
memory regions and contents of those regions, along with the operations to access them.
Throughout the thesis we often use these three terms interchangeably, but we make sure
to use the correct term to disambiguate when necessary.

A basic abstraction in this thesis is a collection. A collection usually implies the element
traversal operation. In Scala a collection is represented by the Traversable type, while
in Java it is the Iterable type. There are many more specific collections. A pool implies
the existence of an add operation – upon invoking it with some element x, a subsequent
traversal should reflect that x was added. A set also allows querying if a specific element
is a part of it, and removing the element if so. A map allows adding pairs of keys and
values, and later retrieving values associated with specific keys. A sequence is a collection
that defines a specific integral index for each element such that indices form a contiguous
range from 0 to n − 1, where n is the number of elements. We refer to the operation
that retrieves an element associated with an index as indexing. A priority queue is a
pool that allows retrieving the previously added element that is the smallest according
to some total ordering. There are other collection abstractions, but we will mostly be
focusing on these.

Mutable data structures support operations that can change their state after their
construction. These operations are called destructive operations or modification operations.
A special kind of mutable data structures are called concurrent – their modification
operations can be safely invoked by several processors concurrently without the risk of
corrupting the state of the data structure.

Immutable data structures are never modified in memory after they are constructed –
after the data structure is initially layed out in memory, neither this layout, nor its
contents are changed. Functional data structures are data structures whose operations
always return the same values for the same inputs [Okasaki(1998)] – note that their
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memory contents can be modified, but programs cannot observe this. We call both data
structure classes persistent data structures. Instead of modifying it, we use an immutable
data structure to produce a new different version with the modification.

Immutable data structures can be used both ephemerally and persistently. In the
ephemeral use, whenever a persistent data structure is used to produce a new version, the
old version is discarded and never used by the program again. In the persistent use all the
old versions are kept, and can be repetitively used in operations. Ephemeral and persistent
use of the same persistent data structure may result in very different asymptotic running
times – usually the distinction manifests itself as a difference in amortized running time
[Okasaki(1998)]. Mutable data structures are always used ephemerally.

Part of this thesis focuses on combining data structures – efficiently converting many
data structures produced by different processors into a single data structure containing
the union of their elements. Depending on the data structure in question, we will call
this process differently. Concatentation is an operation that given two input sequences
produces a third sequence composed of the elements in the first input sequence and the
elements of the second input sequence with their indices shifted. In essence, concatenation
works on sequences and appends one sequence at the end of another. Merge is an operation
that given two pools, sets, maps or priority queues returns a new collection composed of
the elements of both input collections. Merging is more closely related to the set union
operation than concatenation, as it does not assume that elements are ordered according
to some indices as they are in a sequence.

1.5 Intended Audience

The hope is that this thesis will be useful to practitioners seeking to gain knowledge
about designing a data-parallel programming module and augmenting their language
with data-parallel collection operations. This thesis is, first and foremost, intended
as a practical manual on how to implement the proper abstractions, corresponding
data structures and scheduling algorithms for efficient data-parallel computations on
multiprocessor architectures. We strived to produce a useful blueprint for software
engineers and framework developers.

This is not to say that this thesis brings merely practical insight – the thesis also
improves the state-of-the-art in concurrent and parallel computing. Researchers in the
field of parallel computing should find the contributions on the subject of persistent and
concurrent data structures, scheduling algorithms and data parallelism very valuable. We
hope that the ideas and implementations, analyses and proofs, as well as some important
fundamental discoveries in this thesis will serve as a useful foundation for driving future
research.
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1.6 Preliminaries

The code examples in this thesis are written in Scala. In Chapters 4 and 5 we frequently
use pseudocode when presenting lock-free concurrent algorithms. This decision is made
to simplify the understanding of these algorithms and to clearly highlight their important
components, such as the linearization points. Nevertheless, reading the thesis requires
some knowledge of Scala, but the differences with most other mainstream languages are
only syntactic. In fact, there are many similarities between Scala and other languages,
so readers with different backgrounds should find the code understandable.

In Scala, variables are declared with the keyword var much like in JavaScript or C#, and
their type is inferred from the initialization expression. Methods are defined with the
keyword def like in Python or Ruby, and type ascriptions come after a : sign. First-class
functions are written as an argument list followed by their body after the => arrow,
similar to Java 8 lambdas. Like the final modifier in Java, keyword val denotes fields
and local variables that cannot be reassigned. The keyword trait denotes an interface,
but can also have concrete members – in fact, implements is called with in Scala. The
keyword object denotes a placeholder for static methods belonging to some type.
Generic types are enclosed in [] brackets, similar to the <> notation in other languages.
The type Unit is the analogue of the void type in C or Java. Statements in the body of
a class or trait are considered parts of its primary constructor. Finally, suffixing an
object with an expression list in parenthesis syntactically rewrites to calling its apply
method – this is similar to operator() overloading in C++. After this brief overview
of Scala, we feel that readers with a good Java, Scala or C# background will have no
problem reading this thesis.

Some basic understanding of concurrent programming and multithreading is also welcome.
We feel that a basic operating systems course or knowledge about concurrency in Java
should be sufficient to understand the algorithms in this thesis. For readers seeking
more insight into these topics, we strongly recommend the books Art of Multiprocessor
Programming by Herlihy and Shavit [Herlihy and Shavit(2008)], and Java Concurrency
in Practice [Goetz et al.(2006)Goetz, Bloch, Bowbeer, Lea, Holmes, and Peierls].

1.7 Our Contributions

This thesis studies how to efficiently implement a nested data-parallel programming
model for managed runtimes running on top of shared-memory multiprocessor systems
in a generic way for a broad range of general-purpose data structures and data-parallel
operations. The contributions brought forth in this thesis are the following:

• Generic parallel collection framework – a systematic data-parallel collections frame-
work design, along with an efficient implementation for modern multiprocessors,
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described in Chapter 2. The generic data-parallel collection framework allows
defining new collections and operations orthogonally, and is thus extensible with
custom operations. We describe a series of data structures especially designed for
data-parallel computations accompanied by their implementations.

• Conc-trees – efficient sequence implementations such as conc-lists, conc-ropes,
conqueues and various Conc-tree buffers in Chapter 3. We show how Conc-trees
can support efficient O(1) deque operations, O(logn) concatenation and traversal
in optimal time. We analyze the running time of their operations and provide their
implementations.

• Flow pools – an abstraction for deterministic reactive data-parallelism, and an effi-
cient lock-free concurrent queue implementation used to implement this abstraction
described in Chapter 4.

• Ctries – a lock-free concurrent map implementation and a novel approach to
executing linearizable, lock-free snapshots on concurrent data structures proposed
in Chapter 4. We use the snapshots to provide safe data-parallel operations on
concurrent data structures. A novel insight in this chapter is that the use of laziness
with lock-free snapshots allows copying to be more easily parallelized.

• Work-stealing tree scheduling – the work-stealing tree data structure and the
work-stealing tree scheduler, a novel lock-free scheduling algorithm for data-parallel
computations that is efficient for both fine-grained uniform and severely irregular
data-parallel workloads described in Chapter 5.

• We evaluate the algorithms and data structures presented in this thesis experimen-
tally in Chapter 6.

• We present correctness proofs for several data structures from this thesis in the
appendices. We feel that these proofs will be insightful both to researchers and
practitioners. In particular, both groups of readers may eventually decide to
implement their own lock-free data structures – reasoning about their correctness is
much more challenging than reasoning about single-threaded data structures. It is
therefore recommended to use our proofs as templates for constructing your own.

In the next chapter, we start by introducing the design of the generic parallel collection
framework, which serves as a foundation for the remainder of this thesis.
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2 Generic Data Parallelism

Data-parallel operations can be implemented for a wide range of different data structures
and operations – since the Scala standard library collections framework [Odersky(2009)]
consists of dozens of bulk operations, it would be very hard to write and maintain a
framework that reimplements those operations for every data structure. In this chapter
we study a generic approach to implementing data-parallel collections in a managed
runtime. Here, generic means that data-parallel operations can be implemented only
once and then used for a wide range of data structures granted that they meet certain
requirements. As we will see, this greatly simplifies the implementation and maintenance
of a data-parallel framework.

2.1 Generic Data Parallelism

Data elements might be stored inside arrays, binary search trees or hash-tables – they
should all support the same data-parallel operations. Data-parallel operations should
also be generic in the type of elements contained in the data structure. If a client requests
to find the largest element of a collection, the same operation should work with string,
number or file handle elements. Finally, most data-parallel operations are parametrized
by the client at a particular invocation site. In the example with the largest element, the
operation is parametrized by the function that compares string lengths, two numbers

data structure

element type

operation parameters

Figure 2.1: Data-Parallel Operation Genericity
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or the space consumption of a file. We illustrate these relationships as three orthogonal
axes in Figure 2.1.

We rely on several assumptions about data structures in this chapter. While these
assumptions might seem natural, they are essential for the parallelization approach we
propose. In the later chapters we will drop some of these constraints on specific data
structures and show several different approaches to data-parallelism.

First of all, in this chapter we assume that data-parallel operations execute in a bulk-
synchronous manner. This means that the data-parallel operation caller blocks execution,
the data-parallel operation then starts and completes, and then the caller resumes
execution. Although this constraint can easily be dropped by applying Futures from
Section 4.1.1 to data-parallel operations in this chapter, it has a nice consequence that the
caller cannot modify the data structure while the data-parallel operation is in progress.

Second, we assume element presence – elements we want to execute the operation on are
already present in the data structure before the operation starts. Some data structures
are designed for streaming and are supply-driven, so their elements can be become
available as they arrive. We do not consider them in this chapter.

Finally, we assume quiescence during the execution of a data-parallel operation lifetime.
This means that the data structure is not modified during the entire execution of the
data-parallel operation. These modifications include adding new elements to the data
structure, and removing and modifying existing elements. Note that quiescence implies
element presence, but the presence of elements when the operation starts does not imply
quiescence – the distinction will be crucial in Section 4.2 when we apply data-parallelism
to concurrent data structures.

2.2 Data Parallel Operation Example

In this section we show an example of several concrete data-parallel operations along
with their implementation. We start with a simple operation reduce that applies a user-
specified binary associative operator op to collapse all the elements of the collection into
a single value. The sequential implementation of the reduce method has the following
signature and implementation in the Scala standard collection library:

def reduce[U >: T](op: (U, U) => U): U = {
val it = iterator
var sum = it.next()
while (it.hasNext) sum = op(sum, it.next())
sum

}

This implementation is generic across all the axes mentioned in the previous section –
the creation of the iterator makes it data-structure-agnostic, the type of the elements
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in the data structure is represented with an abstract type T and the specific operator op
is specified at the callsite – op could be doing summation, concatenation or returning
the bigger of the two elements according to some ordering. In fact, given that op is a
pure function, i.e. does not have any side-effects, we can even execute reduce in parallel.
Lets assume that we can call a method task that takes a block of code and returns a
Task object that can execute that block of code asynchronously. Any Task object can be
executed asynchronously by calling fork – upon calling fork another processor executes
the task’s block of code and stores the value of that block into the task object. The caller
can block and wait for the result produced by the asynchronous Task computation by
calling its join method.

def parReduce[U >: T](op: (U, U) => U): U = {
val subiterators = split(iterator)
val tasks = for (it <- subiterators) yield { it =>

task {
var sum = it.next()
while (it.hasNext) sum = op(sum, it.next())
sum

}
}
for (t <- tasks) t.fork()
val results = for (t <- tasks) yield t.join()
results.reduce(op)

}

The parReduce method starts by calling a split method on the iterator. Given a freshly
created iterator this method returns a set of iterators traversing the subsets of the
original iterator. We defer the details of how split is implemented until Section 2.3.
Each of those subset iterators it is then mapped into a new Task object that traverses
the corresponding iterator it and computes the sum. The caller thread forks those
task objects and then calls join on each of them – the task objects are in this way
mapped into the list of results. The results computed by different task objects are
then reduced sequentially by the caller thread.

The simple implementation presented above has certain limitations. In particular, it is
unclear how to implement split efficiently on iterators for arbitrary data structures.
Here, efficiently means that the split takes O(P logn) time where n is the number of
elements that the iterator traverses and P is the number of workers. Then, the split
may return a certain number of subset iterators that is lower than the number of available
processors. A data-parallel scheduler must ensure that all the available processors are
assigned useful work whenever possible. Orthogonally to efficient scheduling, processors
must execute the workload assigned to them as efficient as possible. Iterators, function
objects and genericity in the collection element type represent an abstraction cost that
can slow down an operation dramatically, but can be overcome with proper compile-
time optimisations. Finally, certain data structures do not have an efficient split
implementation and must be parallelized in some other fashion.
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trait Iterator[T] {1
def next(): T2
def hasNext: Boolean3

}4
5

trait Splitter[T] extends Iterator[T] {6
def split: (Splitter[T], Splitter[T])7

}8
9

trait PreciseSplitter[T] extends Splitter[T] {10
def psplit(sizes: Seq[Int]): Seq[PreciseSplitter[T]]11

}12

Figure 2.2: Splitter Interface

We address those issues in the remainder of this chapter.

2.3 Splitters

For the benefit of easy extension to new parallel collection classes and easier maintenance
we want to define most operations in terms of a few abstract methods. The approach
taken by Scala standard library sequential collections is to use an abstract foreach
method and iterators. Due to their sequential nature, both are not applicable to data-
parallel operations – they only produce one element at a time and do not allow access to
subsequent elements before prior elements are traversed. In addition to element traversal,
we need a splitting operation that returns a non trivial partition of the elements of the
collection. The overhead of splitting the collection should be as small as possible – this
influences the choice of the underlying data structure for parallelization.

We therefore define a new abstraction called a splitter. Splitters are an extension of
iterators with standard methods such as next and hasNext that are used to traverse a
dataset. Splitters have a method split that returns two child splitters, which iterate
over disjunct subsets of the collection. The original iterator becomes invalidated after
calling split and its methods must no longer be called. The Splitter definition is
shown in Figure 2.2.

Method split returns a sequence of splitters such that the union of the elements they
iterate over contains all the elements remaining in the original splitter. These subsets
are disjoint. Additionally, these subsets may be empty if there is 1 or less elements
remaining in the original splitter 1. For the purposes of achieving decent load-balancing,
data-parallel schedulers may assume that the datasets returned by the split method
are in most cases roughly equal in size.

The split operation is allowed to execute in O(P logn) time, where P is the number of

1They may additionally be empty if recursive splitting returns two non-empty splitters after a finite
number of splits. This fineprint exists to ensure termination during scheduling, while simplifying the
implementation of certain splitters.
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workers and n is the size of the underlying data structure. Most common data structures
can be split in O(1) time easily, as we will see.

A precise splitter is more specific splitter PreciseSplitter that inherits Splitter and
allows splitting the elements into subsets of arbitrary sizes. This splitter extension is
used by parallel sequences and is required to implement sequence operations like zipping
which needs to split multiple data structures at once.

2.3.1 Flat Splitters

Flat data structures are data structures in which elements are contained in a contiguous
block of memory. This block of memory need not be completely filled with elements.
Such data structures are particularly amenable to parallelization, since a contiguous
block of memory can easily be divided into smaller blocks.

Array and Range Splitters

An array is a ubiquitous data structure found in almost all general purpose languages.
In the standard Scala collections framework it is one of the basic mutable sequence
collections. Arrays have efficient, constant time element retrieval by index. This makes
them particularly suitable for parallelization. Similar data structures like integer ranges
and various array-based sequences like Scala ArrayBuffers implement splitters in the
same manner.

An ArraySplitter implementation is shown in Figure 2.3. This splitter contains a
reference to the array, and two indices for the iteration bounds. The implementation
is trivial – method split divides the iteration range in two parts, the second splitter
starting where the first ends. This makes split an O(1) method.

Hash Table Splitters

Standard Scala collection library has four different collections implemented in terms
of hash tables – mutable HashMaps and HashSets, as well as their linked variants that
guarantee traversal in the order that the elements were inserted. Their underlying
hash table is an array with both empty and non-empty entries, but the elements are
distributed uniformly in the array. Every element in this array is mapped to a spe-
cific index with a hashing function. In some cases multiple elements map to the same
index – we call this a collision. Hash tables can be implemented with closed address-
ing, meaning that collisions are resolved by storing a data structure with potentially
several elements at the same index, or open addressing, meaning that collisions are
resolved by putting one of the collided elements at some other index in the hash table
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class FlatSplitter[T] extends Splitter[T] {13
def newSplitter(lo: Int, hi: Int): FlatSplitter[T]14
def split = Seq(15

newSplitter(i, (i + until) / 2),16
newSplitter((i + until) / 2, until))17

}18
19

class ArraySplitter[T](val a: Array[T], var i: Int, val until: Int)20
extends FlatSplitter[T] {21

def hasNext = i < until22
def next() = i += 1; a(i - 1)23
def newSplitter(lo: Int, hi: Int) = new ArraySplitter(a, lo, hi)24

}25
26

class FlatHashSplitter[T](val a: Array[T], var i: Int, val until: Int)27
extends FlatSplitter[T] {28

private def advance() = while (a(i) == null) i += 129
def hasNext = i < until30
def next() = val r = a(i); i += 1; advance(); r31
def newSplitter(lo: Int, hi: Int) = new FlatHashSplitter(a, lo, hi)32

}33

Figure 2.3: Flat Splitter Implementations

[Cormen et al.(2001)Cormen, Leiserson, Rivest, and Stein].

Scala mutable sets are implemented with open addressing, whereas mutable maps and
linked variants of maps and sets use closed addressing. Figure 2.3 shows a splitter
implementation FlatHashSplitter for a hash set implemented with open addressing.
The closed addressing implementation is slightly more verbose, but similar. We note
that data-parallel operations on linked maps and sets cannot maintain insertion-order
traversal. The reason is that the simple, yet efficient linked list approach to maintaining
insertion order does not allow parallel traversal.

2.3.2 Tree Splitters

Previous section showed splitters for data structures composed of a single contiguous part
of memory. Trees are composed of multiple objects such that there is a special root node,
and that every other object in the tree can be reached in exactly one way by following
some path of pointers from the root to that node. Trees that we will consider need not
be binary – nodes can have any fixed upper bound on the number of children. In this
section we investigate splitters for trees that are balanced – any two paths between the
root and a node differ in length by a constant factor for any tree, irrespective of the
number of elements stored in that tree. One useful consequence of this constraint is that
the depth of balanced trees is bound by O(logn), where n is the number of elements
stored in the tree.

Trees that are not balanced usually cannot be efficiently parallelized using splitters. We
note that the majority of tree-based data structures are balanced, as this property ensures
good asymptotic bounds on useful data-structure operations.
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s s.split.left s.split.right

split

Figure 2.4: Hash Trie Splitting

With this in mind, we will divide the trees in several categories. Combining trees are
trees in which every node contains some metric about the corresponding subtree. Size-
combining trees are trees in which every node contains the size of the subtree – splitters
are easily implementable for such trees. Updates for persistent trees usually involve
updating the path from the root to the updated node, so augmenting such trees with size
information is often easy. Two-way trees are trees in which every node contains a special
pointer to its parent2, such that this path eventually leads to the root of the tree, which
has no parent pointer. The third class are one-way trees, in which nodes do not hold
a pointer to the parent tree. The splitters in the last two groups are more complex to
implement.

Hash Trie Splitters

Scala standard library implements persistent hash tables in terms of hash tries with a high
branching factor (up to 32-way nodes) [Bagwell(2001)]. For a typical 32-bit hashcode
space used on the JVM, these tries have a maximum depth of 6 nodes, resulting in more
efficient update and lookup operations.

Hash tries are size-combining trees – every node contains the total number of elements
contained in the corresponding subtree. Nodes can be either internal nodes or leaves.
Every internal node contains an array of pointers to its children nodes, but it does not
contain elements. Elements are contained in leaves. Each leaf contains a single element
(or a single key-value pair in case of maps). Additionally, internal nodes compress empty
pointer entries using a special bitmap flag. Memory footprint is thus reduced compared
to binary tries. The hash trie data structure internals are discussed in more detail in
Section 4.2.2.

Hash trie splitters conceptually divide the hash trie into several smaller hash tries, as
illustrated in Figure 2.4. Each splitter resulting from calling the split method on a
splitter s holds a reference to one of the smaller hash tries. Although such splitting can
be done in O(logn) time, the implementation can avoid physically creating smaller hash
tries by maintaining iteration progress information in each of the splitters, as we show in
Figure 2.5.

2For the purposes of the tree data structure definition we ignore the existence of this pointer.
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class HashTrieSplitter[T]34
(val root: Node[T], var progress: Int, val until: Int)35

extends Splitter[T] {36
private var depth = -137
private var index = new Array[Int](6)38
private var nodes = new Array[Node[T]](6)39
private def init() {40

nodes(0) = root41
index(0) = 042
depth = 043
var tot = 044
def descend() {45

while (tot + nodes(depth).array(index(depth)).size <= progress)46
index(depth) += 147

val currnode = nodes(depth).array(index(depth))48
if (!currnode.isLeaf) {49

push(currnode)50
descend()51

}52
}53
descend()54

}55
init()56
private def push(n: Node[T]) {57

depth += 158
index(depth) = -159
nodes(depth) = n60

}61
private def pop() {62

nodes(depth) = null63
depth -= 164

}65
private def advance() {66

index(depth) += 167
if (index(depth) < nodes(depth).array.length) {68

val currnode = nodes(depth).array(index(depth))69
if (!currnode.isLeaf) {70

push(currnode)71
advance()72

}73
} else {74

pop()75
advance()76

}77
}78
def next(): T = if (hasNext) {79

val leaf = nodes(depth).array(index(depth))80
advance()81
progres += 182
leaf.asLeaf.element83

} else throw new NoSuchElementException84
def hasNext: Boolean = progress < until85
def split = {86

new HashTrieSplitter(root, progress, (progress + until) / 2),87
new HashTrieSplitter(root, (progress + until) / 2, until))88

}89
}90

Figure 2.5: Hash Trie Splitter Implementation
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Figure 2.6: BinaryTreeSplitter splitting rules

The implementation in Figure 2.5 maintains the iteration state using an integer field
progress and two stacks of values. The stacks maintain the path from the root of the
hash trie to the currently traversed leaf node. Upon creation, the stacks are set to point
to the element at position progress in the left-to-right trie traversal. This is done by
the method init in line 40, which skips subtrees as long as the total number of skipped
elements is less than the specified progress, and then recursively descends into one of
the children. In line 46 size information is used to efficiently initialize a splitter.

Traversal is no different than traversal in standard iterators. Every time next is called,
the current leaf is read in line 80 and then the position is advanced to the next leaf node.
Method advance has to check if there are more leaf nodes in the current inner node in
line 68. If there are no more leaf nodes, the current inner node has to be popped of the
stack in line 75. If there are more leaf nodes, the advance method checks if the next leaf
node is a leaf. Non-leaf nodes need to be recursively pushed to the stack in line 71.

Method split divides the range from progress to until into two subranges of roughly
equal size, and then creates two new hash trie splitters whose init method is responsible
for setting their state correctly.

Scala Vector Splitters

Scala Vector [Bagwell and Rompf(2011)] is an immutable sequence implementation.
Similar to the hash tries from the previous section, it has up to 32-way branching
factor in the inner nodes and stores elements in the leaf nodes. Scala Vectors are also
size-combining trees, since the size of each subtree can be implicitly computed. This
means that Scala Vector splitters can be implemented analogous to hash trie splitters.
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Binary Search Tree Splitters

The previous two tree data structures were size-combining trees. We now turn our
attention to splitters for one-way and two-way trees. Note that any technique of splitting
a one-way tree is applicable to a two-way tree. This is because any splitter for a two-way
tree can simply ignore the parent pointer and treat the tree as if it were a one-way
tree. Therefore, in this section we examine the techniques for implementing one-way
tree splitters. In particular, we will assume that the trees are one-way binary balanced
trees for the purposes of this section, but the techniques presented here can be applied
to one-way n-ary balanced trees as well.

In the Scala standard library SortedSets and SortedMaps are implemented in terms of
one-way red-black trees which are binary balanced trees.

Similar to hash tries shown in Section 2.3.2, we note that the state of the iteration for
binary trees can be encoded using a stack. Unlike the size-combining trees, one-way
tree splitters cannot split the tree by maintaining a progress field and then initializing
new splitters using this information. The absence of this information prevents us from
skipping subtrees as in line 46 of HashTrieSplitters. Without skipping the subtrees
the entire tree needs to be traversed and this changes the complexity of split from
O(logn) to O(n). The only traversal information that BinaryTreeSplitters maintain
is the stack of nodes on the path from the root to the current leaf, so the split method
must use that.

A binary tree splitter state can be logically represented with a single stack of decisions of
whether to go left (L) or right (R) at an inner node. As most binary search trees store
elements in inner nodes, a binary tree splitter state must encode the fact that a specific
inner node has been traversed by ending the stack with a symbol T.

We do not show the complete splitting pseudocode, but show the important classes of
different states the stealer can be in, in Figure 2.6. We encode the state of the stack with
a regular expression of stack symbols. For example, the regular expression R∗LT means
that the stack contains a sequence of right turns followed by a single left turn and then
the decision T to traverse a single node. A stealer in such a state should be split into
two stealers with states L∗ on the subtree F and LR∗T on the subtree B, as shown in
Figure 2.6. This splitter implementation does not require allocating any tree nodes as
the newly constructed splitters take subtrees of the existing tree as arguments.

Note that splitting trees in this way might not always yield splitters over subsets that
have approximately the same sizes. The sizes of the subtrees assigned to child splitters
differ up to a constant factor – this follows from the fact that the trees (and their
subtrees) are balanced. However, the left child splitter may have already traversed some
of the elements in its tree, so its subset of elements may be arbitrarily smaller. We have
found that this is not an issue in practice, as there are many splits and the data-parallel
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trait Builder[T, That] {91
def +=(elem: T): Unit92
def result: That93

}94
95

trait Combiner[T, That, Repr] extends Builder[T, That] {96
def combine(other: Repr): Combiner[T, That]97

}98

Figure 2.7: Combiner Interface

class Map[S, That](f: T => S, s: Splitter[T])99
extends Batch[Combiner[S, That]] {100

var result: Combiner[S, That] = newCombiner101
def split = s.split.map(p => new Map[S](f, p))102
def leafTask() {103

while (s.hasNext) cb += f(s.next)104
}105
def merge(that: Map[S, That]) {106

cb = cb combine that.cb107
}108

}109

Figure 2.8: Map Task Implementation

schedulers are designed to deal with unbalanced workloads anyway.

2.4 Combiners

While splitters allow assigning collection subsets to different processors, certain operations
return collections as their result (e.g. map). Parts of the collection produced by different
workers must be combined together into the final collection. To allow implementing such
data-parallel operations generically for arbitrary operations we introduce an abstraction
called a combiner.

In Figure 2.7, type parameter T is the element type, and That is the resulting collection
type. Each parallel collection provides a specific combiner, just as regular Scala collections
provide builders. The method combine takes another combiner and produces a combiner
that contains the union of their elements. Combining may occur more than once during a
parallel operation, so this method should ideally have complexity O(1) and no more than
O(P logn), where n is the number of elements in the combiners and P is the number of
processors.

Parallel operations are implemented within task objects, as discussed in Section 2.7. These
tasks correspond to those described in the previous section. Each task defines split
and merge methods. To illustrate the correspondence between task objects, splitters and
combiners, we give an implementation of the task for the parallel map operation in Figure
2.8.

The Map task is given a mapping function f of type T => S and a splitter s. These
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tasks must be split into smaller chunks to achieve better load balancing, so each task
has a split method, which it typically implements by calling split on the splitter
and mapping each of the subsplitters into subtasks, in this case new Map objects. At
some point this splitting ends and the data-parallel scheduler decides to call the method
leafTask, mapping the elements and adding them into the combiner for that task.
Results from different workers are then merged hierarchically using the merge method,
which in this case combines the combiners produced by two different tasks. Once the
computation reaches the root of the tree, a method result is called on its combiner cb
to obtain the resulting collection.

The challenging part of implementing a combiner is its combine method. There are no
predefined recipes on how to implement a combiner for any given data structure. This
depends on the data-structure at hand, and usually requires a bit of ingenuity.

Some data structures have efficient implementations (usually logarithmic) of these
operations. If the collection at hand is backed by such a data-structure, its combiner
can be the collection itself. Finger trees, ropes and binomial heaps implement efficient
concatentation or merging operations, so they are particularly suitable. We say that
these data structures have mergeable combiners.

Another approach, suitable for parallel arrays and parallel hash tables, assumes that the
elements can be efficiently stored into an intermediate representation from which the
final data structure can be created. This intermediate representation must implement an
efficient merge operation, and must support efficient parallel traversal. In this approach
several intermediate data structures are produced and merged in the first step, and the
final data structure is constructed in the second step. We refer to such combiners as
two-step combiners.

While the last two approaches actually do not require any synchronization primitives in
the data-structure itself, they assume that it can be constructed concurrently in a way
such that two different processors never modify the same memory location. There exists
a large number of concurrent data-structures that can be modified safely by multiple
processors -– concurrent skip lists, concurrent hash tables, split-ordered lists, concurrent
avl trees, to name a few. They can be used to create concurrent combiners. An important
consideration is that the concurrent data-structure has a horizontally scalable insertion
method. For concurrent parallel collections the combiner can be the collection itself, and
a single combiner instance is shared between all the processors performing a parallel
operation.

2.4.1 Mergeable Combiners

Combiners that implement an O(P logn) worst-case combine and result operations are
called mergeable combiners. Mergeable combiners are a desireable way to implement
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combiners, both in terms of simplicity and in terms of performance. An existing merge
or concatenation data structure operation is used to implement combine. The result
operation simply returns the underlying combiner data structure, optionally doing
O(P logn) sequential postprocessing work. Unfortunately, most data structures do not
have an efficient merge or concatenate operation. In fact, linked list data structures,
skip lists, catenable random-access sequence implementations and certain priority queue
implementations comprise the host of known mergeable data structures. Out of those,
linked lists are not suitable for subsequent parallelization, as efficient linked list splitters
do not exist. We show several mergeable combiner implementations in Chapter 3, where
we introduce the Conc-tree data structure.

2.4.2 Two-Step Combiners

Most standard library collections do not come with an efficient merge or concatenation
operation. In particular, mutable sequences implemented with arrays or queues, mutable
maps and sets implemented with hash tables or binary search trees, or immutable maps
and sets implemented with hash tries do not have mergeable combiners. In most cases
these data structures have two-step combiners. These combiners use an intermediate
data structure to store results produced by different processors. The intermediate data
structure is used to produce the final data structure.

There are several constraints on these intermediate data structures. First, element
addition must be O(logn), and preferably O(1) with good constant factors. Second, they
must support a O(P logn) time merge operation. Finally, they must support parallel
traversal in a way that subsets of elements with a high spatial locality in the final data
structure can be traversed by a particular processor efficiently. The final constraint
ensures that the final data structure can be constructed with minimal synchronization
costs. We visit several examples of these intermediate data structures in the following
subsections and later in Sections 3.4.1 and 3.4.2. While the intermediate data structures
support efficient merging, they typically do not support efficient operations of the final
data structure.

As their name implies, two-step combiners are used in two steps. In the first step different
processors independently produce combiners with some results and then concatenate
them together. In the second step this concatenated intermediate data structure is
independently traversed to create the final data structure. We study several concrete
examples next.

Array Combiners

Given two arrays, there is no sublinear time operation that produces their concatenation.
This means that the intermediate combiner data structure cannot be an array. Instead,
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class ArrayCombiner[T](val chunks: ArrayBuffer[ArrayBuffer[T]], var size: Int)110
extends Combiner[T, Array[T], ArrayCombiner[T]] {111

def +=(elem: T) {112
size += 1113
chunks.last += elem114

}115
def combine(that: ArrayCombiner[T]) = {116

new ArrayCombiner(chunks ++= that.chunks, size + that.size)117
}118
def result = {119

val array = new Array[T](size)120
val t = new ToArrayTask(chunks, array)121
t.fork()122
t.join()123
array124

}125
}126

Figure 2.9: Array Combiner Implementation

the basic array combiner implementation uses an array of arrays of elements. Each nested
array carries elements produced by a certain worker, added to the combiner using the
+= method. We call these inner arrays chunks. Chunks are growable – once they are
completely filled with elements, a larger contiguous memory area is allocated, and the
existing elements are copied into it. The outer array is also growable and holds a list of
chunks.

The implementation is shown in Figure 2.9. In the Scala standard library, the growable
array collection is called ArrayBuffer. Adding to the combiner with the += method
simply adds the element to the last chunk. Combining works by concatenating the list
of chunks. Assuming there are always as many chunks as there are different workers,
combine is an O(P ) operation. Once all the combiners are merged, the result method
is called – the final array size is known at this point, so result allocates the array, and
executes the ToArray task that copies the array chunks into the target array (we omit
the complete code here). Copying proceeds without synchronization as different chunks
correspond to non-overlapping contiguous parts of the array.

Note that certain data-parallel operations, which create parallel arrays and know their
sizes in advance, (e.g. map) can allocate the final array at the beginning of the operation,
and work on it directly. These operations are special cases that do not need to use
combiners.

While this implementation works well in many cases, it has several disadvantages. First,
every element is on average copied twice into its chunk. Then, this representation wastes
half the memory in the worst case, as every growable array can be half-empty. Finally,
this implementation assumes that the number of chunks is O(P ). Certain data-parallel
schedulers that use task-based parallelism can create a number of tasks much larger than
the number of processors, allowing the chunks array to grow beyond O(P ) and slowing
down the combine operation. We show a more efficient array combiner implementation
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class HashSetCombiner[T](val ttk: Int, val buckets: Array[UnrolledList[T]])127
extends Combiner[T, HashSet[T], HashSetCombiner[T]] {128

def +=(elem: T) {129
val hashcode = elem.hashCode130
buckets(hashcode & (ttk - 1)) += elem131

}132
def combine(that: HashSetCombiner[T]) = {133

for (i <- 0 until ttk) buckets(i) concat that.buckets(i)134
new HashSetCombiner(ttk, buckets)135

}136
def result = {137

val numelems = buckets.foldLeft(0)(_ + _.size)138
val sz = nextPowerOfTwo(numelems / loadFactor)139
val array = new Array[T](sz)140
val t = new ToTable(buckets, array)141
t.fork()142
t.join()143
new HashSet(array, sz)144

}145
}146

Figure 2.10: HashSet Combiner Implementation

in Chapter 3.

Hash Table Combiners

If each hash table combiner were to maintain a hash table of its own, combining would
require traversing both hash tables and merging corresponding buckets together, resulting
in an O(n) combine. Again, hash tables are inadequate as an intermediate data structure
[Prokopec et al.(2011c)Prokopec, Bagwell, Rompf, and Odersky].

Recall, from the beginning of this section, that the intermediate data structure needs to
assign different subsets of elements to different processors. In addition, we want each of
the subsets to occupy a contiguous chunk of memory, to avoid unnecessary synchronization
and false sharing [Herlihy and Shavit(2008)]. To achieve this, we partition the space of
elements according to their hashcode prefixes so that the elements end up in different
contiguous blocks in the final hash table. This partition is independent of the size of
the resulting hash table. The intermediate data structure serves as a set of buckets for
this partition. The blocks in the resulting hash table can then be filled in parallel by
multiple processors that traverse different buckets in the intermediate data structure.
We describe how to do this partition next.

Each combiner keeps an array of 2k buckets, where 2k is a constant bigger than the
number of processors. Experimental results suggest that 2k should be up to an order
of magnitude bigger than the number of processors to ensure good load balancing, and
k = 5 works well for up to 8 processors. Each bucket is an unrolled linked list. In general,
unrolled lists have the downside that indexing an element in the middle has complexity
O(n/m) where n is the number of elements in the list and m is the chunk size, but this
is not a problem in our case since elements are never indexed, only added at the end and
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Figure 2.11: Hash Code Mapping

then traversed once. We add an element by computing its hashcode, and then inserting
it into a bucket indexed by the k first bits of the hashcode. Adding an element to an
unrolled linked list is fast – in most cases it amounts to incrementing an index and storing
an element into an array, and only occasionally allocating a new node. Combining works
by concatenating each unrolled linked list in O(1) time – we choose 2k such that there
are O(P ) unrolled linked list, making combine an O(P ) operation.

Method result computes the total number of elements by adding the sizes of the buckets
together. The size of the hash table is then computed by dividing the number of elements
with the load factor and rounding it to the smallest larger power of 2. The array for
the hash table is allocated and the ToTable task is forked, which can be split in up to
2k subtasks. This task copies the elements from different buckets into the hash table.
Assume hash table size is sz = 2m. We obtain the position in the hash table by taking
the first m bits from the hashcode of the element. The first k bits denote the index
of the block within the hash table, and the remaining m − k bits denote the position
within that block (see example in figure 2.11). Since all the elements in a bucket have
identical first k bits, they are always written into the same hash table block. We show
the implementation for HashSets in Figure 2.10.

Note that, as described so far, the hash code of each key is computed twice. The hash
code is first computed before inserting the key into the combiner. It is computed again
when adding the keys into the hash table. If computing the hash code is the dominating
factor in the parallel operation, we can avoid computing the hash code twice by storing
it into the combiner unrolled linked lists, along with the key and the value.

A nice property of hash tables with closed addressing is that the elements are always
written into their respective blocks. With open addressing, it is possible that some of the
elements spill out of the block. The ToTable task object records all such elements, and
tries to reinsert them into the next block when merging with the next task. This results
in the average number of spills equal to the average collision lengths in the hash table
and is on average constant, so the extra work of handling spilled elements is bound by
O(P ) [Sujeeth(2013)] [Prokopec et al.(2011c)Prokopec, Bagwell, Rompf, and Odersky].
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Hash Trie Combiners

Hash trie combiners can be implemented to contain hash tries as the intermediate data
structure. Merging the hash tries is illustrated in Figure 2.12. For simplicity, the hash
trie root nodes are shown to contain only five entries. The elements in the root hash
table are copied from either one hash table or the other, unless there is a collision as in
the case of subtries B and E. Subtries that collide are recursively merged and the result
is put in the root hash table of the resulting hash trie. This technique turns out to be
more efficient than sequentially building a hash trie.

We compare the performance of recursively merging two existing tries against merging
two hash tables against sequentially constructing a new merged trie in Figure 2.13 –
recursive merging results in better performance than either sequential hash trie or hash
table merging. The merging could also be done in parallel. Whenever two subtries
collide, we could fork a new task to merge the colliding tries. Since the elements in the
two colliding tries all share the common hashcode prefix, they will all end up in the
same subtrie – the subtrie merge can proceed independently of merging the rest of the
trie. This approach is applicable only if the subtries merged in a different task are large
enough.

Parallel recursive merging has O(n/P ) complexity in the worst case. In a typical parallel
operation instance, the combine method is invoked more than once (see Figure 2.17).
Hash tries are thus not efficient intermediate data structures.

The intermediate data structure is instead akin to the one used by hash table combiners.
It consists of an array of 2k unrolled lists, each holding elements with the same k bit
hashcode prefix (where k = 5), as before.
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Combiners implement the combine method by simply going through all the buckets,
and concatenating the unrolled linked lists that represent the buckets, which is an O(P )
operation. Once the root combiner is produced, the resulting hash trie is constructed in
parallel in result – each processor takes a bucket and constructs the subtrie sequentially,
then stores it in the root array. Again, if computing the hash code is expensive, we can
cache the hash code of each key in the bucket. Another advantage of this approach is
that each of the subtries is on average one level less deep, so a processor working on a
subtrie does less work when adding each element.

Binary Search Tree Combiners

In most languages and runtimes, ordered sets are implemented with AVL or red-black
trees. To the best of our knowledge, there is no algorithm for efficient (e.g. asymptotic
O(logn) time) AVL or red-black tree union operation. This means that we cannot
implement directly mergeable binary search tree combiners, but have to use the multiple-
step evaluation approach. Binary search tree combiners rely on bucketing and merging
non-overlapping subsets, as we describe in the following.

Note that, while AVL or red-black trees can be merged in O(min(n,m) · log(max(n,m)))
time, where n and m are their respective sizes, two such binary search trees can be
merged more efficiently if all the elements in the first tree are smaller than the elements
in the second tree. One way of doing this is the following. First, we determine the higher
tree. Without the loss of generality, let’s assume that the second (right) tree T2 is higher.
First, we need to extract the rightmost node from the first (left) tree T1 – call it X. After
removing X from T1 in O(logn) time, we are left with the T ′1. We need to find a node
Y on the leftmost path in the right tree T2, whose height differs from the height of T ′1
by at most 1 – we can do this in O(logm) time. The tree T ′1, node X and the subtree
at the node Y are non-overlapping – they can be linked into the tree T1Y in O(1) time.
We replace the subtree at Y in the tree T2 with T1Y , and rebalance all the nodes on the
path to the root – this is a O(logm) operation.

Combiners produced by separate processors are not guaranteed to contain non-overlapping
ranges (in fact, they rarely do), so we need to use a bucketing technique, similar to
the one used in hash tables and hash tries, to separate elements into non-overlapping
subsets. Recall that the buckets were previously conveniently induced by bits in the
hashing function. A good hashing function ensured that separate buckets have the same
expected number of elements, regardless of the element set contained in the hash table.
Since binary search trees can contain elements from arbitrary ordered sets, choosing
good pivot elements for the buckets depends on the elements produced by a particular
binary search tree bulk operation. This means that a combiner cannot put elements into
buckets before sampling the output collection, to choose pivot elements for the buckets.
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trait ConcurrentMap[K, V] {147
def put(key: K, value: V): Unit148

}149
150

class ConcurrentMapCombiner[K, V](underlying: ConcurrentMap[K, V])151
extends Combiner[(K, V), ConcurrentMap[K, V], ConcurrentMapCombiner[K, V]] {152

def +=(elem: (K, V)) {153
underlying.put(elem._1, elem._2)154

}155
def combine(that: ConcurrentMapCombiner[K, V]) = this156
def result = underlying157

}158

Figure 2.14: Concurrent Map Combiner Implementation

For these reasons, a binary search tree combiner works in three steps:

• Sampling step. Each combiner appends (using +=) elements to a catenable data
structure (e.g. Conc-trees described in Chapter 3), called output elements, and
separately samples some number s of randomly chosen elements, called sample
elements. Both the output elements and samples are concatenated when combine
is called. Importantly, note that the output elements are not sorted – they are
concatenated in an arbitrary order at this point.

• Bucket step. Upon calling the result method, the sample elements are used to
select some number t of pivot elements, where t is up to an order of magnitude
larger than P . The outputs are independently, in parallel, divided into t buckets
by each of the P processors. The buckets are merged together in the same way as
with hash tables and hash tries.

• Tree step. The resulting t buckets can now be used to independently, in parallel,
construct t binary search trees, with non-overlapping element ranges. Trees from
separate processors can thus be merged in O(P logn) time, merging each pair of
trees as described previously.

2.4.3 Concurrent Combiners

Most existing data-parallel frameworks use concurrent data structures to implement
data-parallel transformer operations. In this approach the intermediate data structure is
a concurrent data structure shared by all the workers. The intermediate data structure
is directly returned when calling the result method. This approach typically results in
lower performance since every += operation incurs synchronization costs, but is acceptable
when the useful workload (e.g. computation in the function passed to the map operation)
exceeds synchronization costs.

As shown in Figure 2.14, concurrent combiners delegate most of the work to the underlying
concurrent data structure. All combiners created in a specific parallel operation instance
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are instantiated with the same underlying data structure, in this case a ConcurrentMap.
We show a concrete implementation of a concurrent map in Section 4.2.2.

2.5 Data Parallel Bulk Operations

The standard Scala collections framework offers wide range of collection bulk operations
[Odersky(2009)]. The goal of a data-parallel collections framework is to implement
versions of these operations running in parallel.

We divide these operations into groups that outline the important implementation aspects.
For each group we show how to implement them using splitters and combiners described
in the previous section. We note that these groups are not disjoint – some operations
may belong to several groups.

Trivially Parallelizable Operations

The simplest data-parallel operation is the foreach method.

def foreach[U](f: T => U): Unit

The foreach operation takes a higher-order function f and invokes that function on
each element. The return value of f is ignored. The foreach method has two properties.
First, there are no dependencies between workers working on different collection subsets.
Second, it returns no value. Because of these properties, foreach is trivially parallelizable
– workers do not need to communicate while processing the elements or at the end of the
computation to merge their results.

When foreach is invoked, a new task object is created and submitted to the Fork/Join
pool. To split the elements of the collection into subsets, the framework invokes the
split method of its splitter. Two new child tasks are created and each is assigned one of
the child splitters. These tasks are then asynchronously executed by potentially different
workers – we say that the tasks are forked. The splitting and forking of new child tasks
continues until splitter sizes reach a threshold size. At that point splitters are used to
traverse the elements – function f is invoked on elements of each splitter. Once f is
invoked on all the elements, the corresponding task ends. Another example of a method
that does not return a value is copyToArray, which copies the elements of the of the
collection into a target array.

Scalar Result Operations

Most data-parallel operations return a resulting value. The reduce operation shown
earlier applies a binary associative operator to elements of the collection to obtain a
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reduction of all the values in the collection:

def reduce[U >: T](op: (U, U) => U): U

The reduce operations takes a binary operator op. If, for example, the elements of the
collection are numbers, reduce can take a function that adds its arguments. Another
example is concatenation for collections that hold strings or ropes. Operator op must
be associative, because the grouping of subsets of elements is undeterministic. Relative
order of the elements can be preserved by the data-parallel scheduler, so this operator
does not have to be commutative.

The reduce operation is implemented in the same manner as foreach, but once a task
ends, it must return its result to the parent task. Once all the children of the parent
task complete, the op operator is used to merge the results of the children tasks. Other
methods implemented in a similar manner are aggregate, fold, count, max, min, sum
and product.

Communicating Operations

In the previously shown operations different collection subsets are processed independently.
Here we show operations where results computed in one of the tasks can influence the
computation of the other tasks. One example is the forall method:

def forall(p: T => Boolean): Boolean

This method only returns true if the predicate argument p returns true for all elements.
Sequential collections take advantage of this fact by ceasing to traverse the elements once
an element for which p does not hold is found. Parallel collections have to communicate
that the computation may stop. The parallel forall operations must share an invocation-
specific context with a flag that denotes whether the computation may stop. When the
forall encounters an element for which the predicate is not satisfied, it sets the flag.
Other tasks periodically check the flag and stop processing elements if it is set.

Operations such as exists, find, startsWith, endsWith, sameElements and corresponds
use the same mechanism to detect if the computation can end before processing all the
elements. Merging the results of these tasks usually amounts to a logical operation.

Another operation we examine here is prefixLength:

def prefixLength(p: T => Boolean): Int

This operation takes a predicate and returns the length of the longest collection prefix
such that all its elements satisfy the predicate p. Once some worker finds an element
e that does not satisfy the predicate, not all tasks can stop. Workers that operate on
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def setIndexFlagIfLesser(f: Int) = {159
var loop = true160
do {161

val old = READ(flag)162
if (f >= old) loop = false163
else if (CAS(flag, old, f)) loop = false164

} while (loop)165
}166

Figure 2.15: Atomic and Monotonic Updates for the Index Flag

parts of the sequence preceding e may still find prefix length to be shorter, while workers
operating on the following subsequences cannot influence the result and may terminate.
To share information about the element’s exact position, the invocation-specific context
contains an integer flag that can be atomically set by different processors. In Figure 2.15
we show the setIndexFlagIfLesser method, which is used by different processors to
maintain the index of the leftmost element not satisfying the predicate.

The setIndexFlagIfLesser method is a simple example of a concurrent protocol with
several interesting properties. First of all, it is linearizable. The linearization point is
the only write performed by the method in line 164. Then, the setIndexFlagIfLesser
method is lock-free. If the CAS operation in line 164 fails, then we know that the value
of flag has changed since the last read. It follows that in the finite number of steps
between the last read in line 162 and the CAS in line 164 some other thread completed
the operation. Finally, the updates by this method to flag are monotonic. Because of
the check in line 163, the value of the flag can only be decreased and there is no risk of
the ABA problem [Herlihy and Shavit(2008)].

Other methods that use integer flags to relay information include takeWhile, dropWhile,
span, segmentLength, indexWhere and lastIndexWhere.

Transformer Operations

Certain operations have collections as result types. The standard Scala collection
framework calls such operations transformers. A typical transformer operation is filter:

def filter(p: T => Boolean): Repr

The filter operation returns a collection containing only those elements for which the
predicate p is true. This operation uses combiners to merge filtered subsets coming from
different processors. Methods such as map, take, drop, slice, splitAt, zip and scan
have the additional property that the resulting collection size is known in advance. This
information can be used in specific collection classes to override default implementations
and benefit from increased performance. Other methods cannot predict the size of the
resulting collection include flatMap, collect, partition, takeWhile, dropWhile, span
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and groupBy.

Multiple-Input Operations

Some data-parallel operations need traverse multiple collections simultaneously. Method
psplit in PreciseSplitters for parallel sequences is more general than split, as it
allows splitting a parallel sequence splitter into subsequences of specific lengths. Some
methods such as zip rely on this capability:

def zip[S](that: ParSeq[S]): ParSeq[(T, S)]

Operation zip returns a sequence composed of corresponding pairs of elements of
this sequence and another sequence that. The regular split method would make
implementation of this method quite difficult, since it only guarantees to split elements
into subsets of arbitrary size – that may be a parallel sequence whose splitter produces
subsets of different sizes than subsets in this. In this case it would not be not clear which
elements are the corresponding elements for the pairs. The refined psplit method allows
both sequences to be split into subsequences of the same sizes. Other methods that rely
on precise splitting are startsWith, endsWith, patch, sameElements and corresponds.

Multiple-Phase Operations

Certain data-parallel operations cannot be completed in a single phase. The groupBy
operation takes a user-specified operation f that assigns each element to some key of
type K. It returns a parallel map that maps each key value k into a sequence of elements
x of the original collection for which f(x) == k:

def groupBy[K](f: T => K): ParMap[K, Seq[T]]

This operation needs to proceed in two steps. In the first phase each of the workers
produces a HashMapCombiner shown earlier, such that the elements are grouped into a
certain number of buckets according to their keys. Note that the number of buckets
is smaller than the number of potential value of type K. These HashMapCombiners are
merged into a single HashMapCombiner. In the second phase workers are assigned to
specific buckets and can independently populate regions of a hash map similar to the
result method of the HashMapCombiner.

Another example of a multiple phase operation is scan.

37



Chapter 2. Generic Data Parallelism

2.6 Parallel Collection Hierarchy

In this section we discuss how to organize the collection hierarchy for data-parallel collec-
tion frameworks and how to integrate them with existing sequential collection modules
in an object-oriented language. We will study two different approaches to doing this – in
the first approach new parallel collection classes are introduced for each corresponding se-
quential collection class, and in the second parallel operations are piggy-backed to existing
sequential collection through the use of extension methods. We will refer to the former as
tight integration [Prokopec et al.(2011c)Prokopec, Bagwell, Rompf, and Odersky], and
to the latter as loose integration [Prokopec and Petrashko(2013)]. Both approaches add
data-parallel operations without changing the existing sequential collection classes, but
retain the same signatures for all the bulk operation methods.

We assume that sequential collections have bulk operations that guarantee sequential
access. This means that calling a bulk operation such as foreach on a collection
guarantees that the body of the foreach will be executing on the same thread on
which foreach was called and that it will be executed completely for one element before
processing the next element. Parallel collections have variants of the same bulk operations,
but they do not guarantee sequential access – the foreach may be invoked simultaneously
on different elements by different threads.

Note that sequential access is not related to ordering semantics of the operations. Data-
parallel operations can still ensure ordering given that the splitters produce two substrings3

of the elements in the original collection and that combiners merge intermediate results
produced by different workers in the same order as they were split.

Tight Integration

Referential transparency is the necessary condition for allowing a parallel collection to be a
subtype of a sequential collection and preserving correctness for all programs. Since Scala
and most other general purpose programming languages are not referentially transparent
and allow side-effects, it follows that the program using a sequential collection may
produce different results than the same program using a parallel collection. If parallel
collection types are subtypes of sequential collections, then this violates the Liskov
substitution principle, as clients that have a reference statically typed as a sequential
collection can get different results when that reference points to a parallel collection at
runtime.

To be able to have a reference to a collection which may be either sequential or parallel,
there has to exist a common supertype of both collection types. The Scala standard

3Note that substrings in the mathematical sense mean that both the order and the contiguity of
the original sequence is preserved. This is unlike subsequences in which only the relative order of the
elements is preserved.
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Figure 2.16: Scala Collections Hierarchy

library collection hierarchy defines the most general collection type GenTraversableOnce
that describes types that can be traversed only once. It is the supertype of both sequential
collections and iterators. Collection types that can be traversed arbitrarily many times are
represented with the trait GenTraversable, and collections that can produce iterators are
subtypes of GenIterable. Maps, sets and sequences are represented with types GenMap,
GenSet and GenSeq, respectively. Sequential collection types that guarantee sequential
access, as well as parallel collection types that do not, are subtypes of the corresponding
Gen* traits. The hierarchy is shown in Figure 2.16, with maps and sets trait omitted for
clarity. For example, a ParSeq and Seq are both subtypes of a general sequence GenSeq,
but they are in no direct subtyping relationship with respect to each other. The *Like
types exist to carry the covariant concrete collection type parameter and guarantee the
most specific return type principle for collection operations [Odersky and Moors(2009)].

Clients can refer to sequential sequences using the Seq trait and to parallel sequences using
the ParSeq trait. To refer to a sequence whose implementation may be either parallel or
sequential, clients can use the GenSeq trait. Note that introducing this hierarchy into
an existing collection framework preserves source compatibility with existing code – the
meaning of all existing programs remains the same.

General collection traits introduce methods seq and par that return the corresponding
sequential or parallel version of the collection, respectively.

trait GenIterable[T] {
def seq: Iterable[T]
def par: ParIterable[T]

}

trait Iterable[T]
extends GenIterable[T] {

def seq: Iterable[T] = this
def par: ParIterable[T]

}

trait ParIterable[T]
extends GenIterable[T] {

def seq: Iterable[T]
def par: ParIterable[T] = this

}

Each parallel collection class is usually a wrapper around the corresponding sequential col-
lection implementation. Parallel collections require Combiners which extend the Builders
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used by sequential collections. They therefore implement a method newCombiner, and
have newBuilder defined on sequential collections simply forward the call to newCombiner.
Similarly, parallel collections define a splitter method that subsumes the iterator
method found on sequential collections.

This design has several disadvantages. First, it clutters the collection hierarchy with
additional classes, making the API harder to understand. Second, it requires every
sequential collection to be convertible into a parallel collection by calling par. As we
saw earlier, data structures that satisfy certain parallelism constraints can be converted
with thin wrappers, but any non-parallelizable data structure must be converted into a
parallelizable data structure by sequentially traversing it when par is called, and this
cost is not apparent to the user. Parallel collections are required to implement methods
such as reduceLeft whose semantics do not allow a parallel implementation, leading to
confusion. Finally, this design ties the signatures of parallel collections and sequential
collections tightly together as they are shared in the Gen* traits. If we want to add
additional implicit parameters to parallel operations, such as data-parallel schedulers, we
have to change the signatures of existing sequential collection classes.

Loose Integration

Another approach to augmenting existing parallel collections classes is through extension
methods. Here, collection classes exist only for the sequential version of the collection.
All the parallel operations are added to this sequential collection class through an implicit
conversion.

One of the goals is that the data-parallel operations have the same names and similar
signatures as the corresponding sequential operations. This prevents us from adding
extension methods directly to sequential collections classes, as it would result in name
clashes. Instead, users need to call the par method to obtain a parallel version of the
collection, as in tight integration. In loose integration, this call returns a thin wrapper
of type Par[Repr] around the collection of type Repr. The par method itself is added
through an implicit conversion and can be called on any type.

The Par[Repr] type has only a few methods — the only interesting one is seq that
converts it back to the normal collection. Implicit conversions add data-parallel operations
to Par[C] only for specific collections that are parallelizable.

class Par[Repr](val seq: Repr)

implicit class ParOps[Repr](r: Repr) {
def par = new Par(r)

}

implicit class ParArrayOps[T](a: Par[Array[T]]) {
def reduce[U >: T](op: (U, U) => U): U = ???
def foreach[U](f: T => U): Unit = ???

}

This design offers several advantages with respect to tight integration – the signature no
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longer has to exactly correspond to the sequential counterparts of the parallel methods
(e.g. parallel operations now take an additional implicit Scheduler parameter), and
additional operations that are not part of this collections framework can easily be added
by clients to different collections. Similarly, not all sequential collections are required to
have their parallel counterparts and inherently sequential bulk operations no longer need
to be a part of the parallel interface.

A disadvantage is that clients cannot use parallel collections generically this way. With se-
quential collections a user can write a function that takes a Seq[Float] and pass subtypes
like Vector[Float] or List[Float] to this method. This is possible since List[Float]
is a subtype of Seq[Float]. In the new design this is no longer possible, because a
Par[Vector[Float]] is not a subtype of Par[Seq[Float]], and for a good reason – it
is not known whether parallel operations can be invoked on the Par[Seq[Float]] type.

def mean(a: Seq[Float]): Float = {
val sum = a.reduce(_ + _)
sum / a.length

}
mean(Vector(0.0f, 1.0f, 2.0f))
mean(List(1.0f, 2.0f, 4.0f))

def mean(a: Par[Seq[Float]]): Float = {
val sum = a.reduce(_ + _)
sum / a.length

}
mean(Vector(0.0f, 1.0f, 2.0f).par)
mean(List(1.0f, 2.0f, 4.0f).par) // error

To allow code generic in the collection type, loose integration approach defines two
special types called Reducible[T] and Zippable[T]. These traits allow writing generic
collection code, since they are equipped with extension methods for standard collection
operations, just like ParArrayOps are in the example above. The Reducible[T] type
represents all collections that support parallel operations implementable in terms of a
parallel aggregate method. The Zippable[T] trait is a subtype of Reducible[T] and
represents that support parallel operations implementable in terms of the parallel zip
method.

2.7 Task Work-Stealing Data-Parallel Scheduling

Workload scheduling is essential when executing data-parallel operations on multiple
processors. Scheduling is the process of assigning parts of the computational workload
to different processors. In the context of this thesis, the parts of the computational
workload are separate collection elements. Data-parallel scheduling can be done offline,
before the data-parallel operation starts, or online, during the execution of a data-parallel
operation. This thesis focuses on runtime data-parallel scheduling.

Data-parallel operations are performed on collection elements so scheduling can be done
by partitioning the collection into element subsets. Implementing a parallel foreach
method from Section 2.2 requires that subsets of elements are assigned to different
processors. These subsets can be assigned to different threads – each time a user invokes
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the foreach method on some collection, a thread is created and assigned a subset of
elements to work on. However, thread creation is expensive and can exceed the cost of
the collection operation by several orders of magnitude. For this reason it makes sense
to use a pool of worker threads in sleeping state and avoid thread creation each time a
parallel operation is invoked.

There exists a number of frameworks that implement thread pools, a prominent one
being the Java Fork/Join Framework [Lea(2000)] that is now a part of JDK. Fork/Join
Framework introduces an abstraction called a Fork/Join task which describes a unit of
work to be done. This framework also manages a pool of worker threads, each being
assigned a queue of Fork/Join tasks. Each task may spawn new tasks (fork) and later
wait for them to finish (join).

The simplest way to schedule work between processors is to divide it into fixed-size
chunks and schedule an equal part of these on each processor. There are several problems
with this approach. First of all, if one chooses a small number of chunks, this can result
in poor workload-balancing. Assuming that some of the elements have a lot more work
associated with them than the others, a processor may remain with a relatively large
chunk at the end of the computation, and all other processors may have to wait for it
to finish. Alternatively, a large number of chunks guarantees better granularity and
load-balancing, but imposes a higher overhead, since each chunk requires some scheduling
resources. One can derive expressions for theoretically optimal sizes of these chunks
[Kruskal and Weiss(1985)], but the driving assumptions for those expressions assume a
large number of processors, do not take scheduling costs into account and ignore effects
like false-sharing present in modern multiprocessor systems. Other approaches include
techniques such as guided self scheduling [Polychronopoulos and Kuck(1987)] or factoring
[Hummel et al.(1992)Hummel, Schonberg, and Flynn].

An optimal execution schedule may depend not only on the number of processors and
data size, but also on irregularities in the data and processor availability. Since these
circumstances cannot be anticipated in advance, runtime information must be used to
guide load-balancing. Task-based work-stealing [Blumofe and Leiserson(1999)] has been
a method of choice for many applications that require runtime load-balancing.

In task-based work-stealing, work is divided to tasks and distributed among workers
(typically processors or threads). Each worker maintains a task queue. Once a processor
completes a task, it dequeues the next one. If its queue is empty, the worker tries to steal
a task from another worker’s queue. This topic has been researched in depth, and in the
context of this thesis we rely on the Java Fork/Join Framework to schedule asynchronous
computation tasks [Lea(2000)].

Lets assume that the amount of work per element is the same for all elements. We
call such a data-parallel workload uniform. Making tasks equally sized guarantees that
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the longest idle time is equal to the time to process one task. This happens if all the
processors complete when there is one more task remaining. If the number of processors
is P , the work time for P = 1 is T and the number of tasks is N , then equation 2.1
denotes the theoretical speedup in the worst case.

speedup = T

(T − T/N)/P + T/N
→

P→∞
N (2.1)

Thread wake-up times, synchronization costs, memory access costs and other real-world
effects have been omitted from this idealized analysis. In practice, there is a considerable
overhead with each created task – we cannot expect to have a work-stealing task for each
element. Fewer tasks reduce the overheads of scheduling, but reduce the potential for
parallelization.

More importantly, some parts of a parallel computation always need to execute sequen-
tially, and comprise a serial bottleneck of the parallel computation. For example, creating
the top-level task object and waking up the worker threads cannot be parallelized. The
serial bottlenecks impose an upper bound on the possible speedup from parallelization.
This is known as the Amdahl’s Law, and is captured in the following equation, where
T (x) is the execution time of the parallel program when it is executed by x processors,
B is the fraction of the program that has to execute serially, and P is the number of
processors in the system:

speedup = T (1)
T (P ) = 1

B + 1
P · (1−B)

→
P→∞

1
B

(2.2)

This simple observation tells us that, regardless of the number of processors P in the
system, we can never accelerate the program by more than 1

B times.

Data-parallel workloads are in practice irregular (i.e. there is a different amount of work
associated with each element), not only due to the properties of the data in the underlying
program, but also due to different processor speeds, worker wakeup time, memory access
patterns, managed runtime mechanisms like garbage collection and JIT compilation,
interaction with the underlying operating system and other causes. In practice every
data-parallel operation executed on multiple CPUs has an irregular workload to some
degree.

We found that exponential task splitting is effective when load-balancing data-parallel oper-
ations [Cong et al.(2008)Cong, Kodali, Krishnamoorthy, Lea, Saraswat, and Wen]. The
main idea behind this technique is the following. If a worker thread completes its work
with more tasks in its queue that means other workers have not been stealing tasks from
it. The reason why other workers are not stealing tasks is because they are preoccupied
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Figure 2.17: Fine-grained and exponential task splitting

with work of their own, so it is safe to assume that they will continue to be busy in the
future – the worker does more work with the next task. The heuristic is to double the
amount of work before checking again (Figure 2.17). However, if the worker thread does
not have more tasks in its queue, then it must steal a task from another worker. The
stolen task is always the biggest task on a queue.

There are two points worth mentioning here. First, stealing tasks is generally more
expensive than popping them from the worker’s own queue. Second, the Fork/Join
framework allows only the oldest tasks on the queue to be stolen. The former means
the less times stealing occurs, the better – we will want to steal bigger tasks. The latter
means that which task gets stolen depends on the order tasks were pushed to the queue
(forked). We will thus push the largest tasks first. Importantly, after a task is stolen, it
gets split until reaching some threshold size. This allows other workers to potentially
steal tasks. This process is illustrated in Figure 2.17.

We show the pseudocode for exponential task splitting in Figure 2.18, where an abstract
Fork/Join task called Batch[R] is shown. Its abstract methods are implemented in
specific data-parallel operations.

Before we discuss the pseudocode, we note that two additional optimizations have been
applied in Figure 2.18. When splitting a task into two tasks, only one of them is
pushed to the queue, and the other is used to recursively split as part of computation.
Pushing and popping to the queue involves synchronization, so directly working on a
task improves performance. Furthermore, Java Fork/Join Framework support unforking
tasks previously put to the task queue by calling tryUnfork. After a worker finishes
with one of the tasks, it tries to unfork the previously forked task in line 20 and work on
it directly instead of calling join.

Once a data-parallel operation is invoked on a collection, a Fork/Join task executes
its compute method in line 9. The compute method may decide that this task needs
to be divided into smaller tasks, and calls the method internalTask to do this. The
internalTask method in turn calls unfold to divide the collection into smaller parts.
The corresponding collection is then split into two parts by the split method. The
right child task is chained to the list of forked tasks in line 28 using its next pointer.
The right task is then forked in line 29. Forking a task means that the task gets pushed
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abstract class Batch[R] extends RecursiveTask[R] {1
var next: Batch[R] = null2
var result: R3
def split: (Batch[R], Batch[R])4
def merge(that: Batch[R]): Unit5
def mustSplit: Boolean6
def leafTask(): Unit7
def compute() {8

if (mustSplit) internalTask()9
else leafTask()10

}11
def internalTask() = {12

var last = unfold(this, null)13
last.leafTask()14
result = last.result15
fold(last.next)16

}17
def fold(last: Batch[T]) {18

if (last != null) {19
if (last.tryUnfork()) last.leafTask()20
else last.join()21
this.merge(last)22
fold(last.next)23

}24
}25
def unfold(head: Batch[R], last: Batch[R]): Batch[R] = {26

val (left, right) = head.split27
right.next = last28
right.fork()29
if (head.mustSplit) unfold(left, right)30
else {31

left.next = right32
left33

}34
}35

}36

Figure 2.18: Exponential Task Splitting Pseudocode

on the processor’s task queue. The left child task is split recursively until a threshold
governed by the abstract mustSplit method is reached – at that point subset of elements
in the smallest left task is processed sequentially in the leafTask call in line 7, which
corresponds to the leftmost leaf of the computation tree in Figure 2.17. This call also
assigns the result of processing that particular batch of elements to its result field.
After finishing with one task, the worker tries to unfork a task from its queue if that
is possible by calling tryUnfork in line 20. In the event that unforking is not possible
due to the task being stolen and worked on by another processor, the worker calls join.
Once the last task is known to have its result field set, the worker merges its result
with the result in the current task by calling the abstract merge method.

Since tasks are pushed to the queue, the last (smallest) task pushed will be the first task
popped. At any time the processor tries to pop a task, it will be assigned an amount of
work equal to the total work done since it started with the leaf. On the other hand, if
there is a processor without tasks in its own queue, it will steal from the opposite side of
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the queue. When a processor steals a task, it again divides that task until it reaches the
threshold size.

The worst case scenario is that a worker pops the last remaining, biggest task from its
queue. We know this task came from the processor’s own queue (otherwise it would have
been split, enabling the other processors to steal and not be idle). At this point the
processor will continue working for some time TL. If we assume that the input data is
relatively uniform, then TL must be approximately equal to the time spent up to that
moment. This is because the tasks are split in two recursively, so the biggest task has
approximately the same number of elements as all the smaller tasks. If the task size is
fine-grained enough to be divided among P processors, work up to that moment took
(T − TL)/P , so TL = T/(P + 1). Total time for P processors is then TP = 2TL. The
equation 2.3 gives a bound on the worst case speedup, assuming P � N , where N is the
number of generated tasks:

speedup = T

TP
= P + 1

2 (2.3)

This estimate says that if the workload is relatively uniform, then the execution time is
never more than twice as great as the lower limit, given that the biggest number of tasks
generated is N � P . To ensure that there are sufficient tasks, we define the minimum
task size as threshold = max(1, n

8P ), where n is the number of elements to process.

An important thing to notice here is that the threshold controls the maximum number of
tasks that get created. Even if the biggest tasks from each task queue always get stolen,
the execution degenerates to the balanced computation tree shown in figure 2.17. The
likelihood of this to happen has shown to be small in practice and exponential splitting
generates less tasks than dividing the collection into equal parts.

The task-based work-stealing data-parallel scheduling shown in this section does effective
load-balancing for relatively uniform data-parallel workloads. In Chapter 5 we show
a more complex work-stealing scheduling technique specifically designed for irregular
data-parallel computations.

2.8 Compile-Time Optimisations

The genericity of the data-parallel collection framework shown so far comes with abstrac-
tion costs that are sometimes unacceptable. In this section we classify such costs and
describe ways to deal with them.

The most important data-parallel collection framework requirement is that it allows the
clients to write faster programs. Programs can then be made faster by running them on
more processors – we say that a data-parallel framework needs to be scalable. However,
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even if it scales well, there is little use of a parallel collection framework that needs
several processors to be as fast as the optimal sequential collections framework. Today’s
desktop processors have a dozen or less cores, so it is wasteful to use them to overcome
inefficiencies in the framework.

Another important reason to optimize data-parallel operations is to better understand
the scalability of a parallel algorithm. An optimal data-parallel program often has
very different performance characteristics than a non-optimal one. In a non-optimal
data-parallel program, computational resources are spent parallelizing executions which
are not present in an optimal data-parallel program, often resulting in different scalability
characteristics.

Abstraction penalties are one example of an execution present in a non-optimal program.
To illustrate how non-optimal executions, such as abstraction penalties, affect scalability,
we show two versions of a simple data-parallel reduce operation. We run both of them
on the Intel 3.40 GHz Quad Core i7-2600 processor. In the first version, we call reduce
on a hash table containing integers. The first version uses the classic Scala Parallel
Collections framework [Prokopec et al.(2011c)Prokopec, Bagwell, Rompf, and Odersky],
which incurs boxing and other indirection penalties. In the second version, we call
reduce on an array containing integers. The second version uses the ScalaBlitz frame-
work [Prokopec et al.(2014b)Prokopec, Petrashko, and Odersky], described later in this
section. ScalaBlitz relies on Scala Macros to eliminate abstraction penalties related to
boxing and using iterators. The ScalaBlitz framework uses the toPar method to denote
a parallel execution.

hashset.par.reduce(_ + _) array.toPar.reduce(_ + _)

The hashset contains 5M elements in the Parallel Collections version, and the array
contains 50M elements in the ScalaBlitz version. The graph in Figure 2.19 shows two
curves, which reflect the running times of the two reduce operations. Note that we
chose different collection sizes to bring the two curves closer together. The Parallel
Collection version scales nicely – the speedup for four processors is 2.34×. The ScalaBlitz
framework scales much worse for this workload – the speedup is only 1.54×. From
this, we might conclude that Parallel Collections framework is better at data-parallel
scheduling, but this is not the case. The reason why ScalaBlitz is unable to obtain a
better speedup is not because processors are idling without work, but because they are
unable to simultaneously retrieve more data from the main memory. The Intel 3.40 GHz
Quad Core i7-2600 processor has a dual-channel memory controller – when the processors
spend most of their time fetching data from memory and almost no time working on the
data (as is the case with the _ + _ operator for the reduce), the maximum parallelism
level that this architecture can support is 2. By contrast, the Parallel Collections version
spends time boxing and unboxing data elements, checking the (open-addressing) hash
table for empty entries, and updating the local iterator state. The memory bus traffic is,
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Figure 2.19: ScalaBlitz and Parallel Collections for Fine-Grained Uniform Workloads

in this case, amortized by useless operations induced by abstraction penalties, hence, we
observe better scalability regardless of the worse absolute performance.

This performance effect is not a random artifact of the ScalaBlitz framework. We
can manually reproduce it by starting P threads, each of which traverses and sums
P contiguous disjoint subintervals, with size n

P , of an array with size n. On the Intel
3.40 GHz Quad Core i7-2600 processor, we will not obtain a speedup larger than 2. In
comparison, the UltraSPARC T2 processor, with four dual-channel memory controllers,
exhibits a much nicer scalability in this example.

We feel that this is a canonical example of how a suboptimal framework exhibits different
performance characteristics than an optimized one. Upon optimizing the program,
a separate set of performance effects becomes evident, and impacts the program’s
performance characteristics, such as scalability, in unforeseen ways.

This example should be a convincing argument why optimising data-parallel operations
is important before starting to reason about their scalability. A data-parallel operation
that is 10× slower than the optimal one can be perfectly scalable, but this does not mean
that the same data-parallel operation is faster than the corresponding optimal sequential
version. Before making any claims about the scalability of a data-parallel framework, we
should always make sure that the framework is optimal when compared to the sequential
baseline.

2.8.1 Classifying the Abstraction Penalties

The task of implementing an efficient data-parallel framework is made hard by the fact
that data-parallel frameworks offer genericity on several levels. First, parallel operations
are generic both in the type of the data records and the way these records are processed.
Orthogonally, records are organized into data sets in different ways depending on how
they are accessed – as arrays, hash-tables or trees. Let us consider the example of a
subroutine that computes the mean of a set of measurements to illustrate these concepts.

48



2.8. Compile-Time Optimisations

We show both its imperative and data-parallel variant.

def mean(x: Array[Int]) = {
var sum = 0
while (i < x.length) {

sum += x(i); i += 1
}
return sum / x.length

}

def mean(x: Array[Int]) = {
val sum = x.par.fold(0) {

(acc, v) => acc + v
}
return sum / x.length

}

The data-parallel operation that the declarative-style mean subroutine relies on is fold,
which aggregates multiple values into a single value. This operation is parametrized by
the user-specified aggregation operator. The data set is an array and the data records
are the array elements, in this case integers. A naive implementation of a parallel fold
method might be as follows:

def fold[T](xs: ParIterable[T], z: T, op: (T, T) => T) = {37

val (left, right) = xs.splitter.split38

def par(s: Splitter[T]) = forkAndJoin {39

var sum = z40

while (s.hasNext) sum = op(sum, s.next())41

sum42

}43

return op(par(left), par(right))44

}45

This fold implementation assumes we have a uniform workload and only 2 processors,
so it divides the splitter of xs into two child splitters. These left and right child
splitters are processed in parallel – from a high-level perspective, this is done by the
forkAndJoin call. Once all the workers complete, their results can be aggregated
sequentially. We focus on the work done by separate workers, namely, lines 40 through 42.
Note that the while loop in those lines resembles the imperative variant of the method
mean, with several differences. The neutral element of the aggregation z is generic and
specified as an argument. Then, instead of comparing a local variable i against the array
length, method hasNext is called, which translates to a dynamic dispatch. The second
dynamic dispatch updates the state of the splitter and returns the next element and
another dynamic dispatch is required to apply the summation operator to the integer
values.

These inefficiencies are referred to as the abstraction penalties. We can identify several
abstraction penalties in the previous example. First of all, in typical object-oriented
languages such as Java or C++ the dynamic dispatches amount to reading the address
of the virtual method table and then the address of the appropriate method from that
table. Second, and not immediately apparent, the splitter abstraction inherently relies on
maintaining the traversal continuation. The method next must read an integer field, check
the bounds and write the new value back to memory before returning the corresponding
value in the array. The imperative implementation of mean merely reads the array value
and updates i in the register. The third overhead has to do with representing method
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parameters in a generic way. In languages like Java, Scala and OCaml primitive values
passed to generic methods are converted to heap objects and their references are used
instead. This is known as boxing and can severely impact peformance. While in languages
like C++ templating can specialize the fold for primitive types, generic type parameters
are a problem for most managed runtimes.

It is important to note that most of the computational time in a data-parallel operation
is spent in the lines 40 through 42, which we refer to as the batch processing loop.
Eliminating the abstraction penalties in the batch processing loop is the key to achieving
efficient parallelization.

2.8.2 Operation and Data Structure Type Specialization

In the context of the JVM compilation techniques were proposed to eliminate boxing
selectively, like the generic type specialization transformation used in Scala [Dragos(2010)]
[Dragos and Odersky(2009)]. Most of the abstractions introduced so far were parametrized
by the type of the elements contained in the collections. For example, Splitters
have a type parameter T denoting the type of the elements contained in correspond-
ing collections. Abstractions and internals of a data-parallel framework that inter-
act with those abstractions must be specialized with the @specialized annotation
[Prokopec et al.(2014b)Prokopec, Petrashko, and Odersky].

However, generic type specialization focuses exclusively on problems related to erasure.
While it can be used to eliminate boxing, it does not eliminate other abstraction penalties.

2.8.3 Operation Kernels

To eliminate unneeded method call indirections and the use of splitters in the batch
processing loop, every invocation of a data-parallel operations needs to be specialized
for a particular callsite. This specialization involves inlining the splitter logic and the
operation parameters into the generic operation body, as was done in the ScalaBlitz
framework [Prokopec et al.(2014b)Prokopec, Petrashko, and Odersky].

At every callsite we create a kernel object that optimizes the data-parallel operation.
The Kernel object describes how a batch of elements is processed and what the resulting
value is, how to combine values computed by different workers and what the neutral
element for the result is. The kernel interface is shown in Figure 2.20. The method
apply takes the splitter as the argument. It uses the splitter to traverse its elements and
compute the result of type R. The method combine describes how to merge two different
results and zero returns the neutral element.
How these methods work is best shown through an example of a concrete data-parallel
operation. The foreach operation takes a user-specified function object f and applies it
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trait Kernel[T, R] {46
def zero: R47
def combine(a: R, b: R): R48
def apply(it: Splitter[T]): R49

}50
Figure 2.20: The Kernel Interface

in parallel to every element of the collection. Assume we have a collection xs of integers
and we want to assert that each integer is positive:

xs.foreach(x => assert(x > 0))

The generic foreach implementation is as follows:
def foreach[U](f: T => U): Unit = {

val k = new Kernel[T, Unit] {
def zero = {}
def combine(a: Unit, b: Unit): Unit = {}
def apply(it: Splitter[T]) =

while (it.hasNext) f(it.next())
}
invokeParallel(k)

}

The Unit type indicates no return value – the foreach function is executed merely for its
side-effect, in this case a potential assertion. Methods zero and combine always return
the Unit value () for this reason. Most of the processing time is spent in the apply
method, so its efficiency drives the running time of the operation. We use the Scala
Macro system [Burmako and Odersky(2012)] to inline the body of the function f into
the Kernel at the callsite:

def apply(it: Splitter[T]) =
while (it.hasNext) assert(it.next() > 0)

Another example is the fold operation mentioned in the introduction and computing
the sum of a sequence of numbers xs:

xs.fold(0)((acc, x) => acc + x)

Operation fold computes a resulting value, which has the integer type in this case.
Results computed by different workers have to be added together using combine before
returning the final result. After inlining the code for the neutral element and the body
of the folding operator, we obtain the following kernel:

new Kernel[Int, Int] {
def zero = 0
def combine(a: Int, b: Int) = a + b
def apply(it: Splitter[Int]) = {

var sum = 0
while (it.hasNext) sum = sum + it.next()
sum

}
}

While the inlining shown in the previous examples avoids a dynamic dispatch on the
function object, the while loop still contains two virtual calls to the splitter. Maintaining
the splitter requires writes to memory instead of registers. It also prevents optimizations
like loop-invariant code motion, e.g. hoisting the array bounds check necessary when the
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def apply(it: RangeSplitter) =51
var sum = 052
var p = it.i53
val u = it.until54
while (p < u)55

sum = sum + p56
p += 157

return sum58

def apply(it: ArraySplitter[T]) =59
var sum = 060
var p = it.i61
val u = it.until62
while (p < u)63

sum = sum + array(p)64
p += 165

return sum66

Figure 2.21: The Specialized apply of the Range and Array Kernels for fold

def apply(it: TreeSplitter[T]) = {67
def traverse(t: Tree): Int =68

if (t.isLeaf) t.element69
else traverse(t.left) + traverse(t.right)70

val root = i.nextStack(0)71
traverse(it.root)72

}73

Figure 2.22: The Specialized apply of the Tree Kernel for fold

splitter traverses an array.

For these reasons, we would like to inline the iteration into the apply method itself.
This, however, requires knowing the specifics of the data layout in the underlying data-
structure. Within this section we rely on the macro system to apply these transformations
at compile-time – we will require that the collection type is known statically to eliminate
the next and hasNext calls.

IndexKernel. Data-structures with fast indexing such as arrays and ranges can be
traversed efficiently by using a local variable p as iteration index. Figure 2.21 shows
range and array kernel implementations for the fold example discussed earlier. Array
bounds checks inside a while loop are visible to the compiler or a runtime like the JVM
and can be hoisted out. On platforms like the JVM potential boxing of primitive objects
resulting from typical functional object abstractions is eliminated. Finally, the dynamic
dispatch is eliminated from the loop.

TreeKernel. The tree splitters introduced in Section 2.3 assumed that any subtree can
be traversed with the next and hasNext calls by using a private stack. Pushing and
popping on this private stack can be avoided by traversing the subtree directly. Figure
2.22 shows a kernel in which the root of the subtree is traversed with a nested recursive
method traverse.

HashKernel. The hash-table kernel is based on an efficient while loop like the array and
range kernels, but must account for empty array entries. Assuming flat hash-tables with
linear collision resolution, the while loop in the kernel implementation of the previously
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mentioned fold is as follows:
while (p < u) {

val elem = array(p)
if (elem 6= null) sum = sum + elem
p += 1

}

Splitter implementations for hash-tables based on closed addressing are similar.

2.8.4 Operation Fusion

Basic declarative operations such as map, reduce and flatMap allow expressing a wide
range of programs, often by pipelining these combinators together. The downside of
pipelining is that it allocates intermediate collections that can be eliminated through
loop fusion. In this section we give several examples on how operations can be fused
together.

A common pattern seen in programs is a transformer operation like a map followed by an
aggregation like reduce:

def stdev(xs: Array[Float], mean: Float): Float =
xs.map(x => sqr(abs(x - mean))).reduce(_ + _)

A pattern such as a map call followed by a reduce call can be detected in code and
replaced with a more efficient mapReduce operation as follows:

def stdev(xs: Array[Float], mean: Float): Float =
xs.mapReduce(x => sqr(abs(x - mean)))(_ + _)

Another example are for-comprehensions in Scala that allow expressing data queries
more intuitively. Assume we have a list of employee incomes and tax rates, and we want
to obtain all the tax payments for the employees. The following for-comprehension does
this:

for (i <- income.toPar; t <- taxes) yield i * t

The Scala compiler translates this into map and flatMap calls:
income.toPar.flatMap(i => taxes.map(t => i * t))

We want to avoid having intermediate collections for each employee generated by the
map. To do this, before generating the kernel apply method, we rewrite the kernel code
according to the following translation scheme:

xs.map(f).foreach(g) ⇒ inline[xs.foreach(x => g(f(x)))]

Above we rewrite any two subsequent applications of a map with a mapping function
f and a foreach with a traversal function g to a single foreach call with a traversal
function obtained by fusing and inlining f and g. Thus, the while part of the array
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transformer kernel apply following from flatmap above:
while (p < u) {

taxes.map(t => array(p) * t).foreach(s => cmb += s)
p += 1

}

that uses a combiner cmb, is rewritten to:
while (p < u) {

taxes.foreach(t => cmb += array(p) * t)
p += 1

}

An additional rewrite rule for flatMap and foreach expressions allows us to transform
arbitrarily nested for-comprehensions into nested foreach loops.

xs.flatMap(f).foreach(g) ⇒ inline[xs.foreach(x => f(x).foreach(g))]

While the rewrite-rule approach does not cover many optimizations opportunities that a
more complex dataflow analysis can address, it optimizes many bottlenecks and offers
significant benefits in performance.

2.9 Linear Data Structure Parallelization

In the previous sections we focused on parallelizable data structures, i.e. data structures
that can be divided into subsets in O(logn) time or better, where n is the number of
elements in the data structure. Not all common data structures fit into this category.
Indeed, data structures such as linked lists are unsuitable for parallelization methods
seen so far, as splitting an arbitrary linked list requires traversing half of its elements.
For many operation instances such an O(n) splitting is unacceptable – in this case it
might be more efficient to first convert the linked list into an array and then use splitters
on the array.

In this section we study alternative approaches to parallelizing collection operations on
linear data structures like linked lists and lazy streams. We note that the parallelization
for these data structures does not retain information about the relative order of elements
– the operators applied to their data-parallel operations need to be commutative.

2.9.1 Linked Lists and Lazy Streams

A linked list data structure consists of a set of nodes such that each node points to
another node in the set. A special node in this set is considered to be the head of the
linked list. We consider connected linked lists without loops – every node can be reached
from the head, no two nodes point to the same node and no node points at the root.
Lazy streams are similar to linked lists with the difference that some suffix of the lazy
stream might not be computed yet – it is created the first time it is accessed.
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class Invocation[T](xs: List[T]) {74
@volatile var stack = xs75
def READ = unsafe.getObjectVolatile(this, OFFSET)76
def CAS(ov: List[T], nv: List[T]) = unsafe.compareAndSwapObject(this, OFFSET, ov, nv)77

}78
79

abstract class ListTask[T] extends RecursiveTask[T] {80
val inv: Invocation[T]81
def workOn(elem: T): Unit82
def compute() {83

val stack = inv.READ84
stack match {85

case Nil =>86
// no more work87

case head :: tail =>88
if (inv.CAS(stack, tail)) workOn(stack)89
compute()90

}91
}92

}93
94

class ListForeach[T, U](f: T => U, val inv: Invocation[T]) extends ListTask[T] {95
def workOn(elem: T) = f(elem)96

}97
98

implicit class ListOps[T](val par: Par[List[T]]) {99
def foreach[U](f: T => U) = {100

val inv = new Invocation(par.seq)101
val tasks = for (i <- 0 until P) yield new ListForeach[T](f, inv)102
for (t <- tasks) t.fork()103
for (t <- tasks) t.join()104

}105
}106

Figure 2.23: Parallel List Operation Scheduling

We show a way to parallelize linked list operations in Figure 2.23, where the linked list
itself is used as a stack of elements. In the concrete example above we use the immutable
Lists from the Scala standard library. The stack is manipulated using atomic READ and
CAS operations 4 to ensure that every element is assigned to exactly one worker. After
reading the stack field in line 84, every worker checks whether it is empty, indicating
there is no more work. If the list is non-empty, every worker attempts to replace the
current list by its tail with the CAS line 89. Success means that only that worker
replaced, so he gains ownership of that element – he must call workOn to process the
element. If the CAS is not successful, the worker retries by calling the tail-recursive
compute again.

The algorithm is correct – a successful CAS in line 89 guarantees that the stack field has
not changed its value since the READ in line 84. No linked list suffix will ever appear
more than once in the field stack because there are no more loops in the linked list
when following the tail pointer. Furthermore, every linked list node will appear in the
stack field at least once since the list is connected. Together, these properties ensure

4The atomic READ and the CAS operation are implemented in terms of sun.misc.Unsafe object
that allows executing low-level JVM operations on memory addresses computed with the this pointer
and the OFFSET of a particular object field. In the later sections we avoid this implementation detail and
implicitly assume that operations like READ and CAS exist on a particular data structure.
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that every linked list element is assigned to exactly one worker.

The algorithm shown in Figure 2.23 is lock-free – although many threads compete to
update the field stack at the same time, after a certain finite number of steps some
thread will always complete its operation. In general this number of steps can depend
on the size of the data structure or the number of competing workers, but in this case
the number of steps is constant and equals the number of instructions between two
consecutive CAS calls in line 89.

2.9.2 Unrolled Linked Lists

The scheduling for linked lists shown in the previous section is lock-free, but it has two
main disadvantages. First, it is inefficient for low per-element workloads. Second, it is
not scalable since workers need to serialize their accesses to the stack field. It is thus
suitable only for operations where the per-element workload is much higher than the
scheduling cost – one should not attempt to compute a scalar product of two vectors
this way.

Unrolled linked lists consist of a set of nodes, each of which contains a contiguous
array of elements, called a chunk. In essence, the type Unrolled[T] is equivalent to
List[Array[T]]. Unrolled linked list amortize the scheduling costs of algorithm in Figure
2.23 by processing all the elements in the chunk in the workOn call. For low per-element
workloads this makes the scheduler efficient after a certain chunk size, but not scalable –
as the number of workers rise hardware cache-coherency protocols become more expensive,
raising the minimum chunk size for efficient scheduling. A similar contention effect is
shown later on a concrete experiment in Figure 5.7 of Chapter 5, where the number of
elements in the chunk is shown on the x-axis and the time required to process the loop
on the y-axis.

2.10 Related Work

General purpose programming languages and the accompanying platforms currently
provide various forms of library support for parallel programming. Here we give a short
overview of the related work in the area of data parallel frameworks, which is by no
means comprehensive.

Data-parallelism is a well-established concept in parallel programming languages dating
back to APL in 1962 [Iverson(1962)], subsequently adopted by NESL [Blelloch(1992)],
High Performance Fortran and ZPL. With the emergence of commodity parallel hardware
data parallelism is gaining more traction. Frameworks like OpenCL and CUDA focusing
mainly on GPUs are heavily oriented towards data parallelism, however, they impose
certain programming constraints such as having to avoid general recursion and nested data-
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parallelism. Chapel [Chamberlain(2013)] is a parallel programming language supporting
both task and data parallelism that improves the separation between data-structure
implementation and algorithm description. Many other frameworks and languages adopt
data parallelism.

.NET langugages have support for common parallel programming patterns, such as
parallel looping constructs, aggregations and the map/reduce pattern [Toub(2010)].
These constructs relieve the programmer of having to reimplement low-level details such
as correct load-balancing between processors each time a parallel application is written.
The .NET Parallel LINQ framework provides parallelized implementations of .NET
query operators. On the JVM, the Java ParallelArray [Lea(2014)] is an early example
of a data-parallel collections. JDK 8 Parallel Streams are a recent addition, which
parallelizes bulk operations over arbitrary data structures. Data Parallel Haskell has a
parallel array implementation with parallel bulk operations [Peyton Jones(2008)]. Some
frameworks have so far recognized the need to employ divide and concquer principles
in data structure design. Fortress introduces conc-lists, a tree-like list representation
which allows expressing parallel algorithms on lists [Steele(2010)]. In this chapter, we
generalized their traversal concept to maps and sets, and both mutable and immutable
data structures.

Intel TBB [Reinders(2007)] for C++ bases parallel traversal on iterators with splitting and
uses concurrent containers to implement transformer operations. Operations on concur-
rent containers are slower than their sequential counterpartss. STAPL for C++ has a sim-
ilar approach – they provide thread-safe concurrent objects and iterators that can be split
[Buss et al.(2010)Buss, Harshvardhan, Papadopoulos, Amato, and Rauchwerger]. The
STAPL project also implements distributed containers. Data structure construction is
achieved by concurrent insertion, which requires synchronization.

X10 [Charles et al.(2005)Charles, Grothoff, Saraswat, von Praun, and Sarkar] comes with
both JVM and C backends providing task and data parallelism, while Fortress targets
the JVM, supports implicit parallelism and a highly declarative programming style.
JVM-based languages like Java and Scala now provide data-parallel support as part of
the standard library.

2.11 Conclusion

In this chapter, we provided parallel implementations for a wide range of operations found
in the Scala standard collection library. We did so by introducing two simple divide and
conquer abstractions called splitters and combiners. These abstractions were sufficient
to implement most bulk operations on most collection types. In specific cases, such as
the map operation on a parallel array, more optimal operations can be implemented by
special-casing the operation implementation. In other cases, such as linear data structures
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like linked lists, splitters could not be efficiently implemented. Different parallelization
schemes are possible in such circumstances, which may incur higher synchronization costs,
thus making the sequential baseline unachievable. Regardless of these exceptions, we
learned that the splitter/combiner model serves as a good foundation for data-parallelism
in most situations.

Having learned about the basics of implementing a data-parallel collection framework, we
turn to more specific topics in the following chapters. Relying on what we learned so far,
we will explore data structures that are more suitable for data-parallelism, investigate
parallelization in the absence of quiescence and bulk-synchronous operation mode, and
see how to schedule data-parallel workloads that are particularly irregular. Throughout
the rest of the thesis, we apply the fundamentals presented in this chapter, and use
them as a guiding principle when designing efficient data structures and algorithms for
data-parallelism.

58



3 Conc-Trees

In this chapter we investigate several data structures that are better suited for data-
parallelism. Note that balanced trees are of particular interest here. They can be
efficiently split between CPUs, so that their subsets are independently processed, and
they allow reaching every element in logarithmic time. Still, providing an efficient tree
concatenation operation and retaining these properties is often challenging. Despite the
challenge, concatenation is essential for implementing declarative data-parallel operations,
as we have learned when we introduced combiners in Chapter 2.

Concatenation is also required when parallelizing functional programs, which is one of
the design goals in Fortress. In the following we compare a cons-list-based functional
implemenation of the sum method against the conc-list-based parallel implementation
[Steele(2009)]:

def sum(xs: List[Int]) =1

xs match {2

case head :: tail =>3

head + sum(tail)4

case Nil => 05

}6

def sum(xs: Conc[Int]) =7

xs match {8

case ls <> rs =>9

sum(ls) + sum(rs)10

case Single(x) => x11

}12

The first sum implementation decomposes the data structure xs into the first element
head and the remaining elements tail. The sum is computed by adding head to the
sum of the tail, computed recursively. While efficient, this implementation cannot be
efficiently parallelized. The second sum implementation decomposes xs into two parts
ls and rs, using the (for now hypothetical) <> extractor. It then recursively computes
partial sums of both parts before adding them together. Assuming that xs is a balanced
tree, the second sum implementation can be efficiently parallelized.

Perfectly balanced trees have optimal depth and minimize traversal time to each element,
but are problematic when it comes to updating them. For example, appending an
element to a complete binary tree, and maintaining the existing ordering of elements is
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an O(n) operation. Ironically, this expensive property does not substantially increase the
performance of lookup operations, so more relaxed balancing guarantees are preferred in
practice.

In this chapter, we describe the a relaxed binary tree data-structure called Conc-tree, used
for storing sequences of elements, and several variants of the Conc-tree data structure.
The basic variant of the data structure is persistent [Okasaki(1998)], but we use it to
design efficient mutable data structures. More concretely:

• We describe a Conc-tree lists with worst-case O(logn) time persistent insert, remove
and lookup operations, and worst-case O(logn) persistent split and concatenation
operations.

• We describe the Conc-tree rope variant with optimal traversal and memory usage,
and introduce amortized O(1) time ephemeral append and prepend operations.

• We describe the conqueue data structure with amortized O(1) time ephemeral deque
operations. We then describe the lazy conqueue data structure with worst-case
O(1) time persistent deque operations. Both data structures retain the worst-case
O(logn) bound for splitting and concatenation.

• We show how to implement mutable buffers and deques using various Conc-tree
variants, reducing their constant factors to a minimum.

In Section 3.1, we introduce Conc-tree lists. We discuss Conc-tree ropes in Section 3.2.
In Section 3.3, we study conqueues and lazy conqueues. We conclude the chapter by
applying Conc-trees to several combiners introduced in Chapter 2. These modifications
will improve existing combiner implementations by a constant factor and yield a significant
speedup in data-parallel transformer operations.

3.1 Conc-Tree Lists

As noted in Chapter 2, balanced trees are good for parallelism. They can be efficiently
split between processors and allow reaching every element in logarithmic time. Providing
an efficient merge operation and retaining these properties is often challenging. In this
section we focus on the basic Conc-tree data structure that stores sequences of elements
and provides a simple, fast O(logn) concatenation.

Perfectly balanced trees have optimal depth and minimize traversal time to each element,
but they are problematic when it comes to updating them. For example, appending
a single element to a complete binary tree1 (while maintaining the existing ordering of

1In a complete binary tree all the levels except possibly the last are completely full, and nodes in the
last level are as far to the left as possible.
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abstract class Conc[+T] {13
def level: Int14
def size: Int15
def left: Conc[T]16
def right: Conc[T]17
def normalized = this18

}19
20

abstract class Leaf[T]21
extends Conc[T] {22

def left = error()23
def right = error()24

}25
26
27

case object Empty extends Leaf[Nothing] {28
def level = 029
def size = 030

}31
32

case class Single[T](x: T) extends Leaf[T] {33
def level = 034
def size = 135

}36
37

case class <>[T](left: Conc[T], right: Conc[T])38
extends Conc[T] {39

val level = 1 + left.level.max(right.level)40
val size = left.size + right.size41

}42
Figure 3.1: Basic Conc-Tree Data Types

elements) is an O(n) operation. Ironically, this expensive property does not substantially
increase the performance of lookup operations.

Trees with relaxed invariants are typically more efficient to maintain in terms of asymptotic
running time. Although they provide less guarantees on their balance, the impact of
being slightly imbalanced is small in practice – most trees break the perfect balance by
at most a constant factor. As we will see, the Conc-tree list will have a classic relaxed
invariant seen in red-black and AVL trees – the longest path from the root to a leaf is
never more than twice as long as the shortest path from the root to a leaf.

The Conc-tree data structure may be composed of several types of nodes. We will denote
that node type of the Conc-tree as Conc. This abstract data type will have several
concrete data types, similar to how the functional List data type is either an empty list
Nil or a :: (pronounced cons) of an element and another list. The Conc may either be
an Empty, denoting an empty tree, a Single, denoting a tree with a single element, or a
<> (pronounced conc), denoting two separate subtrees.

We show these basic data types in Figure 3.1. Any Conc has an associated level, which
denotes the longest path from the root to some leaf in that tree. The level is defined
to be 0 for the Empty and Single tree, and 1 plus the level of the deeper subtree for
the <> tree. The size of a Conc denotes the total number of elements contained in the
Conc-tree. The size and level are cached as fields in the <> type to prevent traversing
the tree to compute them each time they are requested. Conc trees are immutable like
cons-lists – they are never modified after construction. We defer the explanation of the
normalized method until Section 3.2 – for now normalized just returns the tree.

It is easy to see that the data types described so far can yield trees that are not balanced.
First of all, we can construct arbitrarily large empty trees by combining the Empty tree
instances with <>. We will thus enforce the following invariant – the Empty tree can
never be a part of <>, as it is a special case that can only be a Conc-tree on its own.
However, this restriction is not sufficient to make trees balanced. Here is another simple
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example in which construct a Conc-tree by iteratively adding elements to the right:

(0 until n).foldLeft(Empty: Conc[Int])((tree, x) => new <>(tree, new Single(x)))

What are the sufficient conditions to make this tree balanced? Similar to AVL trees
[Adelson-Velsky and Landis(1962)], we will require that the difference in levels of the
left subtree and the right subtree is never greater than 1. This relaxed invariant imposes
the following bounds on the number of elements in the tree with the height level. Assume
first that the tree is completely balanced, i.e. every <> node has two chilren of equal
level. In this case the size S(level) of a subtree at a particular level is:

S(level) = 2 · S(level − 1), S(0) = 1 (3.1)

This recurrence is easy to solve – S(level) = 2level. If we denote the number of elements
in the tree as n = S(level), it follows that the level of this tree is level = log2 n. Now,
assume that the tree is in a very relaxed state – every <> node at a specific level has two
subtrees such that |left.level − right.level| = 1. The size of a node at level is then:

S(level) = S(level − 1) + S(level − 2), S(0) = 1 (3.2)

This equation should be familiar to most readers, as it is one of the first recurrences most
people meet. It is the Fibonacci recurrence with the following solution:

S(level) = 1√
5

(1 +
√

5
2 )level − 1√

5
(1−

√
5

2 )level ≈ 1√
5

(1 +
√

5
2 )level (3.3)

where the second addend becomes insignificant for larger values of level, so we ignore it.
The level of such a tree with n elements is level = log 1+

√
5

2
n+ log 1+

√
5

2

√
5.

From the monotonicity of the recurrences above it follows that O(logn) is both an upper
and a lower bound for the Conc-tree depth, assuming we keep the difference in sibling
heights less than or equal to 1. The upper bound, although logarithmic, is somewhat
unfriendly to the possible maximum depth, as the base of this logarithm is approximately
1.618. Experimental data suggests that most Conc-trees are much less skewed than that
– in fact, AVL and red-black trees have the same depth bounds. Balanced trees can be
efficiently parallelized and, as explained in Section 2.3, Conc-trees are size-combining trees.
The bounds also ensure that Conc-trees have O(logn) indexing and update operations.
Their implementation is straightforward:

62



3.1. Conc-Tree Lists

def apply(xs: Conc[T], i: Int) = xs match {43

case Single(x) => x44

case left <> right =>45

if (i < left.size) apply(left, i)46

else apply(right, i - left.size)47

}48

def update(xs: Conc[T], i: Int, y: T) =49

xs match {50

case Single(x) => Single(y)51

case left <> right if i < left.size =>52

new <>(update(left, i, y), right)53

case left <> right =>54

val ni = i - left.size55

new <>(left, update(right, ni, y))56

}57

From the way that the indexing operation apply is defined it follows that a left-to-right
in-order traversal visits the elements of the Conc-tree – a foreach operation looks very
similar. The update operation produces a new Conc-tree such that the element at index i
is replaced with a new element y. This operation only allows replacing existing Conc-tree
elements and we would like to able to insert elements into the Conc-tree as well. Before
showing an O(logn) insert operation implementation we will study a way to efficiently
concatenate two Conc-trees together.

We define the implicit class ConcOps to provide nicer concatenation syntax – the expression
xs <> ys concatenates two Conc-trees together:

implicit class ConcOps[T](val xs: Conc[T]) {58

def <>[T](ys: Conc[T]) = {59

if (xs == Empty) ys else if (ys == Empty) xs60

else concat(xs.normalized, ys.normalized)61

}62

}63

The expression xs <> ys is different than the expression new <>(xs, ys), which would
simply link the two trees together with one <> node – invoking the new constructor
directly can violate the balance invariant. We thus refer to composing two trees together
with a <> node as linking. Creating a Conc-tree that respects the invariants and represents
the concatenated sequence of the two input trees we term concatenation.

The bulk of the concatenation logic is in the concat method, which is shown in Figure
3.2. This method assumes that the two trees are normalized, i.e. composed from the
basic data types in Figure 3.1 and respecting the invariants.

In explaining the code in Figure 3.2 we will make an assumption that concatenating two
Conc-trees can yield a tree whose level is either equal to the larger input Conc-tree
or greater by exactly 1. In other words, concatenation never increases the Conc-tree
level by more than 1. We call this the height-increase assumption. We will inductively
show that the height-increase assumption is correct while explaining the recursive concat
method in Figure 3.2. We skip the trivial base case of merging Single trees.
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def concat[T](xs: Conc[T], ys: Conc[T]) = {64
val diff = ys.level - xs.level65
if (abs(diff) <= 1) new <>(xs, ys)66
else if (diff < -1) {67

if (xs.left.level >= xs.right.level) {68
val nr = concat(xs.right, ys)69
new <>(xs.left, nr)70

} else {71
val nrr = concat(xs.right.right, ys)72
if (nrr.level == xs.level - 3) {73

val nr = new <>(xs.right.left, nrr)74
new <>(xs.left, nr)75

} else {76
val nl = new <>(xs.left, xs.right.left)77
new <>(nl, nrr)78

}79
}80

} else {81
if (ys.right.level >= ys.left.level) {82

val nl = concat(xs, ys.left)83
new <>(nl, ys.right)84

} else {85
val nll = concat(xs, ys.left.left)86
if (nll.level == ys.level - 3) {87

val nl = new <>(nll, ys.left.right)88
new <>(nl, ys.right)89

} else {90
val nr = new <>(ys.left.right, ys.right)91
new <>(nll, nr)92

}93
}94

}95
}96
Figure 3.2: Conc-Tree Concatenation Operation

The trees xs and ys may be in several different relationships with respect to their levels.
We compute their difference in levels into a local value diff, and use it to disambiguate
between three cases. First of all, the absolute difference between the levels of xs and
ys could differ by one or less. This is an ideal case – the two trees can be linked directly
by creating a <> node that connects them. In this case, concatenating two trees is a
constant time operation.

Otherwise, one tree has a greater level than the other one. Without the loss of generality
we assume that the left Conc-tree xs is higher than the right Conc-tree ys. To concatenate
xs and ys we need to break xs into parts, and concatenate these parts in a different
order before linking them into a larger tree. Depending on whether xs is left-leaning or
right-leaning, we proceed by cases.

First, let’s assume that xs.left.level >= xs.right.level, that is, xs is left-leaning.
The concatenation xs.right <> ys in line 69 does not increase the height of the right
subtree by more than 1. This means that the difference in levels between xs.left and
xs.right <> ys is 1 or less, so we can link them directly in line 70. We prove this by
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the following sequence of relationships:

xs.leftlevel − xs.rightlevel ∈ {0, 1} initial assumption
xslevel > yslevel + 1 initial assumption

⇒ xs.rightlevel ≥ yslevel from the balance invariant
⇒ nrlevel − xs.rightlevel ≤ 1 from the height-assumption

⇒ nrlevel − xs.leftlevel ∈ {−1, 0, 1} from the initial assumption
⇒ |(xs.left � nr)level − xslevel| ≤ 1 from xslevel − xs.leftlevel = 1

Thus, under the height-increase assumption the final concatenated tree will not increase
its height by more than 1, so we inductively proved that the assumption holds for this
case.

Now, let’s assume that xs.left.level < xs.right.level. We can no longer concate-
nate the subtrees as before – doing so might result in the balance violation. The subtree
xs.right.right is recursively concatenated with ys in line 72. Its level may be equal
to either xs.level - 2 or xs.level - 3. After concatenation we thus obtain a new
tree nr with the level anywhere between xs.level - 3 and xs.level - 1. However, if
the nr.level is equal to xs.level - 3, then xs.right.left.level is xs.level - 2 –
this follows directly from the balance invariant. Depending on the level of nr we either
link it with xs.right.left or we link xs.left with xs.right.left before linking the
result to nr. In both cases the balance invariant is retained.

xs.rightlevel − xs.leftlevel = 1 initial assumption
xslevel > yslevel + 1 initial assumption

⇒ xslevel − xs.right.rightlevel ∈ {2, 3} from the balance invariant
⇒ xs.right.rightlevel + 1 ≥ yslevel from the initial assumption
⇒ xslevel − nrrlevel ∈ {1, 2, 3} from the height-assumption

xslevel − nrrlevel = 3
⇒ xs.right.left.level = xslevel − 2 from the balance invariant

⇒ (xs.right.left � nrr)level = xslevel − 1
⇒ (xs.left � (xs.right.left � nrr))level = xslevel from xs.leftlevel = xslevel − 1

xslevel − nrrlevel ∈ {1, 2}
⇒ xslevel − xs.right.leftlevel ∈ {2, 3} from the balance invariant

⇒ (xs.left � xs.right.left)level = xslevel − 1
⇒ ((xs.left � xs.right.left) � nrr)level = xslevel
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Again, due to the height-increase assumption in the subtrees, the resulting concatenated
tree does not increase its height by more than 1. This turns the height-increase assumption
into the following theorem.

Theorem 3.1 (Height Increase) Concatenating two Conc-tree lists of heights h1 and
h2 yields a tree with height h such that |h−max(h1, h2)| ≤ 1.

Theorem 3.2 (Concatenation Running Time) Concatenating two Conc-tree lists
of heights h1 and h2 is an O(|h1 − h2|) asymptotic running time operation.

Proof. Direct linking in the concatenation operation is always an O(1) operation.
Recursively invoking concat occurs exactly once on any control path in concat. Each
time concat is called recursively, the height of the higher Conc-tree is decreased by
1, 2 or 3. Method concat will not be called recursively if the absolute difference in
Conc-tree heights is less than or equal to 1. Thus, concat can only be called at most
|xslevel − yslevel| times. �

Corollary 3.3 Concatenating two Conc-trees of heights h1 and h2, respectively, allocates
O(|h1 − h2|) nodes.

These theorems will have significant implications in proving the running times of data
structures shown later in this chapter. We now come back to the insert operation to
show the importance of concatenation on a simple example. The concatenation operation
makes expressing the insert operation straightforward:

def insert[T](xs: Conc[T], i: Int, y: T) =97

xs match {98

case Single(x) =>99

if (i == 0) new <>(Single(y), xs)100

else new <>(xs, Single(y))101

case left <> right if i < left.size =>102

insert(left, i, y) <> right103

case left <> right =>104

left <> insert(right, i - left.size, y)105

}106

Insert unzips the tree along a certain path by dividing it into two subtrees and inserting
the element into one of the subtrees. That subtree will increase its height by at most one
by Theorem 3.1, making the height difference with its sibling at most two. Merging the
two new siblings is thus O(1) by Theorem 3.2. Since the length of the path from the root
to any leaf is O(logn), the total amount of work done becomes O(logn). Note that the
complexity of the insert method remains O(logn) specifically because we concatenate
the new trees in that order. Had we been linking the trees going top-down instead of
bottom-up, the complexity would increase to O(log2 n), as we would be concatenating
consecutively smaller trees to a large tree that is slowly increasing its depth.
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Having understood how insert works and why it is an O(logn) operation, implementing
split becomes second-nature to us. The major difference is that we have to produce
two trees instead of just one:

def split[T](xs: Conc[T], n: Int): (Conc[T], Conc[T]) = xs.normalized match {107

case left <> right =>108

if (n < left.size) {109

val (ll, lr) = split(left, n)110

(ll, lr <> right)111

} else if (n > left.size) {112

val (rl, rr) = split(right, n - left.size)113

(left <> rl, rr)114

} else (left, right)115

case s: Single[T] =>116

if (n == 0) (Empty, s)117

else (s, Empty)118

case Empty =>119

(Empty, Empty)120

}121

This implementation is concise, but trips on one unfortunate aspect of the JVM – it
is not possible to return both trees at once without allocating a tuple, as the JVM
does not yet provide non-boxed value types. In our real implementation, we avoid the
need to create tuples by storing one of the resulting trees into a reference cell of type
ObjectRef[Conc[T]], which is passed around as a third argument to the split method.

Coming back to the benefits of concatenation, prepending and appending elements to a
Conc-tree list amounts to merging a Single tree with the existing Conc-tree:

def <>[T](x: T, xs: Conc[T]) =122

Single(x) <> xs123

def <>[T](xs: Conc[T], x: T) =124

xs <> Single(x)125

The downside of prepending and appending elements like this is that it takes O(logn)
time. While this is generally regarded as efficient, it is not satisfactory if most of the
computation involves appending or prepending elements, as is the case with Combiners
from the last section. We see how to improve this bound next.

3.2 Conc-Tree Ropes

In this section we show a modification of the Conc-tree data structure that supports an
amortized O(1) time append operation when used ephemerally. The reason that append
shown in the last section took O(logn) time is that it had to traverse the Conc-tree
from the root to some leaf. We note that the append position is always the same – the
rightmost leaf. However, even if we could expose that rightmost position by defining the
Conc-tree as a tuple of the root and the rightmost leaf, updating the path from that leaf
to the root would still take O(logn) time – this is because the Conc-tree is immutable.
Instead, we will relax the invariants on the Conc-tree data structure.
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First, we introduce a new type of a Conc-tree node called Append. The Append node
shown below has a structure isomorphic to the <> node. The difference is that the Append
node is not required to respect the balance invariant, that is, the heights of its left
and right Conc-trees are not constrained in any way. However, we impose the append
invariant on Append nodes, which says that the right subtree of an Append node is
never another Append node. Furthermore, the Append tree cannot contain Empty nodes.
Finally, only an Append node may point to another Append node. The Append node is
thus isomorphic to a linked list with the difference that the last node is not Nil, but
another Conc-tree.

This data type is transparent to the client and could have alternatively been encoded
as a special bit in <> nodes – clients never observe nor can construct Append nodes. A
custom extractor ensures that an Append node behaves like a <> node in a pattern match.

case class Append[T](left: Conc[T], right: Conc[T])126

extends Conc[T] {127

val level = 1 + left.level.max(right.level)128

val size = left.size + right.size129

override def normalized = wrap(left, right)130

}131

132

def wrap[T](xs: Conc[T], ys: Conc[T]) =133

xs match {134

case Append(ws, zs) => wrap(ws, zs <> ys)135

case xs => xs <> ys136

}137

The normalized method behaves differently for Append nodes. We define normalized
to return the Conc-tree that contains the same sequence of elements as the original
Conc-tree, but is composed only of the basic Conc-tree data types in Figure 3.1. We call
this process normalization. The definition in Section 3.1 already does that by returning
this. The normalized method in Append calls the recursive wrap method. The wrap
method simply folds the Conc-trees in the linked list induced by Append.

We postpone making any claims about the normalization running time for now. Note,
however, that the previously defined concat method invokes normalized twice and is
expected to run in O(logn) time. Thus, the normalized method should not be worse
than O(logn) either.

We now return to the append operation, which is supposed to add a single element at the
end of the Conc-tree. Recall that by using concat directly this operation has O(logn)
running time. We now try to implement a more efficient append operation. The invariant
for the Append nodes allows appending a new element as follows:

def append[T](xs: Conc[T], ys: Single[T]) = new Append(xs, ys)

Such an append is a constant-time operation, but it has very negative consequences
for the normalized method. Appending n elements like this results in a long list-like
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Figure 3.3: Correspondence Between the Binary Number System and Append-Lists

Conc-tree on which the normalized method, and hence concat, takes O(n logn) time.
This attempt sheds light on the fact that the amount of work done by append impacts the
complexity of the subsequent concatenation. The more time append spends organizing
the relaxed Conc-tree, the less time will a concat have to spend later when normalizing.

Before attempting a different approach to append, we note that there is a correspondence
between a linked list of trees of different levels and the digits of different weights in
a standard binary natural number representation. This correspondence is induced by
directly linking two Conc-tree nodes of the same level with a new <> node, and adding
two binary digits of the same weight.

An important property of binary numbers is that counting up to n takes O(n) compu-
tational steps, where one computational step is rewriting a single digit in the binary
representation. Adding 1 is usually an O(1) operation, but the carries chain-react and
occasionally require up to O(logn) rewrites. It follows that adding n Single trees in the
same way results in O(n) computational steps, where one computation step is linking
two trees with the same level together – a constant-time operation.

We therefore expand the append invariant – if an Append node a has another Append
node b as the left child, then a.right.level < b.right.level. If we now interpret
the Conc-trees in under Append nodes as binary digits with the weight 2level we end up
with the sparse binary number representation [Okasaki(1998)]. In this representation
zero digits (missing Conc-tree levels) are not a part of the physical structure in memory.
This correspondence is illustrated in Figure 3.3, where the binary digits are shown above
the corresponding Conc-trees and the dashed line represents the linked list formed by
the Append nodes.

Figure 3.4 shows the append operation that executes in O(1) amortized time. The
link operation in line 149, which corresponds to adding to binary digits, occurs only
for adjacent trees that happen to have the same level – in essence, append is the
implementation of the carry operation in binary addition. How does this influence the
running time of normalization? The trees in the append list are in a form that is friendly
to normalization. This list of trees of increasing size is such that the height of the largest
tree is O(logn) and no two trees have the same height. It follows that there are no
more than O(logn) such trees. Furthermore, the sum of the height differences between
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def append[T](xs: Conc[T], ys: Leaf[T]) =138
xs match {139

case Empty => ys140
case xs: Leaf[T] => new <>(xs, ys)141
case _ <> _ => new Append(xs, ys)142
case xs: Append[T] => append(xs, ys)143

}144
145

private def append[T](xs: Append[T], ys: Conc[T]) =146
if (xs.right.level > ys.level) new Append(xs, ys)147
else {148

val zs = new <>(xs.right, ys)149
xs.left match {150

case ws @ Append(_, _) =>151
append(ws, zs)152

case ws =>153
if (ws.level <= xs.level) ws <> zs154
else new Append(ws, zs)155

}156
}157

Figure 3.4: Append Operation

adjacent trees is O(logn). By Theorem 3.1 concatenating any two adjacent trees y and z
in the strictly decreasing sequence t∗xyzs∗ will yield the tree with height no larger than
the height of x. By Theorem 3.2, the total amount of work required to merge O(logn)
such trees is O(logn). Thus, appending in the same way as incrementing binary numbers
yields a list of trees for which normalization runs in the required O(logn) time.

Note that the public append method takes a Leaf node instead of a Single node. The
conc-lists from Section 3.1 and their variant from this section have a high memory
footprint. Using a separate leaf to represent each element is extremely inefficient. Not
only does it create a pressure on the memory management system, but traversing all
the elements in such a data structure is suboptimal. Conc-tree travesal (i.e. a foreach)
should ideally have the same running time as array traversal, and its memory consumption
should correspond to the memory footprint of an array. We therefore introduce a new
type of a Leaf node in this section called a Chunk that packs the elements more tightly
together. As we will see in Section 3.4, this will also ensure very efficient mutable +=
operation.

case class Chunk[T](xs: Array[T], size: Int, k: Int) extends Leaf[T] {158

def level = 0159

}160

The Chunk node contains an array xs containing size elements. It has an additional
argument k that denotes the maximum number of elements that a Chunk can have. The
insert operation from Section 3.1 is modified to copy the target Chunk when updating
the Conc-tree, and will divide the Chunk into two if size exceeds k. Similarly, a remove
operation fuses two adjacent Chunks if their total size is below a certain threshold.

The conc-rope described in this section has one limitation. When used persistently, there
is a possibility that we obtain an instance of the Conc-tree whose next append triggers a
chain of linking operations. If we repetitively use that instance of the tree for appending,
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we lose the amortized O(1) running time. Thus, when used persistently, the conc-rope
has O(logn) appends. This data structure deserves to be mentioned nonetheless, since
its simplicity ensures good constant factors for its O(1) ephemeral use. In fact, many
applications, such as data-parallel combiners, will always use the most recent version of
the data structure. For such applications better constant factors from a simpler data
structure matter.

Still, it is fair to ask if there is a more efficient variant of Conc-trees that allows O(1)
appends and prepends when used persistently, while retaining O(logn) bounds for
concatenation. Removing these limitations is the topic of the next section – in fact, we
will show that appends and prepends can execute in O(1) worst-case time.

3.3 Conqueue Trees

In this section we present a variant of the Conc-tree data structure that supports O(logn)
worst-case time persistent concatenations, as well as O(1) worst-case persistent deque
operations. Deque (a double-ended queue) allows prepending and appending elements,
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as well as removing the first or the last element. We will refer to these four operations as
pushing and popping the head element or the last element.

Let us recount some of the difficulties with conc-ropes that lead to worst-case O(logn)
operations when conc-ropes were used persistently. The O(logn) linking steps ensue
when appending to a Conc-tree that corresponds to a sequence of 1-digits. In Figure
3.3 this sequence of 1-digits had the length two, but the sequence can have an arbitrary
length.

The reason why this happens is that the standard binary number system is too lazy in
pushing the carries forward. This number system allows the carry work to accumulate
more quickly than it is performed, so, occasionally, incrementing needs a logarithmic
amount of time. We need a number system that can push carries more often and avoid
arbitrary length 1-sequences – it can serve as a blueprint for designing deque operations.

One such number system is the Fibonacci number system shown in Figure 3.5. In this
number system the weight of a digit at position n is the n-th Fibonacci number F (n).
Sequence 110 represents the number 5, but so does the sequence 1000 – this number
system is redundant. Its important property is that for every number there exists a
representation that has no two subsequent 1 digits. We can take advantage of this
property by removing all the occurrences of the pattern 11 after every increment. In fact,
it is possible to count by removing at most one occurrence of 11 after very increment.

This number system is ideal for Conc-trees, since the transformation between two
redundant representations is a simple O(1) linking operation. The balance invariant
ensures that we can link two trees adjacent in level. If we remove one occurence of 11
after every append operation, an append operation will never take more than O(1) time.
The data structure can keep track of the lowest occurrence of the 11 pattern with an
auxiliary stack – at any point there might be several such occurrences.

However, the push operation defined like this merges the Conc-trees in the append-list
too often. As shown in that last tree in Figure 3.5, at some point we end up with a long
sequence of 0-digits at the right side of the append-list – in this state a pop operation
needs O(logn) time, because a tree with level 1 needed for the pop operation is buried
O(logn) pointer hops away in the first non-empty Conc-tree (i.e. the rightmost 1-tree
labeled 7 in the last append-list in Figure 3.5). It turns out this counting approach is
too eager in pushing the carries forward.

Allowing efficient pop operations requires not only pushing carries as far as possible, but
also keeping digits of different weights nicely distributed. We need a number system that
is tuned just right – increments and decrements must do enough, but not too much work.
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4-Digit Number System with Base 2

Interestingly, the deque based on the Fibonacci number system described above can be
modified to eliminate only occurrences of patterns 111 and 000. Although this approach
allows O(1) pop operations, it has the following disadvantage. Removing occurrences of
000 patterns requires tearing apart the tree preceding the pattern to fill in the gap. In
a number system with two digits this means that the tree preceding the 000 gap must
break in two trees of differing heights to replace the gap with the new pattern 110. This
means that every tree has to be left-leaning and this is problematic for deque operations,
which would have to break trees in either direction.

Instead of insisting on a number system with two digits, we show a positional number
system with four digits in which a digit at position i has weight 2i. This number system
is redundant – the number 5 can be represented both as 13 or as 21. Counting up in this
number system starts with numbers 0, 1, 2 and 3. Incrementing 3 requires a carry, so we
must combine two digits with weight 20 = 1 into a new 1 with weight 21 = 2. We end up
with the number 12. Continuing to count like this gives us numbers 13, 22, 23, 32, 33,
122 and so on.

Figure 3.6 shows counting up in this number system and how it corresponds to Conc-tree
lists – the bar at the bottom shows individual computational steps (i.e. rewrites) during
counting. The computational steps marked with ≡ denote carries. We use the 4$ notation
to indicate the position in the number where a carry must occur. The digit 4 is never
actually a part of the number, it merely represents an intermediate state in the rewrites.

One append-list is not sufficient to implement a deque, since it allows push and pop
operations only at one end. The deque implementation in this section will keep track of
two sequences of Conc-trees each corresponding to a 4-digit number with base 2. These
sequences will meet at their ends and occasionally exchange Conc-trees at the point
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abstract class Num[+T] extends Conc[T] {161
def leftmost: Conc[T]162
def rightmost: Conc[T]163
def rank: Int164

}165
case object Zero extends Num[Nothing] {166

def leftmost = error()167
def rightmost = error()168
def left = error()169
def right = error()170
def level = 0171
def size = 0172
def rank = 0173
override def normalized = Empty174

}175
case class Three[T]176

(_1: Conc[T], _2: Conc[T], _3: Conc[T])177
extends Num[T] {178

def leftmost = _1179
def rightmost = _3180
def left = _1181
lazy val right = _2 <> _3182
def level = 1 +183

max(_1.level, _2.level, _3.level)184
def size = _1.size + _2.size + _3.size185
def rank = 3186
override def normalized = _1 <> _2 <> _3187

}188

abstract class Conqueue[+T]189
extends Conc[T] {190

def evaluated: Boolean191
}192
case class Tip[T](tip: Num[T])193
extends Conqueue[T] {194

def left = tip.left195
def right = tip.right196
def level = tip.level197
def size = tip.size198
def evaluated = true199
def rear = error()200
override def normalized =201

tip.normalized202
}203
case class Spine[+T](204

lwing: Num[T], rwing: Num[T],205
lazy val rear: Conqueue[T]206

) extends Conqueue[T] {207
def left = lwing208
lazy val right = new <>(rear, rwing)209
lazy val level = 1 +210

max(lwing.level, rear.level, rwing.level)211
lazy val size =212

lwing.size + rear.size + rwing.size213
def evaluated = isEvaluated(rear)214
override def normalized = wrap(this)215

}216
Figure 3.7: Conqueue Data Types

where they meet, as if the whole data structure is one big conveyer belt. Later, we will
show that this deque implementation also supports O(logn) time concatenation. We will
call the deque with efficient concatentation a conqueue.

3.3.1 Basic Operations

In this section we show the conqueue push-head and pop-head operations. Note that the
push-last and pop-last operations are their mirrored versions. Similar to the conc-rope
shown in Section 3.2 we will introduce several new data types for conqueues that rely on
the basic Conc-trees from Figure 3.1. We show the conqueue data types in Figure 3.7.
Conqueue data types are divided into two groups. The Num, or number, data types on
the left correspond to digits in our number system. We only show implementations for
Zero and Three – One and Two are similar. The Num data type requires the leftmost
and the rightmost method that simply returns the leftmost or the rightmost Conc-tree
contained in it. Its rank operation returns the integer value of the corresponding digit,
e.g. One returns 1 and Two returns 2.

The Conqueue data types form the top-level conqueue structure – a conqueue is either a
Tip, denoting the point where the two sequences of Conc-trees meet, or a Spine, denoting
a pair of digits in the aforementioned number representation called lwing (left wing)
and rwing (right wing), as well as the remaining conqueue rear. The reference rear to
the remaining conqueue is a lazy value – it is only evaluated the first time it is accessed.
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def inc[T](num: Num[T], c: Conc[T]) =217
num.rank match {218

case 0 =>219
One(c)220

case 1 =>221
val One(_1) = num222
Two(c, _1)223

case 2 =>224
val Two(_1, _2) = num225
Three(c, _1, _2)226

case _ =>227
error("Causes a carry.")228

}229

def pushHead[T](conq: Conqueue[T], c: Conc[T]) =230
conq match {231

case Tip(tip) if tip.rank < 3 =>232
Tip(inc(tip, c))233

case Tip(Three(_1, _2, _3)) =>234
Spine(Two(c, _1), Two(_2, _3), Tip(Zero))235

case Spine(lw, rw, rear) if lw.rank == 3 =>236
Spine(inc(lw, c), rw, rear)237

case Spine(Three(_1, _2, _3), rw, rear) =>238
val nlw = Two(c, _1)239
val carry = _2 <> _3240
Spine(nlw, rw, $pushHead(rear, carry))241

}242
Figure 3.8: Conqueue Push-Head Implementation

The Conqueue can check if its rear part was evaluated2 with the evaluated method.
The reason why we choose to make rear lazy will become apparent soon.

We will impose the following invariant on the conqueue data structure. A Spine that
is k steps away from the root of the conqueue has a left and a right wing containing
Conc-trees whose level is exactly k. The digit in the Tip that is k steps away from the
root also contains Conc-trees with level k. With this invariant, adding an element into
the conqueue corresponds to incrementing a number in the 4-digit base-2 number system.
We call this the rank invariant.

Push-Head Operation

We show the implementation of the push-head operation in Figure 3.8. The pushHead
operation relies on a helper method inc. This method appends a Conc-tree to a Num
data type from the left, under the precondition that the Num node is less than Three.
The pushHead operation checks the shape of the conqueue conq. If conq is a Tip with
less than three Conc-trees, it simply calls the inc method. In the case of a Tip with
three trees, it distributes the four Conc-trees into a spine with a Zero tip. This is shown
in Figure 3.9 at the top of the leftmost column. If conq is a spine, we link the new tree
c to the left wing lw, and leave the right wing rw intact. If necessary, a carry is created
from two rightmost Conc-trees of the left wing and a new lazy rear is created for the
new spine. We do not call pushHead recursively, as that could trigger a chain of carry
operations and invalidate the O(1) running time bound.

An astute reader will notice that this implementation is still not worst-case O(1). Even
though we do not invoke pushHead recursively, we do read the rear field when pushing.
A series of accumulated lazy evaluation blocks could chain-react in the same way as a
recursive call could. To prevent this from happening, we need to establish a well-defined

2Scala does not allow directly checking if the lazy value has been already evaluated, so our actual
implementation encodes this differently. We assume that there is a method called isEvaluated on lazy
values for simplicity. Furthermore, we will precede the expressions that initialize lazy values with a $ – in
the absence of this notation we assume that the lazy value is forced to start with.
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Figure 3.9: Lazy Conqueue Push-Head Illustration

schedule of evaluating the lazy blocks.

Figure 3.9 uses the 4-digit number system with base 2 to illustrate push-head operations
in a conqueue. It uses the dollar sign $ followed by the digit 4 to denote the locations in
this data structure where there is an unevaluated rear. Different entries in each column
represent different conqueue states. Entries preceded by the ? sign denote that a lazy
rear was evaluated to reach this state. All other entries represent states immediately
after a pushHead operation. In this evaluation schedule we choose to evaluate exactly one
lazy rear after each pushHead operation (assuming there are any lazy rears to evaluate).
Note that at any point there might be more than one lazy rear, as is the case in the
rightmost column. The important property of this evaluation schedule is that a dollar
sign never directly precedes another dollar sign, so the evaluations can never chain-react.

To allow this evaluation schedule, we introduce the lazy conqueues with the data type
Lazy, shown in Figure 3.10. This data type wraps a main Conqueue q and maintains
two lists of references to Spines in the main Conqueue that need to have their rears
evaluated. These lists are called lstack and rstack and they point to specific left and
right wings in the conqueue. The new lPushHead method always evaluates at most one
rear from the top of each stack.
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class Lazy[T](243
lstack: List[Spine[T]],244
q: Conqueue[T],245
rstack: List[Spine[T]]246

) extends Conqueue[T] {247
def left = q.left248
def right = q.right249
def level = q.level250
def size = q.size251
def evaluated = error()252
def rear = error()253
override def normalized =254

q.normalized255
}256

257

def lPushHead[T](lq: Lazy[T], s: Single[T]) = {258
val nq = pushHead(lq.q, s)259
val nlstack =260

if (nq.evaluated) pay(lstack, 1)261
else pay(nq :: lstack, 1)262

val nrstack = pay(rstack, 1)263
Lazy(nlstack, nq, nrstack)264

}265
def pay[T](work: List[Spine[T]], n: Int) =266

if (n == 0) work else work match {267
case head :: rest =>268

if (head.rear.evaluated) pay(rest, n - 1)269
else pay(head.rear :: rest)270

case Nil => Nil271
}272

Figure 3.10: Lazy Conqueue Push-Head Implementation

Tree Shaking

The pop-head operation will be similar to the push-head, with the difference that it will
break trees rather than link them. In this sense, a popping an element closely corresponds
to a decrement. There is one obstacle to implementing pop like this – while linking
two trees of the same height guarantees increasing the tree height by one, breaking an
arbitrary Conc-tree gives no guarantee that the resulting trees have the same height. Due
to the balance invariant, a Conc-tree may be left-leaning, locally balanced or right-leaning.
Breaking the Conc-tree of level n into two trees may give Conc-trees with levels n− 1
and n− 2, n− 1 and n− 1, or n− 2 and n− 1, respectively. We cannot swap the order
of two trees in the conqueue, as that would change the ordering of elements.

It turns out that it is possible to control the Conc-tree levels after a break to a certain
extent. In particular, it is possible to convert a left-leaning Conc-tree into either a locally
balanced or a right-leaning Conc-tree, and similarly the right-leaning into either a locally
balanced or a left-leaning one. We call this process tree shaking.

The shakeLeft operation shown in Figure 3.11 guarantees that the resulting tree is
either left-leaning or locally balanced – the shakeRight method is its mirror image, so
we do not show it. If the tree for the shakeLeft is not already in the right configuration,
it and its subtrees need to be broken apart and relinked in a different order to yield the
correct leaning. We show illustrations for different shakeLeft cases on the left in Figure
3.11. In each case we enumerate the possible subtree heights. For some of the cases, e.g.
the third case, there are several different possibilities for the heights, so we stack them
on top of each other. By enumerating and examining the possible configurations the
Conc-tree can be in, we arrive at the following theorem.

Theorem 3.4 The left-shake (right-shake) operation always returns a tree that is either
left-leaning or locally balanced (respectively, right-leaning or locally balanced). If the
height of the resulting tree is different than the input tree, then the resulting tree is locally
balanced. The resulting tree is by at most 1 lower than the input tree.
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def shakeLeft[T](xs: Conc[T]): Conc[T] = {273
if (xs.level <= 1) xs274
else if (xs.left.level >= xs.right.level) xs275
else if (xs.right.right.level >= xs.right.left.level) {276

val nl = new <>(xs.left, xs.right.left)277
val nr = xs.right.right278
new <>(nl, nr)279

} else if (xs.left.left.level >= xs.left.right.level) {280
val nll = xs.left.left281
val nlr = new <>(xs.left.right, xs.right.left.left)282
val nl = new <>(nll, nlr)283
val nr = new <>(xs.right.left.right, xs.right.right)284
new <>(nl, nr)285

} else if (xs.right.left.left.level >=286
xs.right.left.right.level) {287
val nl = new <>(xs.left, xs.right.left.left)288
val nr = new <>(xs.right.left.right, xs.right.right)289
new <>(nl, nr)290

} else {291
val nll = new <>(xs.left.left, xs.left.right.left)292
val nlr =293

new <>(xs.left.right.right, xs.right.left.left)294
val nl = new <>(nll, nlr)295
val nr = new <>(xs.right.left.right, xs.right.right)296
new <>(nl, nr)297

}298
}299

Figure 3.11: Tree Shaking

Pop-Head Operation

As the discussion on tree shaking hints, popping from the conqueue does not exactly
correspond to decrementing a 4-digit base-2 number. For example, the conqueue 102

2220
can yield an equivalent conqueue 211

2220, but it can also yield the conqueues 121
2220 and

11?1
22 20. However, whenever a borrow causes a Conc-tree to break into a single tree with a
smaller height, we know that the next time that tree breaks it will yield two trees of the
same height. This follows directly from Theorem 3.4 and we call such One trees excited,
denoting them with 1?.

The task of the popHead method is to never create two consequent, Zero or non-excited
One trees. The popHead method needs to consider the following cases:

x 0 2 ⇒ x 1∗ 1
x 0 2 ⇒ x+1 2 0
x 0 2 ⇒ x 3 0

x 0 y ⇒ x 1∗ y−1

x 0 y ⇒ x+1 1 y−1

x 0 y ⇒ x 2 y−1

The pop-head operation seeks to maintain the following invariant – there is never an
evaluated rear of some Spine node such that its wings are x0z

pqr or
xyz
p0r. We will call this

the no-zero invariant. Additionally, it will ensure that there are never two consecutive
non-excited One nodes, as this allows cascading. The special case fuseAndBorrow method
fuses the Num node z (or r) and pulls it to a lower rank.
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def dec[T](num: Num[T]) =300
num match {301

case Zero =>302
error("Requires a borrow.")303

case One(_) =>304
Zero305

case Two(_1, _2) =>306
One(_2)307

case Three(_1, _2, _3) =>308
Two(_2, _3)309

}310
311

def popHead[T](conq: Conqueue[T]) = {312
conq match {313

case Tip(tip) =>314
Tip(dec(tip))315

case Spine(l, r, t) if l.rank > 1 =>316
Spine(dec(l), r, t)317

case Spine(One(_1), rw, r) =>318
r match {319

case Spine(rlw, rrw, rr) =>320
val rlm = rlw.leftmost321
val nlw =322

Two(rlm.left, rlm.right)323
val nrlw = dec(rlw)324
val nr = Spine(nrlw, rrw, rr)325
val ns = Spine(nlw, rw, nr)326
if (nrlw.rank > 0) ns327
else fix(ns)328

case Tip(Zero) =>329
Tip(rw)330

case Tip(tip) =>331
val lm = tip.leftmost332
val nlw =333

Two(lm.left, lm.right)334
val ntip = Tip(dec(tip))335
Spine(nlw, rw, ntip)336

}337
}338

339

def fix[T](s: Spine[T]) = {340
def borrow(b: Conc[T], nrr: Conqueue[T]) = {341

val bs = shakeRight(b)342
if (bs.level == b.level) {343

if (bs.left.level == b.level - 1) {344
val nrlw = Two(bs.left, bs.right)345
val nr = Spine(nrlw, s.rear.rwing, nrr)346
Spine(s.lwing, s.rwing, $fix(nr))347

} else {348
val nrlw = One(bs.right)349
val nr = Spine(nrlw, s.rear.rwing, nrr)350
val nlw = incRight(s.lwing, bs.left)351
Spine(nlw, s.rwing, $fix(nr))352

}353
} else {354

val nrlw = One(bs)355
val nr = Spine(nrlw, s.rear.rwing, nrr)356
Spine(s.lwing, s.rwing, $fix(nr))357

}358
}359
s.rear match {360

case Spine(rlw, rrw, rr) if rlw.rank == 0 =>361
rr match {362

case Spine(rrlw, rrrw, rrr) =>363
if (doesNotCause11(rrlw)) {364

val rrlm = rrlw.leftmost365
val nrrlw = dec(rrlw)366
val nrr = Spine(nrrlw, rrrw, rrr)367
borrow(rrlm, nrr)368

} else fuseAndBorrow(s)369
case Tip(Zero) =>370

Spine(s.lwing, s.rwing, Tip(rrw))371
case Tip(tip) =>372

val nrr = Tip(dec(tip))373
borrow(tip.leftmost, nrr)374

}375
case _ =>376

s377
}378

}379
Figure 3.12: Conqueue Pop-Head Implementation

In Figure 3.12 we show the implementation of the pop-head operation. We break the
popHead implementation into the base case that treats the top of the conqueue and
assumes that the rank of the argument conq is 0. The more complex recursive fix
method examines the conqueue two ranks deep and rewrites it accordingly with the
borrow method. By the Theorem 3.4, a tree may break in subtrees in three different
ways after shaking – the borrow method must treat these cases separately.

3.3.2 Normalization and Denormalization

Having shown that conqueues support O(1) worst-case time deque operations, we turn
our attention to concatenation. We recall from Section 3.1 that concatenation called
normalized on its arguments. To show that concat is O(logn) for conqueues, it remains
to show the implementation of the wrap method from Figure 3.7. This method is
similar to the wrap method on Conc-tree ropes that we have seen earlier. We refer
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the reader to the (slightly longer) O(logn) implementation of wrap in our source code
[Prokopec(2014a)], and show a simpler, O(log2 n), version here:

def wrap[T](conq: Conqueue[T]): Conc[T] = {380

def wrap(lacc: Conc[T], q: Conqueue[T], racc: Conc[T]) = q match {381

case Spine(lw, rw, r) =>382

wrap(lacc <> lw.left <> lw.right, r, rw.left <> rw.right <> racc)383

case Tip(tip) =>384

lacc <> tip.left <> tip.right <> racc385

}386

wrap(Empty, conq, Empty)387

}388

However, the concat operation returns a Conc-tree and not a conqueue. To support
concatenation for conqueues, we must have some means of denormalizing any Conc-tree
back into a conqueue. This denormalized operation does the opposite of the wrap
operation – it unwinds smaller and smaller Conc-trees until it ends up with two long lists.
It consists of two tail recursive methods unwrap and zip. The unwrap method maintains
two stacks of Num nodes for the left and the right wings and the remaining middle of
the Conc-tree. It continuously prunes the middle of the Conc-tree and adds Conc-trees
to the smaller stack of Num nodes to ensure there are as many left wings as there are
right wings. Once this is done, the zip method simply zips the wings together. We show
the denormalized implementation in Figure 3.13 – its added complexity confirms the
folklore that it is easier to break things than to build them.

3.4 Conc-Tree Combiners

Most of the data structures shown so far were immutable. Although parts of the lazy
conqueues were modified after already being constructed, the semantics of lazy values
ensured that a specific lazy conqueue value is always observationally the same. The data
structures so far can thus all be called persistent.

However, this persistence comes at a cost – while adding a single node to the data
structure has an O(1) running time, the constant factors involved are still large. We
have seen how introducing Chunk nodes can amortize these costs in Section 3.2. In this
section we expand this idea and show several mutable data structure that use conc-ropes
as basic building blocks.

3.4.1 Conc-Tree Array Combiner

Although the ArrayCombiner shown in Section 2.4 has O(1) appends, its resizing strategy
requires it to on average write every element twice to memory. Additionally, in a managed
runtime like the JVM reallocating an array requires a sweep phase that zeroes out its
values, only to have the combiner rewrite those default values afterwards. All these
computations add to the constant factors of the += operation.
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def denormalized[T](xs: <>[T]): Conqueue[T] = {389
def unwrap(lstack: List[Num[T]], rstack: List[Num[T]], rem: Conqueue[Conc[T]]) = {390

if (rem.isEmpty) (lstack.reverse, rstack.reverse)391
else if (lstack.length < rstack.length) {392

val remhead = rem.head393
if (394

(lstack.nonEmpty && lstack.head.rightmost.level < remhead.level) ||395
(lstack.isEmpty && remhead.level > 0)396

) {397
val nrem = remhead.left +: remhead.right +: rem.tail398
unwrap(lstack, rstack, nrem)399

} else (lstack: @unchecked) match {400
case Three(_1, _2, _3) :: ltail =>401

val added = _3 <> remhead402
if (added.level == _3.level) unwrap(Three(_1, _2, added) :: ltail, rstack, rem.tail)403
else unwrap(One(added) :: Two(_1, _2) :: ltail, rstack, rem.tail)404

case Two(_1, _2) :: ltail =>405
val added = _2 <> remhead406
if (added.level == _2.level) unwrap(Two(_1, added) :: ltail, rstack, rem.tail)407
else unwrap(One(added) :: One(_1) :: ltail, rstack, rem.tail)408

case One(_1) :: Nil =>409
val added = _1 <> remhead410
unwrap(Two(added.left, added.right) :: Nil, rstack, rem.tail)411

case One(_1) :: num :: ltail =>412
val added = _1 <> remhead413
val shaken = if (added.level == _1.level) added else shakeRight(added)414
if (shaken.level == _1.level) {415

unwrap(One(shaken) :: num :: ltail, rstack, rem.tail)416
} else if (shaken.left.level == shaken.right.level) {417

unwrap(Two(shaken.left, shaken.right) :: num :: ltail, rstack, rem.tail)418
} else num match {419

case Three(n1, n2, n3) =>420
unwrap(Two(n3 <> shaken.left, shaken.right) :: Two(n1, n2) :: ltail,421

rstack, rem.tail)422
case num =>423

unwrap(One(shaken.right) :: incRight(num, shaken.left) :: ltail,424
rstack, rem.tail)425

}426
case Nil =>427

unwrap(One(remhead) :: Nil, rstack, rem.tail)428
}429

} else {430
// the lstack.length >= rstack.length case is mirrored431

}432
}433

434
def zip(rank: Int, lstack: List[Num[T]], rstack: List[Num[T]]): Conqueue[T] =435

(lstack, rstack) match {436
case (lwing :: Nil, Nil) =>437

Tip(lwing)438
case (Nil, rwing :: Nil) =>439

Tip(rwing)440
case (lwing :: Nil, rwing :: Nil) =>441

new Spine(lwing, rwing, Tip(Zero))442
case (lwing :: ltail, rwing :: rtail) =>443

new Spine(lwing, rwing, zip(rank + 1, ltail, rtail))444
}445

446
val (lwings, rwings) = unwrap(Nil, Nil, Tip(One(new Single(xs))))447
zip(0, lwings, rwings)448

}449
Figure 3.13: Conqueue Denormalization
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We recall that the two-step array combiner adds the elements once, merges with different
combiners and then efficiently traverses all the elements. Since most of the time a data-
parallel transformer operation either adds elements to the combiner or traverses them,
we should decrease the constant factors associated with +=. We analyze its efficiency in
terms of the number of writes to memory.

class ConcBuffer[T](val k: Int) {450

private var conc: Conc[T] = Empty451

private var chunk: Array[T] = new Array(k)452

private var lastSize: Int = 0453

454

def +=(elem: T): this.type = {455

if (lastSize >= k) expand()456

chunk(lastSize) = elem457

lastSize += 1458

this459

}460

461

private def pack() {462

conc = append(conc, new Chunk(chunk, lastSize, k))463

}464

465

private def expand() {466

pack()467

chunk = new Array(k)468

lastSize = 0469

}470

}471

Conc-ropes with Chunk leaves ensure that every element is written only once. The larger
the maximum chunk size k is, the less often is a Conc operation invoked in the method
pack – this amortizes conc-rope append cost, while giving the benefits of fast traversal.
The ConcBuffer shown above is much faster than the ArrayBuffer when streaming
in elements, while in the same time supporting efficient concatenation. Due to the
underlying immutable conc-rope this buffer also allows efficient copy-on-write snapshot
operations.

3.4.2 Conc-Tree Hash Combiner

The two-step hash combiners shown in Section 2.4 have the same resizing issues as
array combiners. We modify the HashCombiner to have each bucket implemented as a
Conc-tree array combiner. Appending to the HashCombiner thus becomes very efficient
in terms of constant factors, and combining two HashCombiners becomes an O(P logn)
operation.

3.5 Related Work

Standard library collection packages of most languages come with resizeable array
implementations, e.g. the ArrayList in the JDK or the vector in C++ standard
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template library. These are mutable data structures that provide O(1) worst case time
indexing and update operations, with O(1) amortized time append operation. Their
concatenation is an O(n) operation. Functional languages come with functional cons-lists
that allow efficient prepend and pop operations, but most other operations are O(n).

Ropes are heavily relied upon in the Xerox Cedar environment. Their description by
Boehm, Atkinson and Plass [Boehm et al.(1995)Boehm, Atkinson, and Plass] performs
bulk rebalancing, after the rope becomes particularly skewed. These ropes guarantee
amortized, but not worst-case, O(logn) complexity. VList [Bagwell(2002)] is a functional
data structure for storing sequences, with logarithmic time lookup operations. Scala
Vectors [Bagwell and Rompf(2011)] are based on the immutable sequence implementation.
Its deque operations have a low constant factor, but require O(logn) time. Compared
to the standard implementation, conc-ropes have more efficient appends and are thus
more suited as combiners. The standard Vector implementation does not support
concatentation, since adding concatenation slows down the append and other operations.

Fortress expresses parallelism using recursion and pattern matching on three node types
[Allen et al.(2007)Allen, Chase, Hallett, Luchangco, Maessen, Ryu, Jr., and Tobin]. All
Conc-tree variants in this chapter provide the same programming model as Fortress Conc
lists [Steele(2009)], and this chapter investigates how to efficiently implement Conc list
operations.

Relaxing the balancing requirements to allow efficient updates was first proposed for a data
structure called the AVL tree [Adelson-Velsky and Landis(1962)]. The recursive slow-
down techniques were first introduced by Kaplan and Tarjan [Kaplan and Tarjan(1995)].
Okasaki was one of the first researchers to bridge the gap between amortization and
persistence through the use of lazy evaluation [Okasaki(1996)].

Okasaki [Okasaki(1998)] gives a good overview and an introduction to the field of
persistent data structures. The catenable real-time queues due to Okasaki allow ef-
ficient concatenation but do not have the balanced tree structure and are thus not
suitable for parallelization, nor they support logarithmic random access [Okasaki(1997)].
Hinze and Paterson describe an implementation of a lazy finger tree data structure
[Hinze and Paterson(2006)] with amortized constant time deque and concatenation oper-
ations.

3.6 Conclusion

This chapter introduced Conc-tree data structures. We learned that different Conc-tree
variants are suitable for a range of different tasks. The basic Conc-tree list comes with a
worst-case O(log n1

n2
) time concatenation operation with a low constant factor, and can be

used to implement Fortress-style Conc-tree lists [Steele(2009)]. The Conc-tree rope pro-
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vides an amortized O(1) time ephemeral append operation, while retaining the worst-case
O(logn) time concatenation bound. By introducing Chunk nodes to improve memory
footprint and data locality, the Conc-tree rope becomes an ideal data structure for data-
parallel combiners [Prokopec et al.(2011c)Prokopec, Bagwell, Rompf, and Odersky]. Fi-
nally, conqueue supports worst-case O(1) persistent deque operations along with worst-
case O(logn) time persistent split and concatenation, making it a good finger tree
implementation for both functional and imperative languages. While conqueues retain
the same asymptotic running time bounds as simpler Conc-tree variants, they have
somewhat larger constant factors due to extra complexity.

Which of these data structures should we use in practice? Along with the traditional
wisdom of picking the proper asymptotic complexity, this choice should be driven by
pragmatism. We should only pay for the extra implementation complexity of conqueues
in real-time applications, or those functional programs in which the persistent use of
a data structure is critical. For functional programs in which ephemeral use suffices,
and non-real-time applications, the Conc-tree ropes are a better choice, both in terms of
better constant factors and their simplicity.
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current Data Structures

In Chapter 2 we made several assumptions about the way data structures are used.
First of all, we assumed that operations execute in bulk-synchronous mode. Second, we
assumed that all the elements in the collection are present before a data-parallel operation
is invoked. Finally, we assumed quiescence during the execution of the operation. In this
chapter we will drop some of these constraints. In Section 4.1, we will not require that
the elements are present in the data structure before invoking the operation, and study
two examples of reactive parallelization.

In Section 4.2 we will study how data structure operations can be parallelized efficiently
without the quiescence assumption. In doing so, we will rely on a lock-free, linearizable,
lazy snapshot operation. Analogous to how lazy evaluation allows applying amortization
techniques to persistent data structures [Okasaki(1998)], in Section 4.2, we will find that
adding laziness to concurrent data structures allows applying scalable parallel snapshot
techniques. This surprising duality comes from the fact that, while laziness allows
separate persistent data structure operations to share work, concurrent data structure
operations rely on laziness to execute parts of the work in isolation.

4.1 Reactive Parallelization

There are many applications in which an operation needs to be performed on data
elements that arrive later. Streaming is one such example. We want to be able to
express what happens to the data although the data arrives from some source much
later. Another example is an asynchronous computation. Result from a potentially
long-running asynchronous operation is added to a data structure long after specifying
what to do with that result.

Dropping the assumption about the presence of elements has several consequences. The
fact that the elements are not present when the operation begins means that they have
to be added by some other thread. The fact that the data structure must be concurrently
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modified during the execution of the operation further implies that we must drop the
quiescence assumption as well – we already noted that quiescence implies the presence
of elements, so this follows naturally. Furthermore, we will focus on non-blocking data
structure operations. Since we do not know when more elements will become available,
we do not want to block the thread calling the operation, so we drop the bulk synchronous
execution assumption as well.

We call this type of parallelization reactive, because the operation reacts to the addition of
new elements into the data structure. It is not known when the elements will arrive, but
when they do, a certain operation needs to be executed on them. In the context of this
section, we focus on reactive data structures that result in deterministic programming
models.

To illustrate these concepts we start by introducing the simplest possible such data
structure, which can hold at most one element. This data structure is additionally
restricted by not allowing the contained element to change after it is added. We call this
data structure a future or a single-assignment variable.

4.1.1 Futures – Single-Assignment Values

The single-assignment variable is a data structure that can be assigned to only once.
Before it is assigned it contains no data elements – we say that it is empty or unassigned.
After it is assigned an element, it is never mutated again – trying to reassign it is a
program error. This error may manifest itself at compile-time or at runtime, and for
simplicity we will assume the latter1. A single assignment variable may be read at any
point. Reading it before it has been assigned is either a runtime error, results in an
invalid value, or postpones the read until the data element is available. Of the three
alternatives we assume the last one – this ensures that multithreaded programs written
using single-assignment variables are deterministic. Postponing could either block the
reading thread or install a callback that is called later. In the interest of achieving better
throughput we choose the latter.

In this section we divide the single-assignment variables into two separate abstractions –
the future end that allows reading its value and the promise end that allows assigning a
value [Haller et al.(2012)Haller, Prokopec, Miller, Klang, Kuhn, and Jovanovic]. Every
future corresponds to exactly one promise and vice versa. In the implementation these
will actually comprise the same data structure in memory, exposed through two different
interfaces.

In Figure 4.1 we show two data types Future and a Promise2. We call the methods that

1Compile-time double assignment checks can only be approximated and would restrict the programming
model further.

2For simplicity we omit the fact that the Scala Promises can be completed with exceptions that denote
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trait Future[T] {
def onSuccess(f: T => Unit): Unit

}

trait Promise[T] {
def success(elem: T): Unit
def future: Future[T]

}

Figure 4.1: Futures and Promises Data Types

write and read the element success and onSuccess, respectively. Every Promise[T] can
return a reference to its corresponding Future with the future method. The Future[T]
type does not have a method for obtaining the corresponding Promise[T], as such design
would allow consumers to write to the future.

Using the task statement from Chapter 2 futures and promises can be used to implement
an asynchronous computation statement as follows:

def future[T](body: =>T): Future[T] = {
val p = newPromise
task {

p.success(body)
}
p.future

}

The future object returned by this statement is eventually completed with the result
of the body computation. A consumer can subscribe to the result using the onSuccess
method, executing a side-effect such as completing another future. This side-effect will be
executed eventually, but only after the future is completed with a value. In the example
below we show how the result of the future can be used to fetch a url using the http
protocol and another using the https protocol. The second example cannot display the
obtained value in the browser directly, but must decrypt them first.

val f = future { http(url) }
f onSuccess {

html => gui.text = html
}

val f = future { https(url) } map { decrypt }
f onSuccess {

html => gui.text = html
}

This decryption is done using the map combinator on futures, Similar to the map com-
binator already seen on collections. Its implementation is almost identical to the map
implementation for sequential collections.

errors in asynchronous computations.
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Figure 4.2: Future States

def map[S](f: T => S): Future[S] = {
val p = newPromise
this onSuccess {

elem => p.success(f(elem))
}
p.future

}

Replacing newPromise, onSuccess and success with newBuilder, foreach and +=
shows that, despite the important semantic differences in these operations, a map im-
plementation is identical to the one seen earlier. Thus, a Promise can be regarded as
a Builder for the Future, and its onSuccess method can be regarded as its foreach.
We can define a number of other functional combinators such as flatMap, filter and
zip in a similar way.

Implementation

It remains to show a typical future implementation. We note that the future can be in
several states. First, it is in the uninitialized state after it is created (U). Then, callbacks
may be added to the future – each addition of a callback represents a different state (Ci).
Finally, after it is assigned, it is in the assigned state (A). The flow between these states
is well defined and no state can be entered more than once. We show the flow in Figure
4.2. This useful property ensures that the implementation in this section will not suffer
from the ABA problem.

Due to the simplicity of its state diagram along with the fact that there is at most a
single element that can logically reside in a Future, the future implementation serves as
a textbook concurrent data structure example. The future data structure will occupy a
single location in memory globally visible to all the threads and manipulated by CAS
instructions. Figure 4.2 illustrates the states of this single memory location p. When
unassigned, this memory location will point to an empty list Nil. To add a callback is to
atomically replace the current list with an updated list of callbacks fi. Once the element
is finally assigned, we replace the callbacks with the value of the element. After that the
callbacks need not be added for later execution anymore, but can be executed directly
with the value of the element.

88



4.1. Reactive Parallelization

class SAV[T] extends Promise[T] with Future[T] {
atomic var p = Nil

def onSuccess(f: T => Unit) = {
val state = READ(p)
state match {

case cs: Callbacks =>
if (!CAS(p, cs, f :: cs)) onSuccess(f)

case elem =>
f(elem)

}
}

def future = this

def success(elem: T) = {
val state = READ(p)
state match {

case cs: Callbacks =>
if (!CAS(p, cs, elem)) success(elem)
else for (f <- cs) f(elem)

case elem =>
error("Already assigned.")

}
}

}

Figure 4.3: Future Implementation

We show the complete implementation in Figure 4.3. Note that the implementation,
as most lock-free algorithms we will show, uses tail-recursion. An unsuccessful CAS
instruction simply restarts the subroutine. The implementation is lock-free – a failed
CAS can only mean that another thread succeeded in installing a callback or assigning
the value. The monotonicity of the future’s state diagram ensures that the CASes succeed
if and only if there was no change between the last read and the CAS. The changes are
thus atomic, and it is trivial to see that the implementation is correct.

4.1.2 FlowPools – Single-Assignment Pools

In this section, we describe a data type called a FlowPool, together with its imple-
mentation [Prokopec et al.(2012b)Prokopec, Miller, Schlatter, Haller, and Odersky]. As
we will see, FlowPools are prone to reactive parallelization and, as an added benefit,
programs built using FlowPools have deterministic semantics, as was the case with
Futures described in the previous section.

FlowPools are a generalization of Futures in the sense that they allow multiple values
to be assigned. While a callback registered to a Future is called only once for the value
of the future, a callback registered to a FlowPool is called for every value assigned to the
FlowPool. This allows some new combinator methods that were not previously defined
on Futures. Besides a richer programming model, FlowPools process values in bulk,
which allows higher scalability.

We start by describing the FlowPool abstract data type and its operations in more detail.
We then show how basic FlowPool operations are used to implement more expressive
combinators. Finally, we present a concrete lock-free FlowPool implementation that
aims to achieve a low memory footprint. The specific implementation that we will study
is not limited to the FlowPool abstract data type – it can easily be modified to serve as
a concurrent queue implementation.
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Programming Model

FlowPools define four basic operations 3. The first operation is called create – it creates
a FlowPool instance. The state-changing append operation (+=) adds values to the
FlowPool. FlowPool traversal registers a callback that is called every time a value is
added to the FlowPool. These three operations are analogous to the ones already seen
on Futures and Promises. The fourth operation seal disallows further writes to the
FlowPool after it reaches a certain size. Note that for a Promise this value is always 1
because it can only be assigned a single value – subsequent writes are implicitly disallowed
after calling the success method, so there is no need for a seal operation on Future.
Although we can make a distinction between the producer and consumer interfaces
[Prokopec et al.(2012b)Prokopec, Miller, Schlatter, Haller, and Odersky] as we did with
Futures and Promises, we will avoid it for simplicity.

Create. This operation simply creates a fresh FlowPool instance. A FlowPool is initially
empty and does not contain any values. Upon creation there is no bound on the number
of values that can be added – we say that the FlowPool is not sealed.

def create[T](): FlowPool[T]

Append (+=). Given a FlowPool with a set of values, appending changes its state so
that it contains the specified value. This method is thread-safe and linearizable. This is
the only operation that changes the state of the FlowPool.

We choose the following signature to allow chaining append calls:

def append(v: T): FlowPool[T]

Foreach and Aggregate. An abstraction that represents a set of values is only useful
if those values can be accessed in one way or another. Values cannot be queried for their
presence in a FlowPool, just as it is not possible to directly check if a Future contains a
value – if this were allowed, the determinism in the programs using FlowPools would
be compromised. Assume FlowPools had an operation contains that checks whether
a given value is contained. The following program with two threads and contains
is non-deterministic in the sense that different execution schedules produce different
outputs:

val pool = create()
thread {

if (pool.contains(1)) println("Found.")
}
pool += 1

3A slightly more involved programming model also defines builders that ensure that unneeded values
are properly garbage collected [Prokopec et al.(2012b)Prokopec, Miller, Schlatter, Haller, and Odersky].
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The program creates a fresh FlowPool named pool and asynchronously starts another
thread. It then adds a single value 1 to the pool. The asynchronously running thread
uses contains to check if the value 1 is in the pool or not and prints a message "Found."
based on that. Depending on whether the main program or the newly created thread
runs faster, the output of the program is different.

Instead of providing query operations on a specific values which may or may not be
present at a specific time index, a FlowPool defines operations that visit all its values –
namely, traversal operations.

Typically, traversal is provided through iterators whose state may be manipulated by
several threads, which could also violate determinism. Another way to traverse the
elements is to provide a higher-order foreach operator which takes a callback argument
and applies it to each element. Again, determinism is ensured by calling foreach on
every value that is eventually added to the FlowPool, instead of only the values present
in the FlowPool at the time it was created. Values can be added to the FlowPool as long
as the limit set by seal is not reached, so a synchronous foreach seen on traditional
collection types would have to block the caller thread. For this reason the foreach is
asynchronous as it was on Futures – invoking it installs a callback, which is called later.

def foreach[U](f: T => U): Future[Int]

We choose return type of foreach to be a Future that becomes available once all the
elements have been traversed. The value of the future is set to the number of times that
f has been called for a value.

While the foreach operation is analogous to the one seen earlier on Futures, it is
not powerful enough to express certain kinds of programs. The Future resulting from
foreach does not contain enough useful information about the traversal.

Imagine we have a FlowPool of integer values (e.g. purchases) and we want to find their
sum. The only way to do this with the operations described so far is by using a mutable
accumulation variable:

def sum(pool: FlowPool[Int]): Future[Int] = {
val p = Promise[Int]()
var s = 0
for (v <- pool) {

s += v
} onComplete { p.success(s) }
p.future

}

Using only Futures and the FlowPool operations seen so far it is not possible to express
this program. In fact, the solution using a mutable accumulator is not even correct. First
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of all, the variable s is not annotated as thread-safe (e.g. with a @volatile annotation).
Second, this solution is susceptible to race conditions. More importantly, the callback
installed with a foreach call is invoked eventually for every element, just as is the case
with Futures. This means that s may be modified after the Future returned by foreach
completes and the promise p is assigned.

The aggregate operation is a more expressive FlowPool primitive that aggregates the
elements of the pool as the name implies. It has the following signature:

def aggregate[S](zero: =>S)(cb: (S, S) => S)(op: (S, T) => S): Future[S]

where zero is the initial aggregation, cb is an associative operator which combines several
aggregations, op is an operator that adds an element to the aggregation, and Future[S]
is the final aggregation of all the elements, which becomes available once all the elements
have been added. Using aggregate, the previous sum subroutine can be expressed as
follows:

def sum(pool: FlowPool[Int]): Future[Int] =
pool.aggregate(0)(_ + _)(_ + _)

The aggregate operator also generalizes foreach:

def foreach[U](f: T => U): Future[Int] =
pool.aggregate(0)(_ + _) { (no, x) =>

f(x)
no + 1

}

The aggregate operator can divide elements into subsets, apply the aggregation operator
op to aggregate elements in each subset starting from the zero aggregation, and then com-
bine different subset aggregations by applying the cb operator to them. Alternative imple-
mentations [Schlatter et al.(2012)Schlatter, Prokopec, Miller, Haller, and Odersky] can
guarantee horizontal scalability by evaluating these subsets in parallel. In essence, the
first part of aggregate defines the commutative monoid and the functions involved must
be non-side-effecting. In contrast, the operator op is guaranteed to be called only once
per element and it can have side-effects.

While in an imperative programming model foreach and aggregate are equivalent in
the sense that one can be implemented in terms of the other, in a single-assignment
programming model aggregate is more expressive than foreach. The foreach operation
can be implemented using aggregate, but not vice versa, due to the absence of mutable
variables.

Importantly, note that FlowPools have no ordering between their values. Callbacks may
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be called for the values in an order that is different than the order in which those values
were added to the pool. Specific FlowPool implementations may guarantee some form of
ordering.

Seal. Once no more values are added to the pool or the bound on the number of elements
is established, further appends can be disallowed by calling the seal operation. This
allows aggregate to complete its future since it has a guarantee that no more elements
will be added.

def seal(size: Int): Unit

A variant of seal that simply prevents appends the FlowPool at the moment it is
called without specifying the size yields a nondeterministic programming model. This is
illustrated by the following example program:

val pool = create()
thread {

pool.seal()
}
pool += 1

A thread is attempting to seal the pool by executing concurrently with a thread that
appends an element. In one execution, the append can precede the seal, and in the
other the append can follow the seal, causing an error. To avoid nondeterminism, there
has to be an agreement on the final state of the pool. A sufficient way to make seal
deterministic is to provide the expected pool size as an argument. The semantics of seal
is that it fails if the pool is already sealed with a different size or the number of elements
is greater than the desired size.

Higher-order operators

The described basic operations are used as building blocks for other FlowPool operations.
To formalize the notion that FlowPools are generalized Futures, we note that a FlowPool
can be used to implement a pair of a Promise and a Future as follows:

def promiseFuture[T](): (T => Unit, (T => Unit) => Unit) = {
val pool = create[T]()
pool.seal(1)
(v => pool += v, f => pool.foreach(f))

}

In addition to the default FlowPool constructor, it is useful to have factory methods that
create certain pools. In a dataflow graph, FlowPools created by these factory methods
are represented as source nodes. The iterate factory method, which creates a FlowPool
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def map[S](f: T => S) = {
val p = new FlowPool[S]
for (x <- this) {

p += f(x)
} map {

sz => p.seal(sz)
}
p

}

def filter(p: T => Boolean) = {
val fp = new FlowPool[T]
aggregate(0)(_ + _) {

(acc, x) => if p(x) {
fp += x; acc + 1

} else acc
} map { sz => fp.seal(sz) }
fp

}

def flatMap[S]
(f: T => FlowPool[S]) = {
val p = new FlowPool[S]
aggregate(future(0))(add) {

(af, x) =>
val sf = for (y <- f(x)) p += y
for (a <- af; s <- sf)

yield a + s
} map { sz => b.seal(sz) }
p

}

Figure 4.4: FlowPool Monadic Operations

containing an infinite set of values s, f(s), f(f(s)), ..., is shown below. The iterate
factory method creates a FlowPool of an arbitrary type T. It then starts an asynchronous
computation using the future construct seen earlier, which recursively applies f to each
number and adds it to the builder. Finally, a reference to the pool is returned. More
complex factory methods that add values from a network socket or a database are also
possible.

def iterate[T](s: T, f: T => T): FlowPool[T] = {
val p = new FlowPool[T]
def recurse(x: T) {

p << x
recurse(f(x))

}
future { recurse(s) }
p

}

The operations used in Scala for-comprehensions are shown in Figure 4.4. The higher-
order map operation maps each value of the FlowPool to produce a new one. This
corresponds to chaining the nodes in a dataflow graph. We implement map by traversing
the values of the this FlowPool and appending each mapped value. Once all the values
have been mapped and there are no more values to traverse, we can safely seal the
resulting FlowPool.

The filter operation produces a new FlowPool containing only the elements for which
a specified predicate p holds. Appending the elements to a new pool works as with the
map operation, but the seal needs to know the exact number of elements added. The
aggregate accumulator is thus used to track the number of added elements.

The flatMap operation retrieves a separate FlowPool from each value of this pool and
appends its elements to the resulting pool. The implementation is similar to that of
filter, but the resulting FlowPool size is folded over the future values of intermediate
pools. This is because intermediate pools possibly have an unbound size. The flatMap
operation corresponds to joining nodes in the dataflow graph.
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type Terminal {
sealed: Int
callbacks: List[Elem => Unit]

}

type Elem

type Block {
array: Array[Elem]
next: Block
index: Int
blockindex: Int

}

type FlowPool {
start: Block
current: Block

}
LASTELEMPOS = BLOCKSIZE - 2
NOSEAL = -1

Figure 4.5: FlowPool Data Types

def create()1
new FlowPool {2

start = createBlock(0)3
current = start4

}5
6

def createBlock(bidx: Int)7
new Block {8

array = new Array(BLOCKSIZE)9
index = 010
blockindex = bidx11
next = null }12

Figure 4.6: FlowPool Creation

The union operation can be implemented in a similar manner. Note that if we could
somehow merge the two different foreach operations to implement the third join type
zip, we would obtain a nondeterministic operation. The programming model does not
allow us to do so. The zip function is better suited for data structures with deterministic
ordering, such as Oz streams [Roy and Haridi(2004)].

Implementation

One straightforward way to implement a growing pool is to use a linked list of nodes that
wrap elements. As we are concerned about the memory footprint and cache-locality, we
store the elements into arrays instead, which we call blocks. Whenever a block becomes
full, a new block is allocated and the previous block is made to point to the next block.
This way, most writes amount to a simple array-write, while allocation occurs only
occasionally. Each block contains a hint index to the first free entry in the array, i.e.
one that does not contain an element. An index is a hint, since it may actually reference
an earlier index. The FlowPool maintains a reference to the first block called start.
It also maintains a hint to the last block in the chain of blocks, called current. This
reference may not always be up-to-date, but it always points to some block in the chain.

Each FlowPool is associated with a list of callbacks which have to be called in the future
as new elements are added. Each FlowPool can be in a sealed state, meaning there is a
bound on the number of elements it stores. This information is stored as a Terminal
value in the first free entry of the array. At all times we maintain the invariant that the
array in each block starts with a sequence of elements, followed by a Terminal delimiter.
From a higher-level perspective, appending an element starts by copying the Terminal
value to the next entry and then overwriting the current entry with the element being
appended.

The append operation starts by reading the current block and the index of the free
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def append(elem: Elem)13
b = READ(current)14
idx = READ(b.index)15
nexto = READ(b.array(idx + 1))16
curo = READ(b.array(idx))17
if check(b, idx, curo) {18

if CAS(b.array(idx + 1), nexto, curo) {19
if CAS(b.array(idx), curo, elem) {20

WRITE(b.index, idx + 1)21
invokeCallbacks(elem, curo)22

} else append(elem)23
} else append(elem)24

} else {25
advance()26
append(elem)27

}28
29

def advance()30
b = READ(current)31
idx = READ(b.index)32
if idx > LASTELEMPOS33

expand(b, b.array(idx))34
else {35

obj = READ(b.array(idx))36
if obj is Elem WRITE(b.index, idx + 1)37

}38

def expand(b: Block, t: Terminal)39
nb = READ(b.next)40
if nb is null {41

nb = createBlock(b.blockindex + 1)42
nb.array(0) = t43
if CAS(b.next, null, nb)44

expand(b, t)45
} else {46

CAS(current, b, nb)47
}48

49
def check(b: Block, idx: Int, curo: Object)50

if idx > LASTELEMPOS return false51
else curo match {52

elem: Elem =>53
return false54

term: Terminal =>55
if term.sealed = NOSEAL return true56
else {57

if totalElems(b, idx) < term.sealed58
return true59

else error("sealed")60
}61

null =>62
error("unreachable")63

}64

Figure 4.7: FlowPool Append Operation

position. It then reads the nexto after the first free entry, followed by a read of the
curo at the free entry. The check procedure checks the bounds conditions, whether
the FlowPool was already sealed or if the current array entry contains an element. In
either of these events, the current and index values need to be set – this is done in
the advance procedure. We call this the slow path of the append method. Notice that
there are several causes that trigger the slow path. If some other thread completes the
append method but is preempted before updating the value of the hint index, then the
curo will have the type Elem. The same happens if a preempted thread updates the
value of the hint index after additional elements have been added, via unconditional
write in line 21. Finally, reaching an end of block triggers the slow path.

Otherwise, the operation executes the fast path and appends an element. It first copies
the Terminal value to the next entry with a CAS instruction in line 19, with nexto
being the expected value. If it fails (e.g. due to a concurrent CAS), the append operation
is restarted. Otherwise, it proceeds by writing the element to the current entry with a
CAS in line 20, the expected value being curo. On success it updates the b.index value
and invokes all the callbacks (present when the element was added) with the future
construct. In the implementation we do not schedule an asynchronous computation
for each element. Instead, the callback invocations are batched to avoid the scheduling
overhead – the array is scanned for new elements until there are no more left.

Interestingly, inverting the order of the reads in lines 16 and 17 would cause a race in
which a thread could overwrite a Terminal value with some older Terminal value if
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def seal(size: Int)65
b = READ(current)66
idx = READ(b.index)67
if idx <= LASTELEMPOS {68

curo = READ(b.array(idx))69
curo match {70

term: Terminal =>71
if ¬tryWriteSeal(term, b, idx, size)72

seal(size)73
elem: Elem =>74

WRITE(b.index, idx + 1)75
seal(size)76

null =>77
error("unreachable")78

}79
} else {80

expand(b, b.array(idx))81
seal(size)82

}83
def tryWriteSeal(term: Terminal, b: Block,84

idx: Int, size: Int)85
val total = totalElems(b, idx)86
if total > size error("too many elements")87
if term.sealed = NOSEAL {88

nterm = new Terminal {89
sealed = size90
callbacks = term.callbacks91

}92
return CAS(b.array(idx), term, nterm)93

} else if term.sealed 6= size {94
error("sealed different size")95

} else return true96

def totalElems(b: Block, idx: Int)97
return b.blockindex * (BLOCKSIZE - 1) + idx98

99
def invokeCallbacks(e: Elem, term: Terminal)100

for (f <- term.callbacks) future {101
f(e)102

}103
def asyncFor(f: Elem => Unit, b: Block, i: Int)104

if i <= LASTELEMPOS {105
obj = READ(b.array(i))106
obj match {107

term: Terminal =>108
nterm = new Terminal {109

sealed = term.sealed110
callbacks = f ∪ term.callbacks111

}112
if ¬CAS(b.array(i), term, nterm)113

asyncFor(f, b, i)114
elem: Elem =>115

f(elem)116
asyncFor(f, b, i + 1)117

null =>118
error("unreachable")119

}120
} else {121

expand(b, b.array(i))122
asyncFor(f, b.next, 0)123

}124
def foreach(f: Elem => Unit)125

future {126
asyncFor(f, start, 0)127

}128

Figure 4.8: FlowPool Seal and Foreach Operations

some other thread appended an element in between.

The seal operation continuously increases the index in the block until it finds the first
free entry. It then tries to replace the Terminal value there with a new Terminal value
which has the seal size set. An error occurs if a different seal size is set already. The
foreach operation works in a similar way, but is executed asynchronously. Unlike seal,
it starts from the first element in the pool and calls the callback for each element until it
finds the first free entry. It then replaces the Terminal value with a new Terminal value
with the additional callback. From that point on the append method is responsible for
scheduling that callback for subsequently added elements. Note that all three operations
call expand to add an additional block once the current block is empty, to ensure
lock-freedom.

4.1.3 Other Deterministic Dataflow Abstractions

There exist other FlowPool implementations besides the one just shown. Multi-lane
FlowPools [Schlatter et al.(2012)Schlatter, Prokopec, Miller, Haller, and Odersky] have
better horizontal scalability and target applications where there are multiple producers.
This implementation retains the lock-freedom and linearizability semantics, with the
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advent of increased scalability due to fewer points of contention. Compared to the
previously shown FlowPool implementation they have no ordering guarantees even if
there is only a single thread at a time.

Single-assignment streams that have well-defined ordering guarantees date back to Oz
[Roy and Haridi(2004)]. In Oz they are implemented with single-assignment variables,
and they can be implemented in a similar manner using Futures and Promises.

FlowSeqs [Schlatter et al.(2013)Schlatter, Prokopec, Miller, Haller, and Odersky] are a
concurrent, single-assignment sequence abstraction in which values have a well-defined
ordering and can be accessed by an index. The FlowSeq programming model is also
deterministic, and operations are non-blocking and linearizable. FlowSeqs can be used
in Scala for-comprehensions like Futures and FlowPools.

Reactive values and containers [Prokopec et al.(2014a)Prokopec, Haller, and Odersky]
model dataflow using first-class event streams, but they are limited to a single thread,
called an isolate. To achieve concurrency, multiple isolates can exchange events through
entities called channels, but using isolates and channels results in non-deterministic
programs.

4.2 Snapshot-Based Parallelization

Unlike the previous section, in this section we once more assume that the elements are
present in the data structure when the operation starts. While the quiescence assumption
had to be implicitly dropped in the last section, in this section we drop this assumption
intentionally. We focus on data structures that can be concurrently modified without
restrictions – for such data structures it is typically hard for the programmer to guarantee
quiescence.

Futures can be modified at a single location and only once. Concurrent queues underlying
flow pools shown in Section 4.1.2 can only be modified at the tail, but can be adapted to
be modified at the head as well. Data structure like concurrent maps and sets, concurrent
linked lists and concurrect priority queues are different in this regard. They allow
operations such as the atomic lookup, insert and remove, which can occur anywhere in
the data structure. Parallelizing bulk operations on such data structures is considerably
more difficult, since the threads participating in the operation have to agree on whether
their modifications occur before or after the point when the bulk operation occurs.

Traditionally, operations that require global data structure information or induce a global
change in the data structure, such as size retrieval, iteration or removing all the elements,
are implemented so that atomicity is guaranteed only during a quiescent period (i.e. a
period of time during which no other concurrent operations is in progress), or require
some sort of a global lock to eventually ensure quiescence. Java ConcurrentHashMap, the
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ConcurrentSkipListMap and the ConcurrentLinkedQueue [Lea(2014)] from the JDK
are such examples.

The goal of this section is to show that certain concurrent data structures support an
efficient, lock-free, linearizable, lazy snapshot operation. Data-parallel and other bulk
operations on these data structures are built from the atomic snapshot, and guarantee
linearizability as a consequence. The snapshot is applied to a scalable concurrent map
implementation called a Ctrie, and we show that this extension is accompanied with a
minimal performance penalty, both in terms of running time and memory usage.

Interestingly, applying laziness to concurrent data structures allows parallel copying,
and improves the scalability of the snapshot operation. This is particularly evident for
tree-like data structures like the Ctrie, which is shown in this section. While adding
laziness to persistent data structures clears the road to amortization [Okasaki(1998)],
adding laziness to concurrent data structures is the path to scalable parallel snapshots.

The task of providing linearizable snapshot semantics seems to coincide with that of (still
unavailable) hardware transactional memories [Knight(1986)] [Herlihy and Moss(1993)],
and software transactional memories [Shavit and Touitou(1995)], whose task is to auto-
matically provide transactional semantics to arbitrary operations, as part of the program
runtime. Despite their obvious convenience, and the cleverness in many STM implemen-
tations, STMs have still not caught on. A part of the reason for this is that most STMs
incur relatively large performance penalties for their generality. Compared to the Ctrie
snapshot operation, an atomic snapshot on a transactional map collection is much slower.
The reason for this is that the atomic snapshots are specifically designed for concurrent
data structures such as the Ctrie, and do not have to pay the price of STMs’ generality.

Before showing how concurrent, atomic, lock-free snapshots are implemented for the
Ctrie concurrent map data structure, we will illustrate the idea of the atomic snapshot
operation on a simpler concurrent data structure, namely, the concurrent linked list.

4.2.1 Concurrent Linked Lists

A lock-free concurrent linked list [Harris(2001)] is a linked list implementation that sup-
ports thread-safe, linearizable insert and delete operations. In this section we will assume
that the linked list holds an ordered set of elements. We note that the implementation
due to Harris is not directly applicable to most managed runtimes, as reference marking
is not possible there. Rather than working around this obstacle, we limit the linked list
operation in this section to insertion, for simplicity.
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class ConcurrentLinkedList[T] {
class INode(val elem: T, atomic var main: INode)

private val end = new INode(posInf, null)
private atomic var root = new INode(negInf, end)

private def insert[T](n: INode, elem: T) {
val main = READ(n.main)
if (main == end || main.elem >= elem) {

val nnode = new INode(elem, main)
if (!CAS(n.main, main, nnode)) insert(n, elem)

} else insert(main)
}

def insert[T](elem: T) {
insert(READ(root), elem)

}
}

Figure 4.9: Lock-Free Concurrent Linked List

Concurrent Insertions

We show an implementation of a concurrent linked list that contains a sorted set of
elements and supports the insert operation in Figure 4.9. This linked list internally
maintains a list of nodes we will call I-nodes. The insert operation takesO(n) time, where
n is the number of elements in the list at the linearization point. This implementation
maintains two references to the nodes at the root and the end of the linked list. These
sentinel nodes contain the values negInf and posInf denoting the element smaller and
bigger than all the other elements, respectively. The insert method traverses the nodes
of the linked list until it finds a node such that its next node contains an element greater
than the element that needs to be inserted. We will call the pointer to the next node
main.

The correctness of the insert crucially depends on three properties. First, the elements
of the list are always sorted. Second, once added to the list, the node is never removed.
Third, the element in the root node is smaller than any other element. These properties
inductively ensure that once the private insert method is called with some node n
as an argument, all the nodes preceding n will forever contain elements smaller than
n.elem. In the same time, the insert method ensures that the argument elem is always
greater than n.elem. It follows that the location to insert elem must always be after
n.elem. The private insert method simply checks the local condition that n.main.elem
is additionally greater than elem, meaning that elem must be between n.elem and
n.main.elem. It then attempts to atomically insert elem with a CAS instruction.

It remains to be seen if traversing this concurrent data structure can cause consistency
problems. In other words, is a snapshot really necessary to atomically traverse this data
structure? It turns out that the answer is yes, as illustrated by the following scenario.
Assume that the linked list is traversed by a thread T2 when some elements B and
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def GCAS(in, old, n) = atomic {
r = READ(in.main)
if r = old ∧ in.gen = READ(root).gen {

WRITE(in.main, n)
return >

} else return ⊥
}

Figure 4.10: GCAS Semantics

D are added to the list {A,C,E} in that sequence by a thread T1. Let the mutual
ordering of elements be A < B < C < D < E. The thread T2 that traverses the linked
list concurrently can traverse A and C, be preempted, and traverse D and E after T1
completes its insertions. The result is that T2 observes list state {A,C,D,E}, while the
intermediate list states were {A,C,E}, {A,B,C,E} and {A,B,C,D,E}.

Such a consistency violation is detrimental to understanding the semantics of a parallel
program. We next study how this simple data structure can be augmented with a
snapshot operation. The key to doing so will be to invalidate any writes that occur at
the moment the snapshot is being taken.

GCAS Procedure

We will modify the INode class to hold an additional field called gen. This field will hold
instances of a class Gen. There will be one such Gen instance created for each snapshot –
it will serve as a unique generation tag. Next, we add a field prev with the type AnyRef.
Finally, we define a method isMainNode that checks if a node is an instance of the I-node
type:

class INode(val gen: Gen, val elem: T, atomic var main: INode) {
atomic var prev: AnyRef = null

}

def isMainNode(n: AnyRef) = n.isInstanceOf[INode[_]]

The GCAS procedure has the following preconditions. It takes 3 parameters – an I-node
in, and two main nodes old and n. Only the thread invoking the GCAS procedure may
have a reference to the main node n4. Each I-node is a mutable placeholder that points
to some main node5. Each I-node must contain an additional immutable field gen. The
in.main field is only read using the GCAS_READ procedure. Each main node must contain
an additional field prev that is not accessed by the clients.

The GCAS semantics are equivalent to an atomic block shown in Figure 4.10. The GCAS

4This is easy to ensure in environments with automatic memory management and garbage collection.
Otherwise, a technique similar to the one proposed by Herlihy [Herlihy(1993)] can be used to ensure that
some other thread does not reuse objects that have already been recycled.

5In the case of a linked list data structure the main node is also the I-node.
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def GCAS(in, old, n)129
WRITE(n.prev, old)130
if CAS(in.main, old, n) {131

GCAS_Commit(in, n)132
return READ(n.prev) = null133

} else return ⊥134
135

def GCAS_Commit(in, m)136
p = READ(m.prev)137
r = ABORTABLE_READ(root)138
p match {139

case n if isMainNode(n) =>140
if (r.gen = in.gen ∧ ¬readonly) {141

if CAS(m.prev, p, null) return m142
else return GCAS_Commit(in, m)143

} else {144
CAS(m.prev, p, new Failed(p))145
return GCAS_Commit(in, READ(in.main))146

}147
case fn: Failed =>148

if CAS(in.main, m, fn.prev) return fn.prev149
else return GCAS_Commit(in, READ(in.main))150

case null => return m151
}152

153
def GCAS_READ(in)154

m = READ(in.main)155
if (READ(m.prev) = null) return m156
else return GCAS_Commit(in, m)157

Figure 4.11: GCAS Operations

is similar to a CAS instruction with the difference that it also compares if the I-node
gen field is equal to the gen field of the data structure root. The GCAS instruction is
also lock-free. We show the implementation in Figure 4.11, based on single-word CAS
instructions. The idea is to communicate the intent of replacing the value in the I-node
and check the generation field in the root before committing to the new value.

The GCAS procedure starts by setting the prev field in the new main node n to point at
main node old, which will be the expected value for the first CAS. Since the preconditions
state that no other thread sees n at this point, this write is safe. The thread proceeds
by proposing the new value n with a CAS instruction in line 131. If the CAS fails then
GCAS returns ⊥ and the CAS is the linearization point. If the CAS succeeds (shown in
Figure 4.12B), the new main node is not yet committed – the generation of the root
has to be compared against the generation of the I-node before committing the value,
so the tail-recursive procedure GCAS_Commit is called with the parameter m set to the
proposed value n. This procedure reads the previous value of the proposed node and the
data structure root (we explain the ABORTABLE_READ procedure shortly – for now we
can assume it is a normal atomic READ). It then inspects the previous value.

If the previous value is a main node different than null, the root generation is compared
to the I-node generation. If the generations are equal, the prev field in m must be set to
null to complete the GCAS (Figure 4.12C). If the CAS in the line 142 fails, the procedure
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Figure 4.12: GCAS States

is repeated. If the generations are not equal, the prev field is set to a special Failed node
whose previous value is set to m.prev (Figure 4.12D), and the GCAS_Commit procedure
is repeated. This special node signals that the GCAS has failed and that the I-node main
node must be set back to the previous value.

If the previous value is a failed node, then the main node of the I-node is set back to the
previous value from the failed node by the CAS in the line 149 (Figure 4.12D,E). If the
CAS is not successful, the procedure must be repeated after rereading the main node.

If the previous value is null, then some other thread already checked the generation of
the root and committed the node, so the method just returns the current node.

Once the GCAS_Commit procedure returns, GCAS checks if the prev field of the proposed
node is null, meaning that the value had been successfully committed at some point.

If the proposed value is rejected, the linearization point is the CAS in line 149, which
sets the main node of an I-node back to the previous value (this need not necessarily be
done by the current thread). If the proposed value is accepted, the linearization point is
the successful CAS in the line 142 – independent of that CAS was done by the current
thread or some other thread. If the linearization point is external [Bronson(2011a)], we
know it happened after GCAS was invoked. We know that the gen field does not change
during the lifetime of an I-node, so it remains the same until a successful CAS in the
line 142. If some other thread replaces the root with a new I-node with a different gen
field after the read in the line 138, then no other thread that observed the root change
will succeed in writing a failed node, since we assumed that the CAS in the line 142
succeeded.

To ensure lock-freedom, the GCAS_READ procedure must help commit if it finds a proposed
value. After reading the main node, it checks if its prev field is set to null. If it is, it
can safely return the node read in line 155 (which is the linearization point) since the
algorithm never changes the prev field of a committed node and comitting a node sets
the prev field to null. If prev is different than null, the node hasn’t been committed
yet, so GCAS_Commit is called to complete the read. In this case, the value returned
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def RDCSS(ov, ovmain, nv)
r = READ(root)
if r = ov ∧ GCAS_READ(ov.main) = ovmain {

WRITE(root, nv)
return >

} else return ⊥

Figure 4.13: Modified RDCSS Semantics

by GCAS_Commit is the result and the linearization points are the same as with GCAS
invoking the GCAS_Commit.

Both GCAS and GCAS_READ are designed to add a non-significant amount of overhead
compared a single CAS instruction and a read, respectively. In particular, if there are
no concurrent modifications, a GCAS_READ amounts to an atomic read of the node, an
atomic read of its prev field, a comparison and a branch.

Applying GCAS

How to use the GCAS procedure to allow linearizable snapshots on a concurrent linked
list? First, we augment the internal data structure according to the GCAS preconditions
– we identify I-nodes and main nodes, and add the gen and prev fields to these nodes,
respectively. Then, we replace all occurrences of CAS instructions with GCAS invocations
and we replace all the atomic READ operations with GCAS_READ invocations, except the
read of root.

GCAS is only one of the requirements for linearizable snapshots on lock-free data
structures. If we only did the GCAS-modifications, the operations would detect a
snapshot, but would then restart repetitively. The second requirement is augmenting the
operations to rebuild the data structure when they detect it is necessary – in essence, to
do a copy-on-snapshot.

We show the complete lock-free concurrent linked list with linearizable snapshots imple-
mentation in Figure 4.14. The snapshot operations must atomically change the root
reference of the linked list to point to an I-node with a fresh generation tag. The CAS
instruction alone is insufficient for this task. The snapshot operation can copy and
replace the root I-node only if its main node does not change between the copy and the
replacement. If it changed, an insert near the root could potentially be lost. This is
why we need a stronger primitive that writes only if there are changes to the main node
pointed to the root and the root reference itself.

We will use the RDCSS procedure [Harris et al.(2002)Harris, Fraser, and Pratt] to ensure
that the snapshot only succeeds if the root node did not change. This (here, software-
based) variant of the CAS instruction allows the write to succeed if and only if both the
written memory location and a separate memory location contain the expected values.

104



4.2. Snapshot-Based Parallelization

class ConcurrentSnapshotLinkedList[T] {
class Gen
class INode(val gen: Gen, val elem: T, atomic var main: INode) {

atomic var prev: AnyRef = null
}

private val end = new INode(gen, posInf, null)
private atomic var root = new INode(gen, negInf, end)

private def insert[T](g: Gen, n: INode, elem: T): Boolean = {
val main = GCAS_READ(n.main)
if (main.gen == g) {

if (main == end || main.elem >= elem) {
val nmain = new INode(elem, main)
if (!GCAS(n, main, nmain)) false

} else insert(main)
} else {

val nmain = new INode(g, main.elem, main.main)
if (GCAS(n, main, nmain)) insert(g, n, elem)
else false

}
}

def insert[T](elem: T) {
val r = RDCSS_READ(root)
if (!insert(r.gen, r, elem)) insert(elem)

}

def snapshot(): ConcurrentSnapshotLinkedList[T] = {
val r = RDCSS_READ(root)
val rmain = GCAS_READ(r.main)
if (RDCSS(r, rmain, new INode(new Gen, negInf, rmain))) {

val csl = new ConcurrentSnapshotLinkedList
csl.root = new INode(new Gen, negInf, rmain)
csl

} else snapshot()
}

}

Figure 4.14: Lock-Free Concurrent Linked List with Linearizable Snapshots

It is, in effect, a CAS instruction with two conditions. RDCSS works in a similar way as
GCAS, but proposes the new value by creating an intermediate descriptor object, which
points to the previous and the proposed value. The allocation cost that we initially
wanted to avoid is not critical here, since we expect a snapshot to occur much less often
than the other update operations. We specialize RDCSS – the first compare is on the
root and the second compare is always on the main node of the old value of the root.
GCAS_READ is used to read the main node of the old value of the root. The semantics
correspond to the atomic block shown in Figure 4.13.

Recall now the ABORTABLE_READ in line 138 in Figure 4.11. The ABORTABLE_READ is a
of RDCSS_READ that writes back the old value to the root field if it finds the proposal
descriptor there, causing the snapshot to be restarted. Without the ABORTABLE_READ,
two threads that simultaneously start a GCAS on the root I-node and an RDCSS on the
root field of the linked list would wait on each other forever.
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With GCAS the actual snapshot operation becomes a simple O(1) operation. Impor-
tantly, note that the modified insert operation does not need to rebuild the parts of the
concurrent linked list data structure that it does not touch. While this is a constant-factor
optimization that does not change the inherent O(n) operation complexity of inserting
to a linked list, it opens an interesting optimization opportunity that we will explore in
the next section.

4.2.2 Ctries – Concurrent Hash Tries

In this section we show how to apply a snapshot-based parallelization to a more complex
data-structure called a Ctrie [Prokopec et al.(2011b)Prokopec, Bagwell, and Odersky]
[Prokopec et al.(2012a)Prokopec, Bronson, Bagwell, and Odersky]. A Ctrie can be used
to implement efficient, concurrent, lock-free maps and sets. We start by describing the
Ctrie data structure and its basic operations, and then augment the Ctrie to support a
constant time, linearizable, lock-free snapshot operation. Finally, we show how to use
the snapshot operation to implement various atomic parallel operations.

Motivation

Many algorithms exhibit an interesting interplay of parallel traversal and concurrent
updates. One such example is the PageRank algorithm, implemented using Scala
parallel collections [Prokopec et al.(2011c)Prokopec, Bagwell, Rompf, and Odersky] in
Figure 4.15. In a nutshell, this iterative algorithm updates the rank of the pages until
the rank converges. The rank is updated based on the last known rank of the pages
linking to the current page (line 4). Once the rank becomes smaller than some predefined
constant, the page is removed from the set of pages being processed (line 5). The for
loop that does the updates is executed in parallel. After the loop completes, the arrays
containing the previous and the next rank are swapped in line 7, and the next iteration
commences if there are pages left.

The main point about this algorithm is that the set of pages being iterated is updated
by the remove operation during the parallel traversal. This is where most concurrent
data structures prove inadequate for implementing this kind of algorithms – an iterator
may or may not reflect the concurrent updates. Scala parallel collections can remedy this
by removing the test in line 5 and adding another parallel operation filter to create a
new set of pages without those that converged – this new set is traversed in the next
iteration. The downside of this is that if only a few pages converge during an iteration
then almost the entire set needs to be copied. The filter approach is not applicable
to inputs with short convergence tails. Alternatively, we could implement PageRank
by always traversing the same list of pages, and call setMembership to disable boolean
flags of pages that have already converged. This way we do not need to rebuild the
dataset in each iteration. The downside of this approach is that we need to traverse all
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the pages at the end of the algorithm, when there are only a few pages left. We say that
the setMembership approach is not applicable to long-convergence tails. If the splitters
used for parallel traversal reflected only the elements present when the operation began,
both of these issues would be addressed.

while (pages.nonEmpty) {1
for (page <- pages.par) {2

val sum = page.incoming.sumBy(p => last(p) / p.links)3
next(page) = (1 - damp) / N + damp * sum4
if (next(page) - last(page) < eps) pages.remove(page)5

}6
swap(next, last)7

}8

Figure 4.15: Parallel PageRank Implementation

Basic operations

Hash array mapped tries [Bagwell(2001)] [Baskins(2000)] (or simply, hash tries) are trees
composed of internal nodes and leaves. Leaves store key-value bindings. Internal nodes
have a 2W -way branching factor. In a straightforward implementation, each internal
node is a 2W -element array. Finding a key proceeds as follows. If the internal node is at
the level l, then the W bits of the hashcode starting from the position W ∗ l are used as
an index to the appropriate branch in the array. This is repeated until a leaf or an empty
entry is found. Insertion uses the key to find an empty entry or a leaf. It creates a new
leaf with the key if an empty entry is found. Otherwise, the key in the leaf is compared
against the key being inserted. If they are equal, the existing leaf is replaced with a new
one. If they are not equal (meaning their hashcode prefixes are the same) then the hash
trie is extended with a new level.

A more space-efficient version of HAMT was worked on independently by Bagwell
[Bagwell(2001)] and Baskins [Baskins(2000)]. Each internal node contains a bitmap of
length 2W . If a bit is set, then the corresponding array entry contains either a branch or
a leaf. The array length is equal to the number of bits in the bitmap. The corresponding
array index for a bit on position i in the bitmap bmp is calculated as #((i− 1)� bmp),
where #(·) is the bitcount and � is a bitwise AND operation. TheW bits of the hashcode
relevant at some level l are used to compute the bit position i as before. At all times an
invariant is preserved that the bitmap bitcount is equal to the array length. Typically,
W is 5 since that ensures that 32-bit integers can be used as bitmaps. Figure 4.16A
shows a hash trie example.

The goal is to create a concurrent data structure that preserves the space-efficiency of
hash tries and the expected depth of O(log2W (n)). Lookup, insert and remove will be
based solely on CAS instructions and have the lock-freedom property. Remove operations
must ensure that the trie is kept as compact as possible. Finally, to support linearizable
lock-free iteration and size retrievals, the data structure must support an efficient snapshot
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Figure 4.16: Hash Tries

operation. We will call this data structure a Ctrie.

Intuitively, a concurrent insertion operation could start by locating the internal node it
needs to modify and then create a copy of that node with both the bitmap and the array
updated with a reference to the key being inserted. A reference to the newly created
node could then be written into the array of the parent node using the CAS instruction.
Unfortunately, this approach does not work. The fundamental problem here is due to
races between an insertion of a key into some node C1 and an insertion of another key
into its parent node C2. One scenario where such a race happens is shown in Figure 4.16.
Assume we have a hash trie from the Figure 4.16A and that a thread T1 decides to insert
a key k5 into the node C2 and creates an updated version of C2 called C2′. It must then
do a CAS on the first entry in the internal node C3 with the expected value C2 and the
new value C2′. Assume that another thread T2 decides to insert a key k4 into the node
C1 before this CAS. It will create an updated version of C1 called C1′ and then do a
CAS on the first entry of the array of C2 – the updated node C1′ will not be reachable
from the updated node C2′. After both threads complete their CAS operations, the trie
will correspond to the one shown in Figure 4.16B, where the dashed arrows represent the
state of the branches before the CASes. The key k4 inserted by the thread T2 is lost.

We solve this problem by introducing indirection nodes, or I-nodes, which remain present
in the Ctrie even as nodes above and below change. The CAS instruction is performed
on the I-node instead of on the internal node array. We show that this eliminates the
race between insertions on different levels.

The second fundamental problem has to do with the remove operations. Insert operations
extend the Ctrie with additional levels. A sequence of remove operations may eliminate
the need for the additional levels – ideally, we would like to keep the trie as compact as
possible so that the subsequent lookup operations are faster. In Section 4.2.2 we show
that removing an I-node that appears to be no longer needed may result in lost updates.
We describe how to remove the keys while ensuring compression and no lost updates.

The Ctrie data structure is described in Figure 4.17. Each Ctrie contains a root reference
to a so-called indirection node (I-node). An I-node contains a reference to a single node
called a main node. There are several types of main nodes. A tomb node (T-node) is a
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structure Ctrie {
root: INode
readonly: boolean

}

structure Gen

structure INode {
main: MainNode
gen: Gen

}

MainNode:
CNode | TNode | LNode

Branch:
INode | SNode

structure CNode {
bmp: integer
array: Branch[2^W]

}

structure SNode {
k: KeyType
v: ValueType

}

structure TNode {
sn: SNode

}

structure LNode {
sn: SNode
next: LNode

}
Figure 4.17: Ctrie Data Types

special node used to ensure proper ordering during removals. A list node (L-node) is a
leaf node used to handle hash code collisions by keeping such keys in a list. These are
not immediately important, so we postpone discussion about T-nodes and L-nodes until
Sections 4.2.2 and 4.2.2, respectively. A Ctrie node (C-node) is an internal main node
containing a bitmap and the array with references to branch nodes. A branch node is
either another I-node or a singleton node (S-node), which contains a single key and a
value. S-nodes are leaves in the Ctrie (shown as key-value pairs in the figures).

The pseudocode in Figures 4.18, 4.20, 4.22, 4.23, 4.11, 4.24, 4.25 and 4.26 assumes
short-circuiting semantics of the conditions in the if statements. We use logical symbols
in boolean expressions. Pattern matching constructs match a node against its type and
can be replaced with a sequence of if-then-else statements – we use pattern matching
for conciseness. The colon (:) in the pattern matching cases should be read as has type.
The keyword def denotes a procedure definition. Reads, writes and compare-and-set
instructions written in capitals are atomic. This high level pseudocode might not be
optimal in all cases – the source code contains a more efficient implementation.

Lookup and insert operations

A lookup starts by reading the root and then calls the recursive procedure ilookup,
which traverses the Ctrie. This procedure either returns a result or a special value
RESTART, which indicates that the lookup must be repeated.

The ilookup procedure reads the main node from the current I-node. If the main node
is a C-node, then (as described in Section 4.2.2) the relevant bit flag of the bitmap and
the index pos in the array are computed by the flagpos function. If the bitmap does
not contain the relevant bit (line 10), then a key with the required hashcode prefix is
not present in the trie, so a NOTFOUND value is returned. Otherwise, the relevant branch
at index pos is read from the array. If the branch is an I-node (line 12), the ilookup
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procedure is called recursively at the next level. If the branch is an S-node (line 14),
then the key within the S-node is compared with the key being searched – these two
keys have the same hashcode prefixes, but they need not be equal. If they are equal, the
corresponding value from the S-node is returned and a NOTFOUND value otherwise. In all
cases, the linearization point is the read in the line 7. This is because no nodes other
than I-nodes change the value of their fields after they are created and we know that the
main node was reachable in the trie at the time it was read in the line 7 (see Appendix
B).

If the main node within an I-node is a T-node (line 17), we try to remove it and convert
it to a regular node before restarting the operation. This is described in more detail in
Section 4.2.2. The L-node case is described in Section 4.2.2.

def lookup(k)1
r = READ(root)2
res = ilookup(r, k, 0, null)3
if res 6= RESTART return res else return lookup(k)4

5
def ilookup(i, k, lev, parent)6

READ(i.main) match {7
case cn: CNode =>8

flag, pos = flagpos(k.hash, lev, cn.bmp)9
if cn.bmp � flag = 0 return NOTFOUND10
cn.array(pos) match {11

case sin: INode =>12
return ilookup(sin, k, lev + W, i)13

case sn: SNode =>14
if sn.k = k return sn.v else return NOTFOUND15

}16
case tn: TNode =>17

clean(parent, lev - W)18
return RESTART19

case ln: LNode =>20
return ln.lookup(k)21

}22

Figure 4.18: Ctrie Lookup Operation

When a new Ctrie is created, it contains a root I-node with the main node set to an
empty C-node, which contains an empty bitmap and a zero-length array (Figure 4.19A).
We maintain the invariant that only the root I-node can contain an empty C-node – all
other C-nodes in the Ctrie contain at least one entry in their array. Inserting a key k1
first reads the root and calling the procedure iinsert.

The procedure iinsert is invoked on the root I-node. This procedure works in a similar
way as ilookup. If it reads a C-node within the I-node, it computes the relevant bit and
the index in the array using the flagpos function. If the relevant bit is not in the bitmap
(line 31) then a copy of the C-node with the new entry is created using the inserted
function. The linearization point is a successful CAS in the line 33, which replaces the
current C-node with a C-node containing the new key (see Figures 4.19A,B,C where
two new keys k1 and k2 are inserted in that order starting from an empty Ctrie). An
unsuccessful CAS means that some other operation already wrote to this I-node since its
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Figure 4.19: Ctrie Insert Illustration

main node was read in the line 28, so the insert must be repeated.

If the relevant bit is present in the bitmap, then its corresponding branch is read from
the array. If the branch is an I-node, then iinsert is called recursively. If the branch is
an S-node and its key is not equal to the key being inserted (line 40), then the Ctrie has
to be extended with an additional level. The C-node is replaced with its updated version
(line 44), created using the updated function that adds a new I-node at the respective
position. The new I-node has its main node pointing to a C-node with both keys. This
scenario is shown in Figures 4.19C,D where a new key k3 with the same hashcode prefix
as k2 is inserted. If the key in the S-node is equal to the key being inserted, then the
C-node is replaced with its updated version with a new S-node. An example is given
in the Figure 4.19E where a new S-node (k3, v

′
3) replaces the S-node (k3, v3) from the

Figure 4.19D. In both cases, the successful CAS instructions in the lines 44 and 48 are
the linearization point.

Note that insertions to I-nodes at different levels may proceed concurrently, as shown in
Figures 4.19E,F where a new key k4 is added at the level 0, below the I-node I1. No
race can occur, since the I-nodes at the lower levels remain referenced by the I-nodes at
the upper levels even when new keys are added to the higher levels. This will not be the
case after introducing the remove operation.

Remove operation

The remove operation has a similar control flow as the lookup and the insert operation.
After examining the root, a recursive procedure iremove reads the main node of the
I-node and proceeds casewise, removing the S-node from the trie by updating the C-node
above it, similar to the insert operation.
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def insert(k, v)23
r = READ(root)24
if iinsert(r, k, v, 0, null) = RESTART insert(k, v)25

26
def iinsert(i, k, v, lev, parent)27

READ(i.main) match {28
case cn: CNode =>29

flag, pos = flagpos(k.hash, lev, cn.bmp)30
if cn.bmp � flag = 0 {31

ncn = cn.inserted(pos, flag, SNode(k, v))32
if CAS(i.main, cn, ncn) return OK33
else return RESTART34

}35
cn.array(pos) match {36

case sin: INode =>37
return iinsert(sin, k, v, lev + W, i)38

case sn: SNode =>39
if sn.k 6= k {40

nsn = SNode(k, v)41
nin = INode(CNode(sn, nsn, lev + W))42
ncn = cn.updated(pos, nin)43
if CAS(i.main, cn, ncn) return OK44
else return RESTART45

} else {46
ncn = cn.updated(pos, SNode(k, v))47
if CAS(i.main, cn, ncn) return OK48
else return RESTART49

}50
}51

case tn: TNode =>52
clean(parent, lev - W)53
return RESTART54

case ln: LNode =>55
if CAS(i.main, ln, ln.inserted(k, v)) return OK56
else return RESTART57

}58

Figure 4.20: Ctrie Insert Operation

The described approach has certain pitfalls. A remove operation may at one point create
a C-node that has a single S-node below it. This is shown in Figure 4.21A, where the
key k2 is removed from the Ctrie. The resulting Ctrie in Figure 4.21B is still valid in
the sense that the subsequent insert and lookup operations will work. However, these
operations could be faster if (k3, v3) were moved into the C-node below I1. After having
removed the S-node (k2, v2), the remove operation could create an updated version of C1
with a reference to the S-node (k3, v3) instead of I2 and write that into I1 to compress
the Ctrie. But, if a concurrent insert operation were to write to I2 just before I1 was
updated with the compressed version of C1, the insertion would be lost.

To solve this problem, we introduce a new type of a main node called a tomb node
(T-node). We introduce the following invariant to Ctries – if an I-node points to a T-node
at some time t0 then for all times greater than t0, the I-node points to the same T-node.
In other words, a T-node is the last value assigned to an I-node. This ensures that no
inserts occur at an I-node if it is being compressed. An I-node pointing to a T-node is
called a tombed I-node.
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Figure 4.21: Ctrie Remove Illustration

The remove operation starts by reading the root I-node and calling the recursive procedure
iremove. If the main node is a C-node, the flagpos function is used to compute the
relevant bit and the branch position. If the bit is not present in the bitmap (line 69),
then a NOTFOUND value is returned. In this case, the linearization point is the read in
the line 66. Otherwise, the branch node is read from the array. If the branch is another
I-node, the procedure is called recursively. If the branch is an S-node, its key is compared
against the key being removed. If the keys are not equal (line 75), the NOTFOUND value is
returned and the linearization point is the read in the line 66. If the keys are equal, a
copy of the current node without the S-node is created. The contraction of the copy is
then created using the toContracted procedure. A successful CAS in the line 79 will
substitute the old C-node with the copied C-node, thus removing the S-node with the
given key from the trie – this is the linearization point.

If a given C-node has only a single S-node below and is not at the root level (line 101)
then the toContracted procedure returns a T-node that wraps the S-node. Otherwise,
it just returns the given C-node. This ensures that every I-node except the root points
to a C-node with at least one branch. Furthermore, if it points to exactly one branch,
then that branch is not an S-node (this scenario is possible if two keys with the same
hashcode prefixes are inserted). Calling this procedure ensures that the CAS in the
line 79 replaces the C-node C2 from the Figure 4.21A with the T-node in Figure 4.21C
instead of the C-node C2 in Figure 4.21B. This CAS is the linearization point since
the S-node (k2, v2) is no longer in the trie. However, it does not solve the problem of
compressing the Ctrie (we ultimately want to obtain a Ctrie in Figure 4.21D). In fact,
given a Ctrie containing two keys with long matching hashcode prefixes, removing one
of these keys will create a arbitrarily long chain of C-nodes with a single T-node at the
end. We introduced the invariant that no tombed I-node changes its main node. To
remove the tombed I-node, the reference to it in the C-node above must be changed with
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def remove(k)59
r = READ(root)60
res = iremove(r, k, 0, null)61
if res 6= RESTART return res62
else return remove(k)63

64
def iremove(i, k, lev, parent)65

READ(i.main) match {66
case cn: CNode =>67

flag, pos = flagpos(k.hash, lev, cn.bmp)68
if cn.bmp � flag = 0 return NOTFOUND69
res = cn.array(pos) match {70

case sin: INode =>71
iremove(sin, k, lev + W, i)72

case sn: SNode =>73
if sn.k 6= k74

NOTFOUND75
else {76

ncn = cn.removed(pos, flag)77
cntr = toContracted(ncn, lev)78
if CAS(i.main, cn, cntr) sn.v else RESTART79

}80
}81
if res = NOTFOUND ∨ res = RESTART return res82
if READ(i.main): TNode83

cleanParent(parent, in, k.hash, lev - W)84
return res85

case tn: TNode =>86
clean(parent, lev - W)87
return RESTART88

case ln: LNode =>89
nln = ln.removed(k)90
if length(nln) = 1 nln = entomb(nln.sn)91
if CAS(i.main, ln, nln) return ln.lookup(k)92
else return RESTART93

}94

Figure 4.22: Ctrie Remove Operation

a reference to its resurrection. A resurrection of a tombed I-node is the S-node wrapped
in its T-node. For all other branch nodes, the resurrection is the node itself.

To ensure compression, the remove operation checks if the current main node is a T-
node after removing the key from the Ctrie (line 83). If it is, it calls the cleanParent
procedure, which reads the main node of the parent I-node p and the current I-node
i in the line 113. It then checks if the T-node below i is reachable from p. If i is
no longer reachable, then it returns – some other thread must have already completed
the contraction. If it is reachable then it replaces the C-node below p, which contains
the tombed I-node i with a copy updated with the resurrection of i (CAS in the line
122). This copy is possibly once more contracted into a T-node at a higher level by the
toContracted procedure.

To preserve the lock-freedom property, all operations that read a T-node must help
compress it instead of waiting for the removing thread to complete the compression. For
example, after finding a T-node lookups call the clean procedure on the parent node in
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def toCompressed(cn, lev)95
num = bit#(cn.bmp)96
ncn = cn.mapped(resurrect(_))97
return toContracted(ncn, lev)98

99
def toContracted(cn, lev)100

if lev > 0 ∧ cn.array.length = 1101
cn.array(0) match {102

case sn: SNode => return entomb(sn)103
case _ => return cn104

}105
else return cn106

107
def clean(i, lev)108

m = READ(i.main)109
if m: CNode CAS(i.main, m, toCompressed(m, lev))110

111
def cleanParent(p, i, hc, lev)112

m, pm = READ(i.main), READ(p.main)113
pm match {114

case cn: CNode =>115
flag, pos = flagpos(k.hash, lev, cn.bmp)116
if bmp � flag = 0 return117
sub = cn.array(pos)118
if sub 6= i return119
if m: TNode {120

ncn = cn.updated(pos, resurrect(m))121
if ¬CAS(pm, cn, toContracted(ncn, lev))122

cleanParent(p, i, hc, lev)123
}124

case _ => return125
}126

Figure 4.23: Compression Operations

the line 17. This procedure creates the compression of the given C-node – a new C-node
with all the tombed I-nodes below resurrected. This new C-node is contracted if possible.
The old C-node is then replaced with its compression with the CAS in the line 110. Note
that neither clean nor cleanParent are ever called for the parent of the root, since the
root never contains a T-node. For example, removing the S-node (k3, v3) from the Ctrie
in Figure 4.21D produces a Ctrie in Figure 4.21E. A subsequent remove produces an
empty trie in Figure 4.21F.

Both insert and lookup are tail-recursive and may be rewritten to loop-based variants,
but this is not so trivial with the remove operation. Since remove operations must be able
to compress arbitrary long chains of C-nodes, the call stack is used to store information
about the path in the Ctrie being traversed.

The operations shown so far constitute the basic Ctrie operations, i.e. operations
working on a single element at a time. We show the correctness, linearizability and lock-
freedom proofs [Prokopec et al.(2011a)Prokopec, Bagwell, and Odersky] for the basic
Ctrie operations in the Appendix B.
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Hash collisions

In this implementation, hash tries use a 32-bit hashcode space. Although hash collisions
are rare, it is still possible that two unequal keys with the same hashcodes are inserted.
To preserve correctness, we introduce a new type of nodes called list nodes (L-nodes),
which are basically persistent linked lists. If two keys with the same hashcodes collide,
we place them inside an L-node.

We add another case to the basic operations from Section 4.2.2. Persistent linked list
operations lookup, inserted, removed and length are trivial and not included in the
pseudocode. We additionally check if the updated L-node in the iremove procedure has
length 1 and replace the old node with a T-node in this case.

Another important change is in the CNode constructor in line 42. This constructor was a
recursive procedure that creates additional C-nodes as long as the hashcode chunks of
the two keys are equal at the given level. We modify it to create an L-node if the level is
greater than the length of the hashcode – in our case 32.

Additional operations

Collection classes in various frameworks typically need to implement additional operations.
For example, the ConcurrentMap interface in Java defines four additional methods:
putIfAbsent, replace any value a key is mapped to with a new value, replace a
specific value a key is mapped to with a new value and remove a key mapped to a
specific value. All of these operations can be implemented with trivial modifications to
the operations introduced in Section 4.2.2. For example, removing a key mapped to a
specific value can be implemented by adding an additional check sn.v = v to the line 74.

As argued earlier, methods such as size, iterator or clear commonly seen in collection
frameworks cannot be implemented in a lock-free, linearizable manner so easily. The
reason for this is that they require global information about the data structure at one
specific instance in time – at first glance, this requires locking or weakening the contract
so that these methods can only be called during a quiescent state. These methods can
be computed efficiently and correctly by relying on a constant time lock-free, atomic
snapshot.

Snapshot

While creating a consistent snapshot often seems to require copying all of the elements
of a data structure, this is not generally the case. Persistent data structures, present
in functional languages, have operations that return their updated versions and avoid
copying all the elements, typically achieving logarithmic or sometimes even constant
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complexity, as we have learned in Chapter 3.

A persistent hash trie data structure seen in standard libraries of languages like Scala or
Clojure is updated by rewriting the path from the root of the hash trie to the leaf the
key belongs to, leaving the rest of the trie intact. This idea can be applied to implement
the snapshot. A generation count can be assigned to each I-node. A snapshot is created
by copying the root I-node and setting it to the new generation. When some update
operation detects that an I-node being read has a generation older than the generation
of the root, it can create a copy of that I-node initialized with the latest generation and
update the parent accordingly – the effect of this is that after the snapshot is taken, a
path from the root to some leaf is updated only the first time it is accessed, analogous
to persistent data structures. The snapshot is thus an O(1) operation, while all other
operations preserve an O(logn) complexity, albeit with a slightly larger constant factor.

Still, the snapshot operation will not work as described above, due to the races between
the thread creating the snapshot and threads that have already read the root I-node with
the old generation and are traversing the Ctrie in order to update it.The problem is that
a CAS that is a linearization point for an insert (e.g. in the line 48) can be preceeded
by the snapshot creation – ideally, we want such a CAS instruction to fail, since the
generation of the Ctrie root has changed. If we used a DCAS instruction instead, we
could ensure that the write occurs only if the Ctrie root generation remained the same.
However, most platforms do not support an efficient implementation of this instruction
yet. On closer inspection, we find that an RDCSS instruction described by Harris et al.
[Harris et al.(2002)Harris, Fraser, and Pratt] that does a double compare and a single
swap is enough to implement safe updates. The downside of RDCSS is that its software
implementation creates an intermediate descriptor object. While such a construction is
general, due to the overhead of allocating and later garbage collecting the descriptor, it
is not optimal in our case.

Fortunately, we can use the generation-compare-and-swap, or GCAS, described in the
previous section, instead of RDCSS or DCAS. In fact, to compute the Ctrie snapshot,
we will use the same approach as we did for concurrent linked lists. Recall that the
GCAS has the advantage that it does not create the intermediate object except in the
case of failures that occur due to the snapshot being taken – in this case the number
of intermediate objects created per snapshot is O(t) where t is the number of threads
invoking some modification operation at the time of the snapshot.

Implementation

We now show how to augment the existing algorithm with snapshots using the GCAS and
GCAS_READ procedures. We add a prev field to each type of a main node and a gen field
to I-nodes. The gen field points to generation objects allocated on the heap. We do
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not use integers to avoid overflows and we do not use pointers to the root as generation
objects, since that could cause memory leaks – if we did, the Ctrie could potentially
transitively point to all of its previous snapshot versions. We add an additional parameter
startgen to procedures ilookup, iinsert and iremove. This parameter contains the
generation count of the Ctrie root, which was read when the operation began.

Next, we replace every occurence of a CAS instruction with a call to the GCAS procedure.
We replace every atomic read with a call to the GCAS_READ procedure. Whenever we read
an I-node while traversing the trie (lines 12, 37 and 71) we check if the I-node generation
corresponds to startgen. If it does, we proceed as before. Otherwise, we create a copy
of the current C-node such that all of its I-nodes are copied to the newest generation
and use GCAS to update the main node before revisiting the current I-node again. This is
shown in Figure 4.24, where the cn refers to the C-node currently in scope (see Figures
4.18, 4.20 and 4.22). In line 43 we copy the C-node so that all I-nodes directly below it
are at the latest generation before updating it. The readonly field is used to check if the
Ctrie is read-only - we explain this shortly. Finally, we add a check to the cleanParent
procedure, which aborts if startgen is different than the gen field of the I-node.

...
case sin: INode =>

if (startgen eq in.gen)
return iinsert(sin, k, v, lev + W, i, startgen)

else
if (GCAS(cn, atGen(cn, startgen)))

iinsert(i, k, v, lev, parent, startgen)
else return RESTART

...
def atGen(n, ngen)127

n match {128
case cn: CNode => cn.mapped(atGen(_, ngen))129
case in: INode => new INode(GCAS_READ(in), ngen)130
case sn: SNode => sn131

}132

Figure 4.24: I-node Renewal

All GCAS invocations fail if the generation of the Ctrie root changes and these failures
cause the basic operations to be restarted. Since the root is read once again after
restarting, we are guaranteed to restart the basic operation with the updated value of
the startgen parameter.

As with linked lists, one might be tempted to implement the snapshot operation by
simply using a CAS instruction to change the root reference of a Ctrie to point to an
I-node with a new generation. However, the snapshot operation can copy and replace the
root I-node only if its main node does not change between the copy and the replacement.

We again use the RDCSS procedure described by Harris to propose the new value by
creating an intermediate descriptor object, which points to the previous and the proposed
value. Once more, we specialize RDCSS to suit our needs – the first compare is on the
root and the second compare is always on the main node of the old value of the root.
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GCAS_READ is used to read the main node of the old value of the root. The semantics
correspond to the atomic block shown in Figure 4.13.

To create a snapshot of the Ctrie the root I-node is read. Its main node is read next. The
RDCSS procedure is called, which replaces the old root I-node with its new generation
copy. If the RDCSS is successful, a new Ctrie is returned with the copy of the root I-node
set to yet another new generation. Otherwise, the snapshot operation is restarted.

def snapshot()133
r = RDCSS_READ()134
expmain = GCAS_READ(r)135
if RDCSS(r, expmain, new INode(expmain, new Gen))136

return new Ctrie {137
root = new INode(expmain, new Gen)138
readonly = ⊥139

}140
else return snapshot()141

Figure 4.25: Snapshot Operation

An attentive reader will notice that if two threads simultaneously start a GCAS on the root
I-node and an RDCSS on the root field of the Ctrie, the algorithm will deadlock6 since both
locations contain the proposed value and read the other location before committing. To
avoid this, one of the operations has to have a higher priority. This is the reason for the
ABORTABLE_READ in line 138 in Figure 4.11 – it is a modification of the RDCSS_READ that
writes back the old value to the root field if it finds the proposal descriptor there, causing
the snapshot to be restarted. The algorithm remains lock-free, since the snapshot reads
the main node in the root I-node before restarting, thus having to commit the proposed
main node.

Since both the original Ctrie and the snapshot have a root with a new generation, both
Ctries will have to rebuild paths from the root to the leaf being updated. When computing
the size of the Ctrie or iterating the elements, we know that the snapshot will not be
modified, so updating paths from the root to the leaf induces an unnecessary overhead.
To accomodate this we implement the readOnlySnapshot procedure that returns a read
only snapshot. The only difference with respect to the snapshot procedure in Figure
4.25 is that the returned Ctrie has the old root r (line 138) and the readonly field is set
to >. The readonly field mentioned earlier in Figures 4.17, 4.11 and 4.24 guarantees
that no writes to I-nodes occur if it is set to >. This means that paths from the root to
the leaf being read are not rewritten in read-only Ctries. The rule also applies to T-nodes
– instead of trying to clean the Ctrie by resurrecting the I-node above the T-node, the
lookup in a read-only Ctrie treats the T-node as if it were an S-node. Furthermore, if the
GCAS_READ procedure tries to read from an I-node in which a value is proposed, it will
abort the write by creating a failed node and then writing the old value back (line 141).

Finally, we show how to implement snapshot-based operations in Figure 4.26. The size

6More accurately, it will cause a stack overflow in the current implementation.
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def iterator()142
if readonly return new Iterator(RDCSS_READ(root))143
else return readOnlySnapshot().iterator()144

145
def size()146

sz = 0147
it = iterator()148
while it.hasNext sz += 1149
return sz150

151
def clear()152

r = RDCSS_READ()153
expmain = GCAS_READ(r)154
if ¬RDCSS(r, expmain, new INode(new Gen)) clear()155

Figure 4.26: Snapshot-Based Operations

operation can be optimized further by caching the size information in main nodes of a
read-only Ctrie – this reduces the amortized complexity of the size operation to O(logn)
because the size computation is amortized across the update operations that occurred
since the last snapshot. In fact, any associative reduction operation over the elements of
the Ctrie can be cached in this way. Furthermore, size and other associative operations
can be executed in parallel after invoking the readOnlySnapshot method, by using the
frozen Ctrie as a software combining tree [Herlihy and Shavit(2008)]. We do not go into
details nor do we show the entire splitter implementation, which is trivial once a snapshot
is obtained.

4.2.3 Snapshot Performance

Having studied the snapshot implementation, we turn to examining several important
performance aspects. Unlike the concurrent linked list from Section 4.2.1, which has O(n)
asymptotic running time and was introduced as a proof of concept data structure, Ctries
have expected O(log32 n) modification and lookup operations, with good scalability and
absolute performance (see Section 6.4 for comparison with similar data structures). If
extending Ctries with snapshots were to compromise performance, their practicality
would be greatly diminished. Fortunately, this is not the case. In this section, we quantify
the performance penalties of adding snapshots to Ctries, analyze the worst-case space
consumption of a Ctrie augmented with snapshots, compare it the memory footprint of
the Ctrie against that of similar data structures, and compare Ctrie snapshot performance
to that of using an STM.

Snapshot Overheads

We start by experimentally comparing the absolute performance of the basic Ctrie without
snapshot support (no-snapshot-support), a Ctrie with snapshot support on which the
snapshot method was never called (snapshot-support), and a Ctrie with snapshot support
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Figure 4.27: Snapshot Overheads with Lookup and Insert Operations

on which the snapshot method had been invoked immediately before the benchmark
started (snapshot-support-copying). We run two simple benchmarks that contrast the
costs of replacing CAS with GCAS against the costs of rebuilding the Ctrie after a
snapshot. In the first benchmark, we sequentially, i.e. from a single thread, invoke the
lookup operation on all the elements contained in the Ctrie. We do so separately for
the three Ctrie instances, and plot three separate curves that correlate the number of
elements with the running time of the benchmark. The second benchmark evaluates the
insert operation, which replaces all the keys in the Ctrie, in a similar way. We run the
benchmarks on an Intel i7-4900MQ 3.8 GHz Quad-Core processor with hyperthreading,
and compare the running times using a logarithmic y-axis.

These benchmarks show us that augmenting Ctries with support for snapshots increases
the running time of lookups by up to 23%. The running time of the insert operation
is increased by up to 20%. This indicates that augmenting Ctries with GCAS incurs
acceptable overheads.

In both benchmarks, accessing all the elements in the Ctrie after taking a snapshot
adds a copying overhead which is 30% for small Ctries, and approaches only 2% as we
increase the number of elements. This indicates that the cost of rebuilding the Ctrie
is almost completely amortized by the cost of accessing all the elements, particularly
for larger Ctries. Note that this result shows the average performance when we access
many elements – some initial proportion of accesses, ocurring immediately after taking a
snapshot, can require more time, as larger parts of the Ctrie need to be rebuilt.

Importantly, these benchmarks characterize the overheads of extending Ctries with
snapshots, and are run on a single thread – they tell us nothing about the scalability of
the snapshot operation when the copying proceeds in parallel. More extensive benchmarks,
which study the scalability of parallel snapshots, are shown in Section 6.4.

121



Chapter 4. Parallelizing Reactive and Concurrent Data Structures

0 1 2 3 4 5 6 7
·105

0

2

4

6

·104

lookup (size/# elements)

m
em

or
y
us
ag

e/
kB

Ctrie
ConcurrentHashMap

ConcurrentSkipListMap

Figure 4.28: Ctries Memory Consumption

Memory Consumption

We now evaluate memory consumption of the Ctrie, both from a theoretical standpoint,
with respect to spatial complexity, and empirically, by comparing it to similar data
structures.

First, we consider the worst-case space requirements of a Ctrie augmented with snapshots.
Note that the prev field in each main node points to the previous value at the same I-node.
It would be quite unfortunate if a chain of prev pointers, captured each time when a
snapshot occurs, induced a linked list of main nodes belonging to different generations of
the Ctrie, eventually leading to the first occurence of the main node. If this situation were
possible, the worst-case space consumption of a Ctrie would be O(n+ t · S), where S is
the number of snapshots taken during the lifetime of the Ctrie, a potentially unbounded
value.

We will prove that this never happens, and that a single Ctrie instance never occupies
more than O(n+ t) space, where n is the number of elements in the Ctrie, and t is the
number of threads executing a modification operation (insert or remove) at the time
when the snapshot was taken. To do this, we consider the GCAS and GCAS_READ methods,
and note the following:

• Every main node is created with a non-null prev field.

• Once the prev field is set to null, it is never changed again.

• The GCAS_READ method at the I-node in can only return a main node whose prev
field is null.

• The GCAS method at the I-node in with the main-node n can only return after the
prev field in n is set to null.

These lemmas imply that the chain of prev nodes referenced by any Ctrie operation can
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Figure 4.29: Ctrie Snapshots vs STM Snapshots

have the length of at most 2 (due to the Failed node). If there are t such operations
performed by t separate threads in progress when the snapshot is taken, the total space
consumption becomes O(n+ t). Admittedly, the number of threads t is unbounded, but
this is the case with any lock-free data structure – a system with an unbounded number
of threads usually has a separate set of problems.

The theoretical treatment gives us a solid proof of the worst case spatial complexity,
but it tells us little about the constant factors involved. In Figure 4.28, we compare
the memory footprint of Ctries with snapshots against that of ConcurrentHashMap
and ConcurrentSkipListMap from JDK. We find that our implementation consumes
approximately 13% more space than ConcurrentHashMap and 17% more space than
ConcurrentSkipListMap. We consider both these overheads acceptable for typical
applications.

Comparison with STMs

Lastly, we contrast the benefits of snapshots against an alternative technology, namely,
software transactional memories. As argued earlier, an STM can automatically pro-
vide transactional semantics for arbitrary data structures, but pays high runtime over-
heads for this generality. For this reason, specific STM implementations like ScalaSTM
[Bronson et al.(2010b)Bronson, Chafi, and Olukotun] [Bronson(2011b)] provide collec-
tions such as transactional arrays and transactional maps as basic primitives. These
transactional collections are not implemented directly in terms of transactional refer-
ences, and are integrated with the STM in a more optimal way. ScalaSTM even goes a
step further by providing the transactional snapshot operation on its transactional map
collection, and implements it using a data structure similar to the Ctrie.

We compare the performance of the Ctrie snapshot (Ctrie-snapshot) against that of
ScalaSTM’s transactional map snapshot (TMap-snapshot), an atomic block that accesses
the transactional map (TMap-atomic), and a custom transactional hash table, imple-
mented using transactional arrays and transactional references (TMap-custom). We also

123



Chapter 4. Parallelizing Reactive and Concurrent Data Structures

test the custom transactional table by doing just a single insert operation before the
lookups, because that forces ScalaSTM to serialize the concurrent transactions, and is
reasonable to assume in a real use case (TMap-custom+write). The benchmark is similar
to an earlier one – in all cases, all the entries in the collection are looked up atomically.
This time, however, we use 4 threads that perform the lookups, to simulate the effects of
several concurrent transactions.

Figure 4.29 shows that all the other variants are slower than using Ctries. The transac-
tional map snapshot, although specialized, is 50% slower than Ctrie snapshot, and the
atomic block that accesses the transactional map is 2.5× slower. The custom transac-
tional hash table, although simple and fast when used from a single thread, is up to 5×
slower than Ctrie when at least one write appears in the transaction.

4.2.4 Summary of the Snapshot-Based Parallelization

We applied the snapshot approach to two separate lock-free concurrent data structures
– concurrent linked lists and concurrent hash tries. The procedure was similar in both
cases:

1. First, we identified the I-nodes and main nodes in the data structure and augmented
them with gen and prev fields.

2. Then, we replaced all occurences of CAS and READ instructions with calls to GCAS
and GCAS_READ, respectively.

3. After that, we modified all the operations that traverse parts of the data structure
to pass the generation tag argument. The generation tag is used to update parts of
the trie that are out of date, before accessing them.

4. We identified the root of the data structure and replaced all its atomic READ
accesses with RDCSS_READ calls.

5. Finally, we implemented the snapshot operation using an RDCSS call.

Interestingly, the destructive operations on the snapshot of the Ctrie did not change
their complexity with respect to the same operations on the non-snapshot Ctrie instance.
The copy-on-snapshot does not have to be done eagerly for the entire data structure –
instead, it can lazily rebuild only those parts of the data structure traversed by specific
operations. Concurrent data structures that have efficient persistent variants seem to be
particularly amenable to this technique.

Note that an additional advantage of using lazy snapshots is that the copying can be
parallelized if the concurrent data structure is a balanced tree. Once the root of the data
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structure is renewed, paths from the root to different leafs can be rebuilt independently,
so the work of copying is spread over processors subsequently executing concurrent
operations.

4.3 Related work

Concurrently accessible queues have been present for a while, an implementation is de-
scribed by [Mellor-Crummey(1987)]. Non-blocking concurrent linked queues are described
by Michael and Scott [Michael and Scott(1996)]. This CAS-based queue implementation
is cited and used widely today, a variant of which is present in the Java standard library.
More recently, Scherer, Lea and Scott [Scherer et al.(2009)Scherer, Lea, and Scott] de-
scribe synchronous queues, which internally hold both data and requests. Both approaches
above entail blocking (or spinning) at least on the consumer’s part when the queue is
empty.

While these concurrent queues fit well in the concurrent imperative model, they have
the disadvantage that the programs written using them are inherently nondeterministic.
Roy and Haridi [Roy and Haridi(2004)] describe the Oz programming language, a subset
of which yields programs deterministic by construction. Oz dataflow streams are built
on top of single-assignment variables – using them results in deterministic programs.
Here, a deterministic program is guaranteed to, given the same inputs, always yield
the same results, or always throw some exception. They allow multiple consumers, but
only one producer at a time. Oz has its own runtime which implements blocking using
continuations.

The concept of single-assignment variables is embodied in futures proposed by Baker
and Hewitt [Henry C. Baker and Hewitt(1977)], and promises first mentioned by Fried-
man and Wise [Friedman and Wise(1976)]. Futures were first implemented in MultiLISP
[Halstead(1985)], and have been employed in many languages and frameworks since. Scala
2.10 futures [Haller et al.(2012)Haller, Prokopec, Miller, Klang, Kuhn, and Jovanovic] de-
fine monadic operators and a number of high-level combinators that create new futures.
These APIs avoid blocking.

A number of other models and frameworks recognized the need to embed the concept
of futures into other data-structures. Single-assignment variables have been general-
ized to I-Structures [Arvind et al.(1989)Arvind, Nikhil, and Pingali] which are essentially
single-assignment arrays. CnC [Burke et al.(2011)Burke, Knobe, Newton, and Sarkar]
is a parallel programming model influenced by dynamic dataflow, stream-processing and
tuple spaces. In CnC the user provides high-level operations along with the ordering
constraints that form a computation dependency graph.

Reactive streams in the Rx framework proposed by Meijer [Meijer(2012)] are an example
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of an unrestricted reactive computation. Reactive streams are a much more flexible
programming model than futures, but they allow creating non-deterministic programs.

Moir and Shavit give an overview of concurrent data structures [Moir and Shavit(2004)].
A lot of research was done on concurrent lists [Harris(2001)], queues and concurrent
priority queues. A good introduction to concurrent, lock-free programming is given by
Herlihy and Shavit [Herlihy and Shavit(2008)].

While the individual concurrent hash table operations such as insertion or removal can
be performed in a lock-free manner as shown by Maged [Michael(2002)], resizing is
typically implemented with a global lock. Although the cost of resizing is amortized
against operations by one thread, this approach does not guarantee horizontal scalability.
Lea developed an extensible hash algorithm that allows concurrent searches during the
resizing phase, but not concurrent insertions and removals [Lea(2014)]. Shalev and Shavit
give an innovative approach to resizing – split-ordered lists keep a table of hints into a
single linked list in a way that does not require rearranging the elements of the linked
list when resizing the table [Shalev and Shavit(2006)].

Skip lists store elements in a linked list. There are multiple levels of linked lists that allow
logarithmic time insertions, removals and lookups. Skip lists were originally invented by
Pugh [Pugh(1990a)]. Pugh proposed concurrent skip lists that achieve synchronization
using locks [Pugh(1990b)]. Concurrent non-blocking skip lists were later implemented by
Lev, Herlihy, Luchangco and Shavit [Y. Lev and Shavit(2006)] and Lea [Lea(2014)].

Kung and Lehman [Kung and Lehman(1980)] proposed a concurrent binary search tree
– their implementation uses a constant number of locks at a time that exclude other
insertion and removal operations, while lookups can proceed concurrently. Bronson
presents a scalable concurrent AVL tree that requires a fixed number of locks for deletions
[Bronson et al.(2010a)Bronson, Casper, Chafi, and Olukotun]. Recently, a non-blocking
binary tree was proposed [Ellen et al.(2010)Ellen, Fatourou, Ruppert, and van Breugel].

Tries were proposed by Briandais [De La Briandais(1959)] and Fredkin [Fredkin(1960)].
Trie hashing was applied to accessing files stored on the disk by Litwin [Litwin(1981)].
Litwin, Sagiv and Vidyasankar implemented trie hashing in a concurrent setting, however,
they use mutual exclusion locks [Litwin et al.(1989)Litwin, Sagiv, and Vidyasankar]. Hash
array mapped trees, or hash tries, are tries for shared-memory described by Bagwell
[Bagwell(2001)]. To our knowledge, there is no nonblocking concurrent implementation
of hash tries prior to Ctrie.

A persistent data structure is a data structure that preserves its previous version when
being modified. Efficient persistent data structures are in use today that re-evaluate only
a small part of the data structure on modification, thus typically achieving logarithmic,
amortized constant and even constant time bounds for their operations. Okasaki presents
an overview of persistent data structures [Okasaki(1998)]. Persistent hash tries have
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been introduced in standard libraries of languages like Scala and Clojure.

RDCSS and DCAS software implementations [Harris et al.(2002)Harris, Fraser, and Pratt]
are well known. These rely on dynamic memory allocation – this has disadvantages
both from the performance and the usability standpoint. Lock-free concurrent deques
[Agesen et al.(2000)Agesen, Detlefs, Flood, Garthwaite, Martin, Shavit, and Jr.] that use
DCAS were proposed in the past. We note that a wide-spread hardware implementation
of these primitives would ease the implementation of many concurrent data structures,
including Ctries from this chapter.

4.4 Conclusion

In this chapter, we presented FlowPools for deterministic dataflow computations, referring
to their variants that allow increased parallelism. FlowPools have decreased memory con-
sumption compared to classic lock-free queues [Michael and Scott(1996)], and retain simi-
lar running time [Prokopec et al.(2012b)Prokopec, Miller, Schlatter, Haller, and Odersky].

Although determinism is useful when debugging concurrent programs, many applications
are in practice inherently nondeterministic. We therefore discourage using FlowPools as
a deterministic abstraction, but note that the underlying data structure is an efficient
concurrent queue implementation. Concurrent queues serve as buffers between the
producers and the consumers, and are inevidable in parallel dataflow frameworks.

In the second part of this chapter, we introduced the Ctrie concurrent data structure.
Ctries have particularly scalable insert and remove operations, as we show in Section
6.4. By working towards parallelizing bulk operations on the Ctrie, we introduced an
important technique for augmenting concurrent data structures with an efficient, lock-
free, linearizable, lazy snapshot operation. Importantly, adding the snapshot operation
introduced minimal overheads, both in terms of running time and memory consumption,
to existing Ctrie operations.

Lazyness was, for a long time, thought to be useful mainly to provide amortization to
persistent data structures, by ensuring that the shared units of work are executed at
most once [Okasaki(1996)]. Lazyness in the snapshot ensures that parts of the Ctrie
are copied when and if they are needed – multiple processors can simultaneously access
and rebuild separate parts of the data structure. In lock-free concurrent data structures,
implementing scalable, linearizable, lock-free operations that depend on, or change, the
global state of the data structure, is a novel use-case for lazy evaluation.
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Almost every data-parallel workload is to some extent irregular on a multicore or a
multiprocessor machine. Even if the number of instructions that need to be executed is
equal for every element of the collection, there are many other factors that influence the
workload. Some of the workers may wake up slower than other workers or be occupied
executing other data-parallel operations, so they can make a workload seem irregular in
practice. Then, accessing specific regions of memory might not take the same time for
all the processors, and contended writes can slow some processors more than the others,
depending on the access pattern. Similarly, a memory allocator might take different
amounts of time to return a chunk of memory depending on its internal state. A processor
may be preempted by the operating system and unavailable for a certain amount of
time, effectively executing its work slower than the rest of the processors. In a managed
runtime, a garbage collection cycle or a JIT compiler run can at any time freeze some or
all of the worker threads.

Work-stealing [Frigo et al.(1998)Frigo, Leiserson, and Randall] is one solution to load-
balancing computations with an irregular workload. In this technique different processors
occasionally steal batches of elements from each other to load balance the work – the
goal is that no processor stays idle for too long. We have seen an example of task-based
data-parallel work-stealing scheduler in Section 2.7. In this chapter we propose and
describe a runtime scheduler for data-parallel operations on shared-memory architectures
that uses a variant of work-stealing to ensure proper load-balancing. The scheduler
relies on a novel data structure with lock-free synchronization operations called the
work-stealing tree.

5.1 Data-Parallel Workloads

As we saw in previous chapters, data-parallel programs are typically composed from
high-level operations, and are declarative rather than imperative in nature. We focus
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on several concrete data-parallel programs in Figure 5.1. These programs rely heavily
on higher-order data-parallel operations such as map, reduce and filter, which take a
function argument – they are parametrized by a mapping function, a reduction operator
or a filtering predicate, respectively.

The first example in Figure 5.1 computes the variance of a set of measurements ms. It
starts by computing the mean value using the higher-order operation sum, and then maps
each element of ms into a set of squared distances from the mean value, the sum of which
divided by the number of elements is the variance v. The amount of work executed
for each measurement value is equal, so we call this workload uniform. This need not
be always so. The second program computes all the prime numbers from 3 until N by
calling a data-parallel filter on the corresponding range. The filter uses a predicate
that checks that no number from 2 to

√
i divides i. The workload is not uniform nor

independent of i and the processors working on the end of the range need to do more
work. This example also demonstrates that data-parallelism can be nested – the forall
can be done in parallel as each element may require a lot of work. On the other hand,
the reduce in the third program that computes a sum of numbers from 0 to N requires
a minimum amount of work for each element. A good data-parallel scheduler must be
efficient for all the workloads – when executed with a single processor the reduce in the
third program must have the same running time as the while loop in the fourth program,
the data-parallelism of which is not immediately obvious due to its imperative style.

val sz = ms.size1
val a = ms.sum / sz2
val ds = ms map {3

x => (x - a)^24
}5
val v = ds.sum / sz6

val r = 3 until N7
val ps = r filter {8

i =>9
2 to d

√
ie forall {10

d => i % d != 011
}12

}13

val r = 0 until N14
val sum = r reduce {15

(acc, i) =>16
acc + i17

}18

var sum = 019
var i = 020
while (i < N) {21

sum += i22
i += 123

}24

Figure 5.1: Data Parallel Program Examples

As argued in Chapter 2 and illustrated in Figure 5.1, data-parallel operations are highly
generic – for example, reduce takes a user-provided operator, such as number addition,
string concatenation or matrix multiplication. This genericity drives the workload
distribution, which cannot always be determined statically. To assign work to processors
optimally, scheduling must occur at runtime. Scheduling in this case entails dividing the
elements into batches on which the processors work in isolation.

Before assessing the goals and the quality of scheduling, we need to identify different
classes of computational workloads. We will refer to workloads that have an equal amount
of work assigned to every element as uniform workload. A uniform workload that has the
least possible possible amount of possible useful work assigned to each element is called
the baseline workload. When comparing two uniform workloads we say that the workload
with less work per element is more fine-grained, as opposed to the other that is more
coarse-grained. All workloads that are not uniform are considered irregular workloads.
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As argued at the beginning of this section, there is no workload that is truly uniform in
practice. Still, the concept of a uniform workload is important when assessing a scheduler
and some practical workloads come very close to it.

When evaluating the data-parallel scheduler we first require that the scheduler scales
linearly when the workload is the baseline workload. This ensures that the scheduler
works well when the workloads are fine-grained. Without this constraint it is trivial
to implement a scheduler for irregular workloads – we have already shown one such
scheduler in Figure 2.23 in Section 2.9. After ensuring baseline scalability we assess the
quality of the scheduler by comparing it against other schedulers on different irregular
workloads.

In conclusion, a data-parallel scheduler must meet the following criteria:
C1 There is no noticeable overhead when executing the baseline with a single processor.
C2 Speedup is optimal for both the baseline and for typical irregular workloads appearing
in practice.
C3 Speedup is optimal for coarse-grained workloads where the work granularity is on
the order of magnitude of the parallelism level.

5.2 Work-stealing Tree Scheduling

In this section we introduce the work-stealing tree scheduling algorithm. We start by
introducing the basic work-stealing tree data types and operations, and then introduce
the scheduling algorithm workers execute, along with several extensions. For the purposes
of this section we will be parallelizing a loop, i.e. a simple range collection that represents
a finite interval of integer numbers.

The design of the algorithm is driven by the following assumptions. There are no fast,
accurate means to measure elapsed time with sub-microsecond precision, i.e. there is
no way to measure the running time of an operation. There is no static or runtime
information about the cost of an operation – when invoking a data-parallel operation
we do not know how much computation each element requires. There are no hardware-
level interrupt handling mechanisms at our disposal – the only way to interrupt a
computation is to have the processor check a condition. We assume OS threads as
parallelism primitives, with no control over the scheduler. We assume that the available
synchronization primitives are monitors and the CAS instruction. CAS can be used
for stronger primitives [Harris et al.(2002)Harris, Fraser, and Pratt], but we do not use
those directly1. We assume the presence of automatic memory management. These
constraints are typical for a managed runtime like the JVM.

1Using stronger primitives such as software DCAS requires allocating objects, and we avoid it for
performance reasons.
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5.2.1 Basic Data Types

In this section we describe the work-stealing tree data structure and the scheduling
algorithm that the workers run. We first briefly discuss the aforementioned fixed-size
batching. We have mentioned that the contention on the centralized queue is one of it
drawbacks. We could replace the centralized queue with a queue for each worker and
use work-stealing. However, this seems overly eager – we do not want to create as many
work queues as there are workers for each parallel operation, as doing so may outweigh
the actually useful work. We should start with a single queue and create additional ones
on-demand. Furthermore, fixed-size batching seems appropriate for scheduling parallel
loops, but what about the reduce operation? If each worker stores its own intermediate
results separately, then the reduce may not be applicable to non-commutative operators
(e.g. string concatenation). It seems reasonable to have the work-stealing data-structure
store the intermediate results, since it has the division order information.

With this in mind, we note that a tree seems particularly applicable. When created it
consists merely of a single node – a root representing the operation and all the elements
of the range. The worker invoking the parallel operation can work on the elements and
update its progress by writing to the node it owns. If it completes before any other
worker requests work, then the overhead of the operation is merely creating the root.
Conversely, if another worker arrives, it can steal some of the work by creating two
child nodes, splitting the elements and continuing work on one of them. This proceeds
recursively. Scheduling is thus workload-driven – nodes are created only when some
worker runs out of work meaning that another worker had too much work. Such a tree
can also store intermediate results in the nodes, serving as a reduction tree.

How can such a tree be used for synchronization and load-balancing? We assumed that
the parallelism primitives are OS threads. We can keep a pool of threads [Lea(2000)]
that are notified when a parallel operations is invoked – we call these workers. We
first describe the worker algorithm from a high-level perspective. Each worker starts by
calling the tail-recursive run method in Figure 5.2. It looks for a node in the tree that is
either not already owned or steals a node which some other worker works on by calling
findWork in line 3. This node is initially a leaf. The worker works on the leaf by calling
workOn in line 5, which works on it until the leaf until the leaf is either completed or
stolen. This is repeated until findWork returns ⊥ (null), indicating that all the work is
completed.

In Figure 5.2 we also present the work-stealing tree and its basic data-types. We use
the keyword struct to refer to a compound data-type – this can be a Java class or a
C structure. We define two compound data-types. Ptr is a reference to the tree – it
has only a single member child of type Node. Write access to child has to be atomic
and globally visible (in Java, this is ensured with the volatile keyword). Node contains
immutable references to the left and right subtree, initialized upon instantiation. If
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struct Ptr
child: Node

struct Node
left, right: Ptr
start, until: Int
progress: Int
owner: Owner

def run(): Unit =1
val leaf =2

findWork(root)3
if (leaf 6= ⊥)4

workOn(leaf)5
run()6

Figure 5.2: Work-Stealing Tree Data-Types and the Basic Scheduling Algorithm
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Figure 5.3: Work-Stealing Node State Diagram

these are set to ⊥ we consider the node a leaf. We initially focus on parallelizing loops
over ranges, so we encode the current state of iteration with three integers. Members
start and until are immutable and denote the initial range – for the root of the tree
this is the entire loop range. Member progress has atomic, globally visible write access.
It is initially set to start and is updated as elements are processed. Finally, the owner
field denotes the worker that is working on the node. It is initially ⊥ and also has atomic
write access. Example trees are shown in Figure 5.3.

Before we describe the operations and the motivation behind these data-types we
will define the states work-stealing tree can be in (see Figure 5.3), namely its invari-
ants. This is of particular importance for concurrent data structures which have non-
blocking operations. Work-stealing tree operations are lock-free, a well-known advantage
[Herlihy and Shavit(2008)], which comes at the cost of little extra complexity in this
case.
INV1 Whenever a new node reference Ptr p becomes reachable in the tree, it ini-
tially points to a leaf Node n, such that n.owner = ⊥. Field n.progress is set to
n.start and n.until≥n.start. The subtree is in the AVAILABLE state and its range
is 〈n.start,n.until〉.
INV2 The set of transitions of n.owner is ⊥ → π 6= ⊥. No other field of n can be
written until n.owner 6= ⊥. After this happens, the subtree is in the OWNED state.
INV3 The set of transitions of n.progress in the OWNED state is p0 → p1 → . . .→ pk
such that n.start = p0 < p1 < . . . < pk < n.until. If a worker π writes a value from
this set of transitions to n.progress, then n.owner = π.
INV4 If the worker n.owner writes the value n.until to n.progress, then that is the
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def tryOwn(n: Node): Boolean =7
if (READ(n.owner) 6= ⊥) false8
else if (CAS(n.owner, ⊥, π)) true9
else tryOwn(n)10

11
def tryAdvance(n: Node, p: Int): Int =12

val q = min(p + STEP, n.until)13
if (¬CAS(n.progress, p, q)) -114
else q - p15

16
def isLeaf(n: Node): Boolean =17

n.left == ⊥18
19

def isEligible(n: Node): Boolean =20
n.until - READ(n.progress) > 121

def trySteal(ptr: Ptr): Boolean =22
val c_t0 = READ(ptr.child)23
if (¬isLeaf(c_t0)) true else24

val p_t1 = READ(c_t0.progress)25
if (p_t1 == c_t0.until) false26
else if (p_t1 ≥ 0)27

val negp = -p_t1 - 128
CAS(c_t0.progress, p_t1, negp)29
trySteal(ptr)30

else31
val c_exp = newExpanded(c_t0)32
if (CAS(ptr.child, c_t0, c_exp))33

true34
else trySteal(ptr)35

Figure 5.4: Basic Work-Stealing Tree Operations

last transition of n.progress. The subtree goes into the COMPLETED state.
INV5 If a worker ψ overwrites pi, such that n.start ≤ pi < n.until, with ps = −pi−1,
then ψ 6= n.owner. This is the last transition of n.progress and the subtree goes into
the STOLEN state.
INV6 The field p.child can be overwritten only in the STOLEN state, in which case
its transition is n → m, where m is a copy of n with m.left and m.right being fresh
leaves in the AVAILABLE state with ranges rl = 〈x0, x1〉 and rr = 〈x1, x2〉 such that
rl ∪ rr = 〈pi, n.until〉. The subtree goes into the EXPANDED state.

This seemingly complicated set of invariants can be summarized in a straightforward
way. Upon owning a leaf, that worker processes elements from that leaf’s range by
incrementing the progress field until either it processes all elements or another worker
requests some work by invalidating progress. If some other worker invalidates progress
(i.e. steals a node), then the leaf is replaced by a subtree such that the remaining work is
divided between the new leaves.

5.2.2 Work-Stealing Tree Operations

So far we have described in very abstract terms how workers execute useful work. As
we will see, the findWork method will traverse the tree until a node eligible for work
is found. At this point the node either becomes owned by the worker or stolen if it is
already owned by another worker. Before we show findWork, we must introduce some
basic work-stealing tree operations.

Now that we have formally defined a valid work-stealing tree data structure, we provide
an implementation of the basic operations (Figure 5.4). A worker must attempt to
acquire ownership of a node before processing its elements by calling the method tryOwn,
which returns true if the claim is successful. After reading the owner field in line 8 and
establishing the AVAILABLE state, the worker attempts to atomically push the node
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into the OWNED state with the CAS in line 9. This CAS can fail either due to a faster
worker claiming ownership or spuriously – a retry follows in both cases.

A worker that claimed ownership of a node repetitively calls tryAdvance, which attempts
to reserve a batch of size STEP by atomically incrementing the progress field, eventually
bringing the node into the COMPLETED state. If tryAdvance returns a nonnegative
number, the owner is obliged to process that many elements, whereas a negative number
is an indication that the node was stolen.

A worker searching for work must call trySteal if it finds a node in the OWNED state.
This method returns true if the node was successfully brought into the EXPANDED
state by any worker, or false if the node ends up in the COMPLETED state. Method
trySteal consists of two steps. First, it attempts to push the node into the STOLEN
state with the CAS in line 29 after determining that the node read in line 23 is a leaf. This
CAS can fail either due to a different steal, a successful tryAdvance call or spuriously.
Successful CAS in line 29 brings the node into the STOLEN state. Irregardless of success
or failure, trySteal is then called recursively. In the second step, the expanded version
of the node from Figure 5.3 is created by the newExpanded method, the pseudocode of
which is not shown here since it consists of isolated singlethreaded code. The child
field in Ptr is replaced with the expanded version atomically with the CAS in line 33,
bringing the node into the EXPANDED state.

5.2.3 Work-Stealing Tree Scheduling Algorithm

def workOn(ptr: Ptr): Boolean =36
val node = READ(ptr.child)37
var batch = -138
do39

val p = READ(node.progress)40
if (p >= 0 ∧ p < node.until)41

batch = tryAdvance(node, p)42
if (batch 6= -1)43

kernel(p, p + batch)44
else batch = -145

while (batch 6= -1)46
if (READ(node.progress) ≥ 0)47

true48
else49

trySteal(ptr)50
false51

def findWork(ptr: Ptr): Node =52
val node = READ(ptr.child)53
if (isLeaf(node))54

if (tryOwn(node)) node55
else if (¬isEligible(node)) ⊥56
else if (¬trySteal(ptr))57

findWork(ptr)58
else59

val right = node.right60
if (tryOwn(READ(right.child)))61

READ(right.child)62
else findWork(ptr)63

else64
val leftsub = findWork(node.left)65
if (leftsub 6= ⊥) leftsub66
else findWork(node.right)67

Figure 5.5: Finding and Executing Work

We now describe the scheduling algorithm that the workers execute by invoking the run
method shown in Figure 5.2. There are two basic modes of operation a worker alternates
between. First, it calls findWork, which returns a node in the AVAILABLE state (line
70). Then, it calls descend to work on that node until it is stolen or completed, which
calls workOn to process the elements. If workOn returns false, then the node was stolen
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def run(): Unit =68
val leaf =69

findWork(root)70
if (leaf 6= ⊥)71

descend(leaf)72
run()73

def descend(leaf: Ptr): Unit =74
val nosteals = workOn(leaf)75
if (¬nosteals)76

val sub = READ(leaf.child).left77
if (tryOwn(READ(sub.child)))78

descend(sub)79

Figure 5.6: Top-Level Scheduling Algorithm

and the worker tries to descend one of the subtrees rather than searching the entire tree
for work. This decreases the total number of findWork invocations. The method workOn
checks if the node is in the OWNED state (line 41), and then attempts to atomically
increase progress by calling tryAdvance. The worker is obliged to process the elements
after a successful advance, and does so by calling the kernel method, which is nothing
more than the while loop like the one in Figure 5.1. Generally, kernel can be any kind
of a workload. Finally, method findWork traverses the tree left to right and whenever it
finds a leaf node it tries to claim ownership. Otherwise, it attempts to steal it until it
finds that it is either COMPLETED or EXPANDED, returning ⊥ or descending deeper,
respectively. Nodes with 1 or less elements left are skipped.

We explore alternative findWork implementations later. For now, we state the following
claim. If the method findWork does return ⊥, then all the work in the tree was obtained
by different workers that have called tryAdvance. This means that all the elements have
been processed, except some number of elements M · C distributed across M < P leaf
nodes where P is the number of workers and C is the largest value passed to tryAdvance.
In essence, C is the largest allowed batch size in the algorithm.

In Figure 5.6 we show a slightly more complicated implementation of the worker run
method. This implementation is purely a performance optimisation. After a worker
completes work on a node it can check if the node has been stolen. If the node is stolen,
there is a high probability that there is a free node in the left subtree, so the worker
attempts to own it before searching the entire tree to find more work.

Note that workOn is similar to fixed-size batching. The difference is that an arrival of a
worker invalidates the work-stealing tree node, whereas multiple workers simultaneously
call tryAdvance in fixed-size batching, synchronizing repetitively and causing contention.
We will now study the impact this contention has on performance and scalability – we
start by focusing on choosing the STEP value from Section 5.2.2.

Results of several experiments are shown in the remainder of this section. Experiments
were performed on an Intel i7 3.4 GHz quad-core processor with hyperthreading and
Oracle JDK 1.7, using the server JVM. The implementation is written in the Scala, which
uses the JVM as its backend. JVM programs are typically regarded as less efficient than
programs written in a lower language like C. To show that the evaluation is comparative
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Figure 5.7: Baseline Running Time (ms) vs. STEP Size

to a C implementation, we must confirm that the running time of corresponding sequential
C programs is equal to that of the same JVM program. A simple experiment confirms
that the running time of the while loop from Figure 5.1 is roughly 45ms for 150 million
elements in both C (GNU C++ 4.2) and on the JVM – if we get linear speedups then
we can conclude that the scheduler is indeed optimal. We can thus turn our attention to
critera C1 for our data-parallel scheduler.

As hinted at the end of Section 5.1, the STEP value in tryAdvance from Figure 5.4
should ideally be 1 for load-balancing purposes, but has to be more coarse-grained due
to communication costs that could overwhelm the baseline. In Figure 5.7A we plot
the running time against the STEP size, obtained by executing the baseline loop with a
single worker. By finding the minimum STEP value with no observable overhead, we seek
to satisfy criteria C1. The minimum STEP with no noticeable synchronization costs is
around 50 elements – decreasing STEP to 16 doubles the execution time and for value 1
the execution time is 36 times larger (not shown for readability).

Having shown that the work-stealing tree is as good as fixed-size chunking with a
properly chosen STEP value, we evaluate its effectiveness with multiple workers. Figure
5.7B shows that the minimum STEP for fixed-size chunking increases for 2 workers, as
we postulated earlier. Increasing STEP decreases the frequency of synchronization and
the communication costs associated with it. In this case the 3x slowdown is caused by
processors having to exchange ownership of the progress field cache-line. The work-
stealing tree does not suffer from this problem, since it strives to keep processors isolated
– the speedup is linear with 2 workers.

However, with 4 processors the performance of the work-stealing tree is degraded (Figure
5.7C), although for greater STEP values the speedup becomes once again linear. The
reason for this is not immediately apparent, but it follows from a naive implementation
based on the pseudocode in Figure 5.2. The increased communication costs are caused
by false sharing – even though the two processors work on different nodes, they modify
the same cache line, slowing down the CAS in line 14. The reason is that in a JVM
implementation memory for the work-stealing nodes is allocated in a contiguous region
by one thread that succeeds in expanding work-stealing node after a steal, causing both
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nodes to end up in the same cache line2. Padding the node object with dummy fields to
adjust its size to the cache line solves this problem, as shown in Figures 5.7D,E.

Having solved the false-sharing issues, we are still not completely satisfied with the
scaling as the number of processors grows. Scalability is dictated by the synchronization
costs, which are in turn proportional to the number of created work-stealing nodes. In
the next section we focus on decreasing synchronization costs further.

5.2.4 Work-Stealing Node Search Heuristics

Inspecting the number of tree nodes created at different parallelism levels in Figure 5.12B
reveals that as the number of workers grows, the number of nodes grows at a superlinear
rate. Each node incurs a synchronization cost, so could we decrease their total number?

Examining a particular work-stealing tree instance at the end of the operation reveals
that different workers are battling for work in the left subtree until all the elements are
depleted, whereas the right subtree remains unowned during this time. As a result, the
workers in any subtree steal from each other more often, hence creating more nodes. The
cause is the left-to-right tree traversal in findWork as defined in Figure 5.5, a particularly
bad stealing strategy we will call Predefined. As shown in Figure 5.12B, the average
tree size for 8 workers nears 2500 nodes. The reason for this is that all the workers
consistently try to steal from each other in the left work-stealing subtree, while the right
subtree remains occupied by at most a single worker. This pressure on the left subtree
causes those nodes to be recursively divided until no more elements remain. Once work in
the left subtree is completely consumed, the same sequence of events resumes in the left
child of the right subtree. After a certain parallelism level, workers using this strategy
start spending more time expanding the work-stealing tree than doing actual useful work.

In this section, we will examine different heuristics for finding work, which lead to better
load-balancing. We will refer to these heuristics as strategies. Each strategy will redefine
the methods descend and findWork. As we will see, a common trait of all these strategies
will be that, if findWord returns null, then there is no more work to steal in the tree.
This is because each strategy will in the worst case visit each leaf of the tree in some
order. Note that a leaf that does not contain work at time t0, does not contain work at
any time t1 > t0, and is a leaf for all t1 > t0. As a consequence, a stealer that traverses
all the nodes, and finds that neither of them contain work, can safely conclude that there
is no more work left in the tree.

We first attempt to change the preference of a worker by changing the tree-traversal
order in line 64 based on the worker index i and the level l in the tree.

2To confirm this, we can inspect the number of elements processed in each work-stealing node. We
reveal that the uniform workload is not evenly distributed among the topmost nodes, indicating that the
additional time is spent in synchronization.
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def left(p: Ptr, i: Int) =80
val bit = i >> (p.level % log2(P))81
bit % 2 == 182

83
def choose(p: Ptr, i: Int) =84

if (left(p, i)) READ(p.child).left85
else READ(p.child).right86

87
def descend(leaf: Ptr): Unit =88

val nosteals = workOn(leaf)89
if (¬nosteals)90

val sub =91
choose(leaf, thisWorker.index)92

if (tryOwn(READ(sub.child)))93
descend(subnode)94

def findWork(ptr: Ptr): Node =95
val node = READ(ptr.child)96
if (isLeaf(node))97

if (tryOwn(node)) node98
else if (¬isEligible(node)) ⊥99
else if (¬trySteal(ptr)) findWork(ptr)100
else101

val ptr =102
choose(ptr, thisWorker.index)103

if (tryOwn(READ(ptr.child)))104
READ(ptr.child)105

else findWork(ptr)106
else if (left(ptr, thisWorker.index))107

val leftsub = findWork(node.left)108
if (leftsub 6= ⊥) leftsub109
else findWork(node.right)110

else111
val rightsub = findWork(node.right)112
if (rightsub 6= ⊥) rightsub113
else findWork(node.left)114

Figure 5.8: Assign Strategy

Assign Strategy

In this strategy a worker with index i invoking findWork picks a left-to-right traversal
order at some node at level l if and only if its bit at position l mod dlog2 P e is 1, that is:

(i >> (l mod dlog2 P e)) mod 2 = 1 (5.1)

This way, the first path from the root to a leaf up to depth log2 P is unique for each
worker. The consequence of this is that when the workers descend in the tree the first
time, they will pick different paths, leading to fewer steals assuming that the workload
distribution is relatively uniform. If it is not uniform, then the workload itself should
amortize the creation of extra nodes. We give the pseudocode in Figure 5.8.

The choice of the subtree after a steal in lines 77 and 60 is also changed like this. This
strategy, which we call Assign, decreases the average tree size at P = 8 to 134.

AssignTop Strategy

This strategy is similar to the previous one with the difference that the assignment only
works as before if the level of the tree is less than or equal to dlog2P e. Otherwise, a
random choice is applied in deciding whether traversal should be left-to-right or right-to-
left. We show it in Figure 5.9 where we only redefine the method left, and reuse the
same choose, descend and findWork.

This strategy decreases the average tree size at P = 8 to 77.
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def left(p: Ptr, idx: Int) =115
if (p.level ≤ log2(P))116

val bit = i >> (p.level % log2(P))117
bit % 2 == 1118

else119
coinToss()120

def left(p: Ptr, idx: Int) =121
coinToss()122

123

Figure 5.9: AssignTop and RandomAll Strategies

def left(p: Ptr, i: Int) =124
val bit = i >> (p.level % log2(P))125
bit % 2 == 1126

127
def choose(p: Ptr, i: Int) =128

if (left(p, i)) READ(p.child).left129
else READ(p.child).right130

131
def descend(leaf: Ptr) =132

val nosteals = workOn(leaf)133
if (¬nosteals)134

val sub = READ(leaf.child).left135
if (tryOwn(READ(sub.child)))136

descend(subnode)137

def findWork(ptr: Ptr) =138
val node = READ(ptr.child)139
if (isLeaf(node))140

if if (tryOwn(node)) node141
else if (¬isEligible(node)) ⊥142
else if (¬trySteal(ptr))143

findWork(ptr)144
else145

val r = node.right146
if (tryOwn(READ(r.child)))147

READ(r.child)148
else findWork(ptr)149

else if (left(ptr, thisWorker.index))150
val leftsub = findWork(node.left)151
if (leftsub 6= ⊥) leftsub152
else findWork(node.right)153

else154
val rightsub = findWork(node.right)155
if (rightsub 6= ⊥) rightsub156
else findWork(node.left)157

Figure 5.10: RandomWalk Strategy

Completely Random Strategies

Building on the randomization idea, we introduce an additional strategy called Rando-
mAll where the traversal order in findWork is completely randomized. This strategy
also randomizes all the other choices that the stealer and the victim make. Both the tree
traversal order and the node chosen after the steal are thus changed in findWork. We
show it in Figure 5.9 on the right.

In the RandomWalk strategy we only change the tree traversal order that the stealer
does when searching for work and leave the rest of the choices fixed – victim picks the
left node after expansion and the stealer picks the right node. The code is shown in
Figure 5.10.

However, these completely random strategies result in a lower throughput and bigger
tree sizes. Additionally randomizing the choice in lines 77 and 60 (RandomAll) is even
less helpful, since the stealer and the victim clash immediately after steal more often.
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def search(p: Ptr): Ptr =158
if (isLeaf(p.child)) p159
else160

val lp = search(p.child.left)161
val rp = search(p.child.right)162
val l = READ(lp.child)163
val r = READ(rp.child)164
if (remains(l) > remains(r)) l165
else r166

167
def remains(n: Node) =168

n.until - READ(n.progress)169

def findWork(ptr: Ptr): Node =170
val maxp = search(tree)171
val max = READ(maxp.child)172
if (remains(max) > 0)173

if (tryOwn(max)) max174
else if (¬isEligible(max)) ⊥175
else if (trySteal(maxp))176

val subnode = READ(maxp.right.child)177
if (tryOwn(subnode)) subnode178
else findWork(ptr)179

else findWork(ptr)180
else ⊥181

Figure 5.11: FindMax Strategy

FindMax Strategy

The results of the five different strategies mentioned so far lead to the following observa-
tion. If a randomized strategy like RandomWalk or AssignTop works better than a
suboptimal strategy like Predefined then some of its random choices help reduce the
overall execution time and some increase it. Sometimes random decisions are good, but
sometimes they are detrimental. So, there must exist an even better strategy which only
makes the choices that lead to a better execution time.

Rather than providing a theoretical background for such a strategy, we propose a
particular one which seems intuitive. Let workers traverse the entire tree and pick a
node with most work, only then attempting to own or steal it. We call this strategy
FindMax. Note that this cannot be easily implemented atomically. By the time that
the work-stealing tree is completely traversed, the remaining work in each of the nodes
will probably change since the last read. Still, an implementation that is only accurate
given quiescence still serves as a decent heuristic for finding the node with most work.

The decisions about which node the victim and the stealer take after expansion remain the
same as in the basic algorithm from Figure 5.5. We show the pseudocode for FindMax
in Figure 5.11. This strategy yields an average tree size of 42 at P = 8, as well as a
slightly better throughput.

The diagrams in Figure 5.12 reveal the postulated inverse correlation between the tree
size and total execution time, both for the Intel i7-2600 and the Sun UltraSPARC T2
processor, which is particularly noticeable for Assign when the total number of workers
is not a power of two. For some P RandomAll works slightly better than FindMax on
UltraSPARC, but both are much more efficient than static batching, which deteriorates
heavily once P exceeds the number of cores.

The FindMax strategy has an obvious downside that finding work requires traversing the
entire work-stealing tree, which is a potential bottleneck. This problem can be addressed
either by sampling the tree, or by maintaining a horizontally scalable eventually consistent
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Figure 5.12: Comparison of findWork Implementations

priority queue that the workers update in order to have quick information about which
nodes have a lot of work left. The need for this does not seem to exist on typical desktop
machines yet.

5.2.5 Work-Stealing Node Batching Schedules

The results from the previous sections show that C1 can be fulfilled with a proper choice
of node search. We focus on the C2 and C3 next by changing the workloads, namely
the kernel method. Figures 5.13, 5.14 show a comparison of the work-stealing tree
and some traditional data-parallel schedulers on a range of different workloads. Each
workload pattern is illustrated prior to its respective diagrams, along with corresponding
real-world examples. To avoid memory access effects and additional layers of abstraction
each workload is minimal and synthetic, but corresponds to a practical use-case. To
test C3, in Figure 5.13-5,6 we decrease the number of elements to 16 and increase the
workload heavily. Fixed-size batching fails utterly for these workloads – the total number
of elements is on the order of or well below the required STEP value. These workloads
obviously require smaller STEP sizes to allow stealing, but that would break the baseline
performance constraint, and the data-parallel scheduler is unable to distinguish the two
types of workloads.
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Figure 5.13: Comparison of kernel Functions I (Throughput/s−1 vs. #Workers)
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Figure 5.14: Comparison of kernel Functions II (Throughput/s−1 vs. #Workers)

The solution to this conundrum is that the STEP does not have to be a constant value.
The worker owning a work-stealing node can change the size of the batch between the
subsequent tryAdvance calls. Since there are many such calls between the time the
work-stealing node becomes owned and the time it is completed or stolen, the sufficient
requirement for the baseline workload costs to amortize the scheduling costs is that the
average STEP size is above some threshold value. We will call the sequence of STEP values
that are passed to the tryAdvance calls on a specific work-stealing node the batching
scheduler. To solve the issues with coarse-grained workloads, the default work-stealing
node batching schedule is exponential – the batch size is doubled from 1 up to some
maximum value.

We thus modify the work-stealing tree in the following way. A mutable step field is
added to Node, which is initially 1 and does not require atomic access. At the end of
the while loop in the workOn method the step is doubled unless greater than some
value MAXSTEP. As a result, workers start processing each node by cautiously checking if
they can complete a bit of work without being stolen from and then increase the step
exponentially. This naturally slows down the overall baseline execution, so we expect the
MAXSTEP value to be greater than the previously established STEP. Indeed, on the i7-2600,
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we had to set MAXSTEP to 256 to maintain the baseline performance and at P = 8 even
1024. With these modifications work-stealing tree yields linear speedup for all uniform
workloads.

Triangular workloads such as those shown in Figures 5.13-8,9,10 show that static batching
can yield suboptimal speedup due to the uniform workload assumption. Figure 5.13-20
shows the inverse triangular workload and its negative effect on guided self-scheduling –
the first-arriving processor takes the largest batch of work, which incidentally contains
most work. We do not invert the other increasing workloads, but stress that it is neither
helpful nor necessary to have batches above a certain size.

Figure 5.14-28 shows an exponentially increasing workload, where the work associated
with the last element equals the rest of the work – the best possible speedup is 2. Figures
5.14-30,32 show two examples where a probability distribution dictates the workload,
which occurs often in practice. Guided self-scheduling works well when the distribution is
relatively uniform, but fails to achieve optimal speedup when only a few elements require
more computation, for reasons mentioned earlier.

In the STEP distributions all elements except those in some range 〈n1, n2〉 are associated
with a very low amount of work. The range is set to 25% of the total number of elements.
When its absolute size is above MAXSTEP, as in Figure 5.14-34, most schedulers do equally
well. However, not all schedulers achieve optimal speedup as we decrease the total number
of elements N and the range size goes below MAXSTEP. In Figure 5.14-35 we set n1 = 0
and n2 = 0.25N . Schedulers other than the work-stealing tree achieve almost no speedup,
each for the same reasons as before. However, in Figure 5.14-36, we set n1 = 0.75N
and n2 = N and discover that the work-stealing tree achieves a suboptimal speedup.
The reason is the exponential batch increase – the first worker acquires a root node and
quickly processes the cheap elements, having increased the batch size to MAXSTEP by the
time it reaches the expensive ones. The real work is thus claimed by the first worker and
the others are unable to acquire it. Assuming some batches are smaller and some larger
as already explained, this problem cannot be worked around by a different batching order
– there always exists a workload distribution such that the expensive elements are in the
largest batch. In this adversarial setting the existence of a suboptimal work distribution
for every batching order can only be overcome by randomization. We explore how to
randomize batching in the Appendix D, showing how to improve the expected speedup
for the problematic workloads.

5.2.6 Work-Stealing Combining Tree

As mentioned, the work-stealing tree is a particularly effective data-structure for a reduce
operation. Parallel reduce is useful in the context of many other operations, such as
finding the first element with a given property, finding the greatest element with respect
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Figure 5.15: Work-Stealing Combining Tree State Diagram

to some ordering, filtering elements with a given property or computing an aggregate of
all the elements (e.g. a sum).

There are two reasons why the work-stealing tree is amenable to implementing reduc-
tions. First, it preserves the order in which the work is split between processors, which
allows using non-commutative operators for the reduce (e.g. computing the resulting
transformation from a series of affine transformations can be parallelized by multiplying
a sequence of matrices – the order is in this case important). Second, the reduce can
largely be performed in parallel, due to the structure of the tree.

In this section, we describe the lock-free approach to combining intermediate results in the
work-stealing tree. An advantage of this approach is increased throughput, as either of the
child nodes can push the combined value to its parent. As we will see, one disadvantage
is that the reduction operation may be repeated more than once in a lock-free reduction
tree. Unless the reduction operation is non-side-effecting or idempotent, this can affect
user programs. In such cases, we need to use locks – for example, the combine method
on combiners in ScalaBlitz internally does locking to protect access to combiner state.

The work-stealing tree reduction is similar to the combining tree [Herlihy and Shavit(2008)],
but it can proceed in a lock-free manner after all the node owners have completed their
work, as we describe next. The general idea is to save the aggregated result in each node
and then push the result further up the tree. Note that we did not save the return value
of the kernel method in line 44 in Figure 5.5, making the scheduler applicable only to
parallelizing for loops. Thus, we add a local variable sum and update it each time after
calling kernel. Once the node ends up in a COMPLETED or EXPANDED state, we
assign it the value of sum. Note that updating an invocation-specific shared variable
instead would not only break the commutativity, but also lead to the same bottleneck
as we saw before with fixed-size batching. We therefore add two new fields with atomic
access to Node, namely lresult and result. We also add a new field parent to Ptr.
We expand the set of abstract node states with two additional ones, namely PREPARED
and PUSHED. The expanded state diagram is shown in Figure 5.15.
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The parent field in Ptr is not shown in the diagram in Figure 5.15. The first two
boxes in Node denote the left and the right child, respectively, as before. We represent
the iteration state (progress) with a single box in Node. The iterator may either be
stolen (ps) or completed (u), but this is not important for the new states – we denote all
such entries with ×. The fourth box represents the owner, the fifth and the sixth fields
lresult and result. Once the work on the node is effectively completed, either due to a
steal or a normal completion, the node owner π has to write the value of the sum variable
to lresult. After doing so, the owner announces its completion by atomically writing
a special value P to result, and by doing so pushes the node into the PREPARED
state – we say that the owner prepares the node. At this point the node contains all the
information necessary to participate in the reduction. The sufficient condition for the
reduction to start is that the node is a leaf or that the node is an inner node and both its
children are in the PUSHED state. The value lresult can then be combined with the
result values of both its children and written to the result field of the node. Upon
writing to the result field, the node goes into the PUSHED state. This push step can
be done by any worker ψ and assuming all the owners have prepared their nodes, the
reduction is lock-free. Importantly, the worker that succeeds in pushing the result must
attempt to repeat the push step in the parent node. This way the reduction proceeds
upwards in the tree until reaching the root. Once some worker pushes the result to the
root of the tree, it notifies that the operation was completed, so that the thread that
invoked the operation can proceed, in case that the parallel operation is synchronous.
Otherwise, a future variable can be completed or a user callback invoked.

Before presenting the pseudocode, we formalize the notion of the states we described. In
addition to the ones mentioned earliear, we identify the following new invariants.
INV6 Field n.lresult is set to ⊥ when created. If a worker π overwrites the value ⊥
of the field n.lresult then n.owner = π and the node n is either in the EXPANDED
state or the COMPLETED state. That is the last write to n.lresult.
INV7 Field n.result is set to ⊥ when created. If a worker π overwrites the value ⊥ of
the field n.result with P then n.owner = π, the node n was either in the EXPANDED
state or the COMPLETED state and the value of the field n.lresult is different than
⊥. We say that the node goes into the PREPARED state.
INV8 If a worker ψ overwrites the value P of the field n.result then the node n was in
the PREPARED state and was either a leaf or its children were in the PUSHED state.
We say that the node goes into the PUSHED state.

We modify workOn so that instead of lines 47 through 51, it calls the method complete
passing it the sum argument and the reference to the subtree. The pseudocodes for
complete and an additional method pushUp are shown in Figure 5.16.

Upon completing the work, the owner checks whether the subtree was stolen. If so, it
helps expand the subtree (line 186), reads the new node and writes the sum into lresult.
After that, the owner pushes the node into the PREPARED state in line 192, retrying in
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def complete(sum: T, tree: Ptr) =182
node = READ(tree.child)183
stolen = READ(node.progress) < 0184
if (stolen)185

trySteal(tree)186
node = READ(tree.child)187
node.lresult = sum188

else189
node.lresult = sum190

while (READ(node.result) == ⊥)191
CAS(node.result, ⊥, P)192

pushUp(tree)193
¬stolen194

195
def pushUp(tree: Ptr): Unit =196

node = READ(three.child)197
res0 = READ(node.result)198
if (res0 == ⊥)199

// not yet in PREPARED state200

else if (res0 6= P)201
// already in PUSHED state202

else203
res = ⊥204
if (isLeaf(node)) res = lresult205
else206

left = READ(node.left.child)207
right = READ(node.right.child)208
rl = READ(left.result)209
rr = READ(right.result)210
if (rl 6= ⊥ ∧ rr 6= ⊥)211

res = lresult + rl + rr212
if (res 6= ⊥)213

if (CAS(node.result, res0, res))214
if (tree.parent 6= ⊥)215

pushUp(tree.parent)216
else tree.synchronized217

{ tree.notifyAll() }218
else pushUp(tree)219

Figure 5.16: Work-Stealing Combining Tree Pseudocode

the case of spurious failures, and calls pushUp.

The method pushUp may be invoked by the owner of the node attempting to write to
the result field, or by another worker attempting to push the result up after having
completed the work on one of the child nodes. The lresult field may not be yet assigned
(line 200) if the owner has not completed the work – in this case the worker ceases
to participate in the reduction and relies on the owner or another worker to continue
pushing the result up. The same applies if the node is already in the PUSHED state (line
202). Otherwise, the lresult field can only be combined with the result values from
the children if both children are in the PUSHED state. If the worker invoking pushUp
notices that the children are not yet assigned the result, it will cease to participate in
the reduction. Otherwise, it will compute the tentative result (line 212) and attempt to
write it to result atomically with the CAS in line 214. A failed CAS triggers a retry,
otherwise pushUp is called recursively on the parent node. If the current node is the root,
the worker notifies any listeners that the final result is ready and the operations ends.

5.3 Speedup and Optimality Analysis

In Figure 5.14-36 we identified a workload distribution for which the work-stealing
reduction tree had a particularly bad performance. This coarse workload consisted of a
major prefix of elements which required a very small amount of computation followed
by a minority of elements which required a large amount of computation. We call this
workload coarse because the number of elements was on the order of magnitude of a
certain value we called MAXSTEP.

To recap, the speedup was suboptimal due to the following. First, to achieve an optimal
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speedup for at least the baseline, not all batches can have fewer elements than a certain
number. We have established this number for a particular architecture and environment,
calling it STEP. Second, to achieve an optimal speedup for ranges the size of which is
below STEP·P, some of the batches have to be smaller than the others. The technique
we apply starts with a batch consisting of a single element and increases the batch size
exponentially up to MAXSTEP. Third, there is no hardware interrupt mechanism available
to interrupt a worker which is processing a large batch, and software emulations which
consist of checking a volatile variable within a loop are too slow when executing the
baseline. Fourth, the worker does not know the workload distribution and cannot measure
time.

The above preconditions allow a single worker obtain the largest batch before the other
workers had a chance to steal some work for a particular workload distribution. This is
the case for any batching scheduler. Justifying this claim requires a set of more formal
definitions. We start by defining the context in which the scheduler executes.

Oblivious conditions. If a data-parallel scheduler is unable to obtain information
about the workload distribution, nor information about the amount of work it had
previously executed, we say that the data-parallel scheduler works in oblivious conditions.

Assume that a worker decides on some batching schedule c1, c2, . . . , ck where cj is the
size of the j-th batch and

∑k
j=1 cj = N , where N is the size of the range. No batch

is empty, i.e. cj 6= 0 for all j. In oblivious conditions the worker does not know if the
workload resembles the baseline mentioned earlier, so it must assume that it does and
minimize the scheduling overhead. The baseline is not only important from a theoretical
perspective being one of the potentially worst-case workload distribution, but also from
a practical one – in many problems parallel loops have a uniform workload. We now
define what this baseline means more formally.

The baseline constraint. Let the workload distribution be a function w(i) which gives
the amount of computation needed for range element i. We say that a data-parallel
scheduler respects the baseline constraint if and only if the speedup sp with respect to a
sequential loop is arbitrarily close to linear when executing the workload distribution
w(i) = w0, where w0 is the minimum amount of work needed to execute a loop iteration.

Arbitrarily close here means that ε in sp = P
1+ε can be made arbitrarily small.

The baseline constraint tells us that it may be necessary to divide the elements of the
loop into batches, depending on the scheduling (that is, communication) costs. As we
have seen in the experiments, while we should be able to make the ε value arbitrarily
small, in practice it is small enough when the scheduling overhead is no longer observable

149



Chapter 5. Work-stealing Tree Scheduling

in the measurement. Also, we have shown experimentally that the average batch size
should be bigger than some value in oblivious conditions, but we have used particular
scheduler instances. Does this hold in general, for every data-parallel scheduler? The
answer is yes, as we show in the following lemma.

Lemma 5.1 If a data-parallel scheduler that works in oblivious conditions respects the
baseline constraint then the batching schedule c1, c2, . . . , ck is such that:

∑k
j=1 cj

k
≥ S(ε) (5.2)

Proof. The lemma claims that in oblivious conditions the average batch size must be
above some value which depends on the previously defined ε, otherwise the scheduler
will not respect the baseline constraint.

The baseline constraint states that sp = P
1+ε , where the speedup sp is defined as T0/Tp,

where T0 is the running time of a sequential loop and Tp is the running time of the
scheduler using P processors. Furthermore, T0 = T · P where T is the optimal parallel
running time for P processors, so it follows that ε · T = Tp − T . We can also write this
as ε ·W = Wp −W . This is due to the running time being proportionate to the total
amount of executed work, whether scheduling or useful work. The difference Wp −W is
exactly the scheduling work Ws, so the baseline constraint translates into the following
inequality:

Ws ≤ ε ·W (5.3)

In other words, the scheduling work has to be some fraction of the useful work. Assuming
that there is a constant amount of scheduling work Wc per every batch, we have
Ws = k ·Wc. Lets denote the average work per element with w. We then have W = N ·w.
Combining these relations we get N ≥ k · Wc

ε·w , or shorter N ≥ k · S(ε). Since N is equal
to the sum of all batch sizes, we derive the following constraint:

∑k
j=1 cj

k
≥ Wc

ε · w
(5.4)

In other words, the average batch size must be greater than some value S(ε) which
depends on how close we want to get to the optimal speedup. Note that this value is
inversely proportionate to the average amount of work per element w – the scheduler
could decide more about the batch sizes if it knew something about the average workload,
and grows with the scheduling cost per batch Wc – this is why it is especially important
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to make the workOn method efficient. We already saw the inverse proportionality with ε
in Figure 5.7. In part, this is why we had to make MAXSTEP larger than the chosen STEP
(we also had to increase it due to increasing the scheduling work in workOn, namely, Wc).
This is an additional constraint when choosing the batching schedule.

With this additional constraint there always exists a workload distribution for a given
batching schedule such that the speedup is suboptimal, as we show next.

Lemma 5.2 Assume that S(ε) > 1, for the desired ε. For any fixed batching schedule
c1, c2, . . . , ck there exists a workload distribution such that the scheduler executing it in
oblivious conditions yields a suboptimal schedule.

Proof. First, assume that the scheduler does not respect the baseline constraint. The
baseline workload then yields a suboptimal speedup and the statement is trivially true
because S(ε) > 1.

Otherwise, assume without the loss of generality that at some point in time a particular
worker ω is processing some batch cm the size of which is greater or equal to the size
of the other batches. This means the size of cm is greater than 1, from the assumption.
Then we can choose a workload distribution such that the work Wm =

∑Nm+cm
i=Nm

w(i)
needed to complete batch cm is arbitrarily large, where Nm =

∑m−1
j=1 cj is the number of

elements in the batching schedule coming before the batch cm. For all the other elements
we set w(i) to be some minimum value w0. We claim that the obtained speedup is
suboptimal. There is at least one different batching schedule with a better speedup, and
that is the schedule in which instead of batch cm there are two batches cm1 and cm2 such
that cm1 consists of all the elements of cm except the last one and cm2 contains the last
element. In this batching schedule some other worker can work on cm2 while ω works on
cm1 . Hence, there exists a different batching schedule which leads to a better speedup,
so the initial batching schedule is not optimal.

We can ask ourselves what is the necessary condition for the speedup to be suboptimal.
We mentioned that the range size has to be on the same order of magnitude as S above,
but can we make this more precise? We could simplify this question by asking what is
the necessary condition for the worst-case speedup of 1 or less. Alas, we cannot find
necessary conditions for all schedulers because they do not exist – there are schedulers
which do not need any preconditions in order to consistently produce such a speedup
(think of a sequential loop or, worse, a “scheduler” that executes an infinite loop). Also,
we already saw that a suboptimal speedup may be due to a particularly bad workload
distribution, so maybe we should consider only particular distributions, or have some
conditions on them. What we will be able to express are the necessary conditions on the
range size for the the existence of a scheduler which achieves a speedup greater than 1
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on any workload. Since the range size is the only information known to the scheduler in
advance, it can be used to affect its decisions in a particular implementation.

The worst-case speedups we saw occurred in scenarios where one worker (usually the
invoker) started to work before all the other workers. To be able to express the desired
conditions, we model this delay with a value Td.

Lemma 5.3 Assume a data-parallel scheduler that respects the baseline constraint in
oblivious conditions. There exists some minimum range size N1 for which the scheduler
can yield a speedup greater than 1 for any workload distribution.

Proof. We first note that there is always a scheduler that can achieve the speedup 1,
which is merely a sequential loop. We then consider the case when the scheduler is
parallelizing the baseline workload. Assume now that there is no minimum range size
N1 for which the claim is true. Then for any range size N we must be able to find
a range size N + K such that the scheduler still cannot yield speedup 1 or less, for a
chosen K. We choose N = f ·Td

w0
, where w0 is the amount of work associated with each

element in the baseline distribution and f is an architecture-specific constant describing
the computation speed. The chosen N is the number of elements that can be processed
during the worker wakeup delay Td. The workers that wake up after the first worker ω
processes N elements have no more work to do, so the speedup is 1. However, for range
size N +K there are K elements left that have not been processed. These K elements
could have been in the last batch of ω. The last batch in the batching schedule chosen
by the scheduler may include the Nth element. Note that the only constraint on the
batch size is the lower bound value S(ε) from Lemma 5.1. So, if we choose K = 2S(ε)
then either the last batch is smaller than K or is greater than K. If it is smaller, then a
worker different than ω will obtain and process the last batch, hence the speedup will be
greater than 1. If it is greater, then the worker ω will process the last batch – the other
workers that wake up will not be able to obtain the elements from that batch. In that
case there exists a better batching order which still respects the baseline constraint and
that is to divide the last batch into two equal parts, allowing the other workers to obtain
some work and yielding a speedup greater than 1. This contradicts the assumption that
there is no minimum range size N1 – we know that N1 is such that:

f · Td
w0

≤ N1 ≤
f · Td
w0

+ 2 · S(ε) (5.5)

Now, assume that the workload w(i) is not the baseline workload w0. For any workload
we know that w(i) ≥ w0 for every i. The batching order for a single worker has to be
exactly the same as before due to oblivious conditions. As a result the running time for
the first worker ω until it reaches the Nth element can only be larger than that of the
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def work(it: StealIterator[T]) =220
var step = 0221
var res = zero222
while (it.state() == A)223

step = update(step)224
val batch = it.nextBatch(step)225
if (batch >= 0)226

res = combine(res, apply(it, batch))227
it.result = res228

Figure 5.17: The Generalized workOn Method

baseline. This means that the other workers will wake up by the time ω reaches the Nth
element, and obtain work. Thus, the speedup can be greater than 1, as before.

We have so far shown that we can decide on the average batch size if we know something
about the workload, namely, the average computational cost of an element. We have
also shown when we can expect the worst case speedup, potentially allowing us to take
prevention measures. Finally, we have shown that any data-parallel scheduler deciding
on a fixed schedule in oblivious conditions can yield a suboptimal speedup. Note the
wording “fixed” here. It means that the scheduler must make a definite decision about
the batching order without any knowledge about the workload, and must make the same
decision every time – it must be deterministic. As hinted before, the way to overcome an
adversary that is repetitively picking the worst case workload is to use randomization
when producing the batching schedule.

5.4 Steal-Iterators – Work-Stealing Iterators

The goal of this section is to augment the iterator abstraction with the facilities that
support work-stealing, in the similar way the iterators were enriched with the split
method in Chapter 2. This will allow using the work-stealing tree data-parallel scheduler
with any kind of data structure and not just parallel loops. The previously shown
progress value served as a placeholder for all the work-stealing information in the case
of parallel loops.

There are several parts of the work-stealing scheduler that we can generalize. We read
the value of progress in line 40 to see if it is negative (indicating a steal) or greater
than or equal to until (indicating that the loop is completed) in line 41.

Here the value of progress indicates the state the iterator is in – either available (A),
stolen (S) or completed (C). In line 14 we atomically update progress, consequently
deciding on the number of elements that can be processed. This can be abstracted
away with a method nextBatch that takes a desired number of elements to traverse and
returns an estimated number of elements to be traversed, or −1 if there are none left.
Figure 5.17 shows an updated version of the loop scheduling algorithm that relies on
these methods. Iterators should also abstract the method markStolen shown earlier.
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We show the complete work-stealing iterator interface in Figure 5.18. The additional
method owner returns the index of the worker owning the iterator. The method next
can be called as long as the method hasNext returns true, just as with the ordinary
iterators. Method hasNext returns true if next can be called before the next nextBatch
call. Finally, the method split can only be called on S iterators and it returns a pair of
iterators such that the disjoint union of their elements are the remaining elements of the
original iterator. This implies that markStolen must internally encode the iterator state
immediately when it gets stolen.

The contracts of these methods are formally expressed below. We implicitly assume
termination and a specific iterator instance. Unless specified otherwise, we assume
linearizability. When we say that a method M is owner-specific (π-specific), it means
that every invocation by a worker π is preceeded by a call to owner returning π. For
non-owner-specific M owner returns ψ 6= π.

Contract owner. If an invocation returns π at time t0, then ∀t1 ≥ t0 invocations return
π.

Contract state. If an invocation returns s ∈ {S,C} at time t0, then all invocations at
t ≥ t0 return s, where C and S denote completed and stolen states, respectively.

Contract nextBatch. If an invocation exists at some time t0 then it is π-specific and
the parameter step ≥ 0. If the return value c is −1 then a call to state at ∀t1 > t0
returns s ∈ {S,C}. Otherwise, a call to state at ∀t−1 < t0 returns s = A, where A is
the available state.

Contract markStolen. Any invocations at t0 is non-owner-specific and every call to
state at t1 > t0 returning s ∈ {S,C}.

Contract next. A non-linearizable π-specific invocation is linearized at t1 if there is
a hasNext invocation returning true at t0 < t1 and there are no nextBatch and next
invocations in the interval 〈t0, t1〉.

Contract hasNext. If a non-linearizable π-specific invocation returns false at t0 then
all hasNext invocations in 〈t0, t1〉 return false, where there are no nextBatch calls in
〈t0, t1〉.

Contract split. If an invocation returns a pair (n1, n2) at time t0 then the call to
state returned S at some time t−1 < t0.

Traversal contract. Define X = x1x2 . . . xm as the sequence of return values of next
invocations at times t′1 < t′2 < . . . < t′m. If a call to state at t > t′m returns C then
e(i) = X. Otherwise, let an invocation of split on an iterator i return (i1, i2). Then
e(i) = X · e(i1) · e(i2), where · is concatenation. There exists a fixed E such that E = e(i)
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StealIterator[T] {229
def owner(): Int230
def state(): A ∨ S ∨ C231
def nextBatch(step: Int): Int232
def markStolen(): Unit233
def hasNext: Boolean234
def next(): T235
def split(): (StealIterator[T], StealIterator[T])236

}237

Figure 5.18: The StealIterator Interface

for all valid sequences of nextBatch and next invocations.

The last contract states that every iterator always traverses the same elements in the
same order. Having formalized the work-stealing iterators, we show several concrete
implementations.

5.4.1 Indexed Steal-Iterators

This is a simple iterator implementation following from refactorings in Figure 5.17. It
is applicable to parallel ranges, arrays, vectors and data-structures where indexing is
fast. The implementation for ranges in Figure 5.19 uses the private keyword for the
fields nextProgress and nextUntil used in next and hasNext. Since their contracts
ensure that only the owner calls them, their writes need not be globally visible and are
typically faster. The field progress is marked with the keyword atomic, and is modified
by the CAS in the line 254, ensuring that its modifications are globally visible through a
memory barrier.

All method contracts are straightforward to verify and follow from the linearizability
of CAS. For example, if state returns S or C at time t0, then the progress was either
negative or equal to until at t0. All the writes to progress are CAS instructions that
check that progress is neither negative nor equal to until. Therefore, progress has
the same value ∀t > t0 and state returns the same value ∀t > t0 (contract state).

5.4.2 Hash Table Steal-Iterators

The implementation of work-stealing iterators for flat hash-tables we show in this section
is similar to the iterators for data-structures with fast indexing. Thus, the iteration
state can still be represented with a single integer field progress, and invalidated with
markStolen in the same way as with IndexIterator. The nextBatch has to compute
the expected number of elements between to array entries using the load factor lf as
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RangeIterator implements StealIterator[Int] {238
private var nextProgress = -1239
private var nextUntil = -1240
atomic var progress: Int241
val owner: Int242
val until: Int243
def state() =244

val p = READ(progress)245
if (p ≥ until) return C246
else if (p < 0) return S247
else return A248

def nextBatch(s: Int): Int =249
if (state() 6= A) return -1250
else251

val p = READ(progress)252
val np = math.min(p + s, until)253
if (¬CAS(progress, p, np)) return nextBatch(s)254
else255

nextProgress = p256
nextUntil = np257
return np - p258

def markStolen() =259
val p = READ(progress)260
if (p < until ∧ p ≥ 0)261

if (¬CAS(progress, p, -p - 1)) markStolen()262
def hasNext = return nextProgress < nextUntil263
def next() =264

nextProgress += 1265
return nextProgress - 1266

}267

Figure 5.19: The IndexIterator Implementation

follows:
def nextBatch(step: Int): Int = {268

val p = READ(progress)269

val np = math.min(p + (step / lf).toInt, until)270

if (¬CAS(progress, p, np)) return nextBatch(step)271

else272

nextProgress = p; nextUntil = np; return np - p273

}274

We change the next and hasNext implementations so that they traverse the range
between nextProgress and nextUntil as a regular single-threaded hash-table iterator
implementation. This implementation relies on the hashing function to achieve good
load-balancing, which is common with hash-table operations.

5.4.3 Tree Steal-Iterators

A considerable number of applications use the tree representation for their data. Text
editing applications often represent text via ropes, and HTML document object model
is based on an n-ary tree. Ordered sets are usually implemented as balanced search
trees, and most priority queues are balanced trees under the hood. Persistent hash tables
present in many functional languages are based on hash tries. Parallelizing operations
on trees is thus a desirable goal.
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TreeIterator[T] extends StealIterator[T] {275
private val localstack: Array[Tree]276
private var depth: Int277
atomic var stack: Bitset278

279
def state() =280

val s = READ(stack)281
return s & 0x3282

283
def markStolen() =284

val s = READ(stack)285
if (s & 0x3 = A)286

val ns = (ns & ~0x3) | S287
if (¬CAS(stack, s, ns)) markStolen()288

289
def topBitset(s: Bitset) =290

val d = 2 * depth291
return (s & (0x3 << d)) >> d292

293
def top() = localstack[depth - 1]294

295
def pop(s: Bitset) =296

depth = depth - 1297
localstack(depth) = null298
return s & ~(0x3 << (2 + 2 * depth))299

300
def push(s: Bitset, v: Bitset, t: Tree)301

localstack(depth) = t302
depth = depth + 1303
return s | (v << (2 * depth))304

305
def switch(s: Bitset, v: Bitset) =306

val d = 2 * depth307
return (s & ~(0x3 << d)) | (v << d)308

def nextBatch(step: Int): Int = {309
val s = READ(stack)310
var ns = s311
var batchSize = -1312
if (s & 0x3 6= A) return -1 else313

val tm = topBitset(s)314
if (tm = B315
∨ (tm = T ∧ top().right.isLeaf))316
ns = pop(ns)317
while (topBitset(ns) = R ∧ depth > 0)318

ns = pop(ns)319
if (depth = 0) ns = (ns & ~0x3) | C320
else321

ns = switch(ns, T)322
batchSize = 1323
setNextValue(top().value)324

else if (tm = T)325
ns = switch(ns, R)326
val n = top().right327
while (¬n.left.isLeaf328
∧ bound(depth) ≥ step)329
ns = push(ns, L, n)330
n = n.left331

if (bound(depth) < step)332
ns = push(ns, B, n)333
batchSize = bound334
setNextSubtree(n)335

else336
ns = push(ns, T, n)337
batchSize = 1338
setNextValue(n.value)339

while (¬CAS(stack, s, ns))340
val ss = READ(stack)341
if (ss ∈ { S, C }) return -1342

return batchSize343
}344

Figure 5.20: The TreeIterator Data-Type and Helper Methods

Stealers for flat data structures were relatively simple, but efficient lock-free tree steal-
iterators are somewhat more involved. In this section we do not consider unbalanced
binary trees since they cannot be efficiently parallelized – a completely unbalanced tree
degrades to a linked list. We do not consider n-ary trees either, but note that n-ary
tree steal-iterators are a straightforward extension to the steal-iterators presented in this
section. We note that steal-iterators for trees in which every node contains the size of its
subtree can be implemented similarly to IndexIterators presented earlier, since their
iteration state can be encoded as a single integer. Finally, iteration state for trees with
pointers to parent nodes (two-way trees) can be encoded as a memory address of the
current node, so their steal-iterators are trivial.

Therefore, in this section we show a steal-iterator for balanced binary search trees in
which nodes do not have parent pointers and do not maintain size of their corresponding
subtrees (one-way trees). In this representation each node is either an inner node
containing a single data value and pointers to the left and the right child, or it is a
leaf node (isLeaf), in which case it does not contain data elements. AVL trees, red-black
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trees and binary hash tries fit precisely this description.

The trees we examine have two important properties. First, given a node T at the depth
d and the total number of keys N in the entire tree, we can always compute a bound on
the depth of the subtree rooted at T from d and N . Similarly, we can compute a bound
on the number of keys in the subtree of T . These properties follow from the fact that
the depth of a balanced tree is bounded by its number of elements. Red-black trees, for
example, have the property that their depth d is less than or equal to 2 logN where N is
the total number of keys.

Given a tree root, the iteration state can be encoded as a stack of decisions L and
R that denote turning left or right at a given node. The top of the stack contains a
terminal symbol T that denotes that the corresponding node is currently being traversed,
or a symbol B indicating an entire subtree as a batch of elements that the steal-iterator
last committed to process. Examples of tree iteration states are shown in Figure 5.21,
where a worker first traverses a node C, proceeds by traversing a single node B and then
decides to traverse the entire subtree D.

We represent stack with a bitset, using 2 bits to store single stack entry. The first
2 bits of this bitset have a special role – they encode one of the three steal-iterator
states A, S and C. The stealers and workers update the steal-iterator state atomically
by replacing the stack bitset with CAS instructions as shown in Figure 5.20. Stealers
invoke markStolen that atomically changes the steal-iterator state bits in line 288,
making sure that any subsequent nextBatch calls fail by invalidating their next CAS
in line 340, which in turn requires the state bits to be equal to A. Workers invoke
nextBatch that atomically changes the currently traversed node or a subtree. A worker
owning a particular steal-iterator additionally maintains the actual stack of tree nodes
on the current traversal path in its local array localstack, whose size is bounded by
the depth d of the corresponding tree. For convenience, it also maintains the current
depth depth. Calling nextBatch starts by checking to see if the node is in the available
state A, and returning −1 if it is not. Part of the code between lines 314 and 339 is
identical to that of a regular sequential tree iterator – it identifies the currently traversed
node and replaces it, updating localstack and depth in the process. At each point it
updates the tentative new state of the stack ns by adding and removing the symbols
L, R, B and T using the helper push, pop and switch methods. Note that in line
328 the worker relies on the bound value at a given depth to estimate the number of
elements in particular subtrees, and potentially decide on batching the elements. Calls
to setNextValue and setNextSubtree set the next value or subtree to be traversed –
they update the steal-iterator state so that the subsequent next and hasNext calls work
correctly.

Once all the updates of the worker-local state are done, the worker attempts to atomically
change the state of the stack with the new value ns in line 340, failing only if a concurrent
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steal has occurred, in which case it returns −1.

We note that if the CAS allows 64-bit values then this approach only allows encoding
steal-iterators for balanced trees that have less than 216 elements. An assumption here
is that the ratio of the longest and the shortest path from the root to the node is 2
(red-black and AVL trees being typical examples). Otherwise, encoding the state of the
steal-iterator requires more bits, but must still be accessed atomically. A lightweight spin
locks can protect the state of the bitset – although such steal-iterators are not lock-free
anymore, the critical sections of their locks are short and workers searching for work
do not need to block upon running on such a steal-iterator, as they can check if the
steal-iterator is locked.

We do not show the pseudocode for splitting the steal-iterator after it has been marked
stolen, but show the important classes of different states the steal-iterator can be in, in
Figure 5.22. We encode the state of the stack with a regular expression of stack symbols
– for example, the expression R∗LT means that the stack contains a sequence of right
turns followed by a single left turn and then the decision T to traverse a single node.
A steal-iterator in such a state should be split into two steal-iterators with states L∗

and R∗LB, as shown in Figure 5.22. The remaining states R∗B and R∗T are omitted for
brevity.
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5.5 Related Work

Per processor (henceforth, worker) work assignment done statically during compile
time or linking, to which we will refer to as static batching, was studied extensively
[Koelbel and Mehrotra(1991)] [Sarkar(2000)]. Static batching cannot correctly predict
workload distributions for any problem, as shown by the second program in Figure 5.1.
Without knowing the numbers in the set exactly, batches cannot be statically assigned to
workers in an optimal way – some workers may end up with more work than the others.
Still, although cost analysis is not the focus here, we advocate combining static analysis
with runtime techniques.

To address the need for load balancing at runtime, work can be divided into a lot of
small batches. Only once each worker processes its batch, it requests a new batch from a
centralized queue. We will refer to this as fixed-size batching [Kruskal and Weiss(1985)].
In fixed-size batching the workload itself dictates the way how work is assigned to workers.
This is a major difference with respect to static batching. In general, in the absence
of information about the workload distribution, scheduling should be workload-driven.
A natural question arises – what is the ideal size for a batch? Ideally, a batch should
consist of a single element, but the cost of requesting work from a centralized queue
is prohibitively large for that. For example, replacing the increment i += 1 with an
atomic CAS can increase the running time of a while loop by nearly a magnitude on
modern architectures. The batch size has to be the least number of elements for which
the cost of accessing the queue is amortized by the actual work. There are two issues
with this technique. First, it is not scalable – as the number of workers increases, so
does contention on the work queue (Figure 5.7). This requires increasing batch sizes
further. Second, as the granularity approaches the batch size, the work division is not
fine-grained and the speedup is suboptimal (Figure 5.13, where size is less than 1024).

Guided self-scheduling [Polychronopoulos and Kuck(1987)] solves some granularity is-
sues by dynamically choosing the batch size based on the number of remaining ele-
ments. At any point, the batch size is Ri/P , where Ri is the number of remaining
elements and P is the number of workers – the granularity becomes finer as there is
less and less work. Note that the first-arriving worker is assigned the largest batch of
work. If this batch contains more work than the rest of the loop due to irregularity,
the speedup will not be linear. This is shown in Figures 5.13-20, 5.14-35. Factor-
ing [Hummel et al.(1992)Hummel, Schonberg, and Flynn] and trapezoidal self-scheduling
[Tzen and Ni(1993)] improve on guided-self scheduling, but have the same issue with
those workload distributions.

One way to overcome the contention issues inherent to the techniques above is to use
several work queues rather than a centralized queue. In this approach each processor
starts with some initial work on its queue and commonly steals from other queues when
it runs out of work – this is known as work-stealing, a technique applicable to both
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task- and data-parallelism. One of the first uses of work-stealing dates to the Cilk language
[Blumofe et al.(1995)Blumofe, Joerg, Kuszmaul, Leiserson, Randall, and Zhou], in which
processors relied on the fast and slow version of the code to steal stack frames from
each other. Recent developments in the X10 language are based on similar techniques
[Tardieu et al.(2012)Tardieu, Wang, and Lin]. Work-stealing typically relies on the use
of work-stealing queues [Arora et al.(1998)Arora, Blumofe, and Plaxton] [Lea(2000)] and
deques [Chase and Lev(2005)], implementations ranging from blocking to lock-free. In the
past data-parallel collections frameworks relied on using task-parallel schedulers under the
hood [Prokopec et al.(2011c)Prokopec, Bagwell, Rompf, and Odersky] [Reinders(2007)].
The work in this thesis shows that customizing work-stealing for data-parallelism allows
more fine-grained stealing and superior load-balancing.

5.6 Conclusion

Although based on similar ideas, data-parallel work-stealing has a different set of assump-
tions compared to task-based work-stealing. Where task-based work-stealing schedulers
rely on the fact that tasks can unpredictably spawn additional work, data-parallel work-
stealing schedulers work with a predefined set of tasks, called elements. Here, the key
to efficient load-balancing is combining elements into batches, with the goal of reducing
the scheduling costs to a minimum. These batches need to be chosen carefully to reduce
the risk of a computationally expensive batch being monopolized by a single processor.
Simultaneously, different processors should decide on batching in isolation – the costs of
synchronization should only be paid on rare occasions, when some processor needs to
steal work. Work-stealing tree is a data structure designed to meet these goals.

Having shown that the work-stealing tree scheduler is superior to the classic batching
techniques, and is able to parallelize irregular workloads particularly well, we ask ourselves
– how useful is the work-stealing tree in practice? In a plethora of applications, workloads
are relatively uniform and smooth, exhibiting triangular or parabolic patterns. As shown
in Section 6.5, a task-based scheduler from Chapter 2 achieves acceptable performance
for all but the most skewed inputs. Often, the gain is only 10%− 20% when using the
work-stealing tree scheduler. Nevertheless, we argue that, in most managed runtimes,
the work-stealing tree scheduling is preferable to task-based work-stealing, for multiple
reasons.

The main reason for using the work-stealing tree scheduling is its simplicity. The basic
work-stealing tree algorithm for parallel loops fits into just 80 lines of code, and is easy
to understand. This is a small price to pay for a flexible scheduler that handles irregular
workloads well.

The real complexity of the work-stealing tree scheduler is factored out into work-stealing
iterators. While work-stealing iterator implementations for indexed data structures like
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arrays, hash-tables and size-combining trees, such as Conc-trees, are both straightforward
and efficient, the lock-free steal-iterators for one-way trees, described in Section 5.4, are
painfully hard to implement, and are more expensive. The good news is that we do not
have to use them. We can either revert to lock-based tree steal-iterators, or just use
regular splitters – nodes in the work-stealing tree can be expanded preemptively when
using data structures for which stealing is problematic.

Although most workloads are not heavily irregular, the use of nested parallelism can
make the workload arbitrarily skewed. In this case, a nested data-parallel operation
creates a separate work-stealing tree, announces its existence to other workers, and starts
working on it directly. Note that working on the tree, rather than waiting for the result of
the data-parallel operation, prevents starvation. The caller thread can only be blocked in
the work-stealing tree if some other thread is also working in the same work-stealing tree,
indicating that the operation will eventually complete. To reduce the amount of blocking,
work-stealing tree nodes can contain pointers to the work-stealing trees corresponding to
the nested data-parallel operations.

Finally, the work-stealing tree serves as a reduction tree for the results. Combining is
much simpler than efficiently combining the results from different tasks, on a platform
that does not natively support work-stealing, and can be done in a lock-free manner.
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6 Performance Evaluation

In this section we show experimental performance evaluations for algorithms and data
structures introduced in the previous chapters. Sections 6.1 and 6.2 evaluate the perfor-
mance of the basic data-parallel collections shown in Chapter 2. Section 6.3 compares the
efficiency of various Conc-tree operations against similar data structures. and Section 6.4
does the same for the Ctrie data structure and alternative state-of-the-art concurrent map
implementations. Finally, in Section 6.5 we compare the work-stealing tree scheduling
against different data-parallel schedulers.

In all the benchmarks we take the nature of a managed runtime like the JVM into account.
Each benchmark is executed on a separate JVM invocation. Each method is invoked
many times, and the total time is measured – this is repeated until this value stabilizes
[Georges et al.(2007)Georges, Buytaert, and Eeckhout]. Effects of the JIT compiler and
automatic garbage collection on performance are thus minimized. In some benchmarks we
rely on the ScalaMeter benchmarking framework for Scala [Prokopec(2014b)] to ensure
reproducable and stable results.

6.1 Generic Parallel Collections

Here we compare the Parallel Collections added to the Scala standard library to their
sequential counterparts and other currently available parallel collections, such as Doug
Lea’s extra166.ParallelArray for Java [Lea(2014)]. All tests were executed on a 2.8
GHz 4 Dual-core AMD Opteron and a 2.66 GHz Quad-core Intel i7 (with hyper-threading).
We pick the operands of our operations in a way that minimizes the amount of work done
per each element. This is the worst-case for evaluating the performance of a data-parallel
framework, as the abstraction and synchronization costs of processing elements cannot
be amortized by the actual work.

As mentioned in Section 2.4, currently most data-parallel frameworks use concurrent
combiners. Concurrent combiners are as effective as their underlying concurrent data
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Figure 6.1: Concurrent Map Insertions

structure insert operation is scalable – a combiner has a high pressure on the +=
method. We will compare two existing concurrent map implementations for the JVM –
ConcurrentHashMap and ConcurrentSkipListMap, and then show a range of microbench-
marks comparing performance of parallel operations of various collection classes in our
framework. We will see that the transformer operations using two-step combiners scale
better than concurrent combiners.

In the first benchmark, a total of n elements are inserted into a concurrent collec-
tion. Insertion of these n elements is divided between p processors. This process is
repeated over a sequence of 2000 runs on a single JVM invocation, and the average
time required is recorded. We apply these benchmarks to ConcurrentHashMap and
ConcurrentSkipListMap, two concurrent map reference implementations for the JVM,
both part of the Java standard library, and compare multithreaded running time against
that of inserting n elements into a java.util.HashMap in a single thread. The results
are shown in Figure 6.1. Horizontal axis shows the number of processors and the vertical
axis shows the time in milliseconds.

When a multithreaded computation consists mainly of concurrent map insertions, the
performance drops due to contention. These results are not unexpected. Data structures
with concurrent access are general purpose and have to support both insertions and
removals, without knowing anything in advance about the data set that they will have
to store. Usually they assume the 90-10 rule – for every 90 lookup operations, there
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are 10 operations that modify the data structure. In the case of combiners, the set of
elements which comprise a collection is known and partitioned in way that allows the
data structure to be populated in parallel without synchronization. The performance
of java.util.HashMap is next compared against parallel hash tables in Figure 6.3B, in
which each element of one hash table is mapped to a new hash table, and 6.3K – a similar
test with the identity mapping function. Figure 6.3K shows that when no amount of
computation is spent processing an element, a standard java.util.HashMap is faster
than a parallel hash table for a single processor. As soon as the number of processors
exceeds 2, the parallel hash table is constructed much faster.

The microbenchmarks shown in Figure 6.4 were executed for parallel arrays, hash tries
and hash tables on a machine with 4 Dual-Core AMD Opteron 2.8 MHz processor. The
number of processors used is displayed at the horizontal axis, the time in milliseconds
needed is on the vertical axis. All tests were performed for large collections, and the size
of the collection is shown for each benchmark.

The entry Sequential denotes benchmarks for sequential loops implementing the operation
in question. The entry HashMap denotes regular flat hash tables based on linear hashing.
If the per-element amount of work is increased, data structure handling cost becomes
negligible and parallel hash tries outperform hash tables even for two processors.

We should comment on the results of the filter benchmark. Java’s parallel array first
counts the number of elements satisfying the predicate, then allocates the array and
copies the elements. Our parallel array assembles the results as it applies the predicate
and copies the elements into the array afterwards using fast array copy operations. When
using only one processor the entire array is processed at once, so the combiner contains
only one chunk – no copying is required in this case, hence the reason for its high
performance in that particular benchmark.

The map benchmark for parallel arrays uses the optimized version of the method which
allocates the array and avoids copying, since the number of elements is known in advance.
Benchmark for flatMap includes only comparison with the sequential variant, as there is
currently no corresponding method in other implementations.

We show larger benchmarks in Figure 6.4. Primality testing and matrix multiplication are
self-explanatory. The Coder benchmark consists of a program which does a brute-force
search to find a set of all possible sentences of english words for a given sequence of
digits, where each digit represents the corresponding letters on a phone key pad (e.g. ’2’
represents ’A’, ’B’ and ’C’; ’43’ can be decoded as ’if’ or ’he’). The benchmark shown
was run on a 29 digit sequence and a dictionary of around 58 thousand words. The
benchmark in Figure 6.4D loads the words of the english dictionary and groups together
words which have the same digit sequence.
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(A) ParArray.foreach, 200k; (B) ParArray.reduce, 200k; (C) ParArray.find, 200k; (D)
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100k; (L) ParRope.flatMap, 100k

Figure 6.2: Parallel Collections Benchmarks I
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Figure 6.3: Parallel Collections Benchmarks II
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Figure 6.4: Parallel Collections Benchmarks III

6.2 Specialized Parallel Collections

Specialized Parallel Collections in the ScalaBlitz framework [Prokopec and Petrashko(2013)]
[Prokopec et al.(2014b)Prokopec, Petrashko, and Odersky] are designed to reduce ab-
straction to negligible levels. Scala type-specialization [Dragos and Odersky(2009)] and
Scala Macros [Burmako and Odersky(2012)] are used to accomplish this, as discussed in
Section 2.8. Here we identify each of the abtraction penalties separately and showing
that they are overcome.

We compare against imperative sequential programs written in Java, against existing
Scala Parallel Collections, a corresponding imperative C version and the Intel TBB
library wherever a comparison is feasible. We show microbenchmarks addressing specific
abstraction penalties on different data structures.

We perform the evaluation on the Intel i7-3930K hex-core 3.4 GHz processor with
hyperthreading and an 8-core 1.2 GHz UltraSPARC T2 with 64 hardware threads. Aside
from the different number of cores and processor clock, another important difference
between them is in the memory throughput - i7 has a single dual-channel memory
controller, while the UltraSPARC T2 has four dual-channel memory controllers. The
consequence is the different scalability of these processors for write-heavy computational
tasks – the scalability is dictated not only by the number of cores, but by many other
factors such as the memory throughput.

The microbenchmarks in Figures 6.5 and 6.6 have a minimum cost uniform workload –
the amount of computation per each element is fixed and the least possible. Those tests
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Figure 6.5: Specialized Collections – Uniform Workload I

are targeted at detecting abstraction penalties discussed earlier. The microbenchmark in
Figure 6.5A consists of a data-parallel foreach loop that occasionally sets a volatile flag
(without a potential side-effect the compiler may optimize away the loop in the kernel).

for (i <- (0 until N).par)
if ((i * i) & 0xffffff == 0) flag = true

Figure 6.5A shows a comparison between Parallel Collections, a generic work-stealing
kernel and a work-stealing kernel specialized for ranges from Figure 2.21. In this
benchmark Parallel Collections do not instantiate primitive types and hence do not
incur the costs of boxing, but still suffer from iterator and function object abstraction
penalties. Inlining the function object into the while loop for the generic kernel shows a
considerable performance gain. Furthermore, the range-specialized kernel outperforms
the generic kernel by 25% on the i7 and 15% on the UltraSPARC (note the log scale).

Figure 6.5B shows the same comparison for parallel ranges and the fold operation shown
in the introduction:

(0 until N).par.fold(_ + _)
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Figure 6.6: Specialized Collections – Uniform Workload II

Scala Parallel Collections performs badly in this benchmark due to abstracting over the
data type, which leads to boxing. The speed gain for a range-specialized work-stealing
kernel is 20× to 60× compared to Parallel Collections and 2.5× compared to the generic
kernel.

Figure 6.6C shows the same fold microbenchmark applied to parallel arrays. While
Parallel Collections again incur the costs of boxing, the generic and specialized kernel
have a much more comparable performance here. Furthermore, due to the low amount of
computation per element, this microbenchmark spends a considerable percentage of time
fetching the data from the main memory. This is particularly noticeable on the i7 – its
dual-channel memory architecture becomes a bottleneck in this microbenchmark, limiting
the potential speedup to 2×. UltraSPARC, on the other hand, shows a much better
scaling here due to its eight-channel memory architecture and a lower computational
throughput.

The performance of the fold operation on balanced binary trees is shown in Figure 6.6D.
Here we compare the generic and specialized fold kernels against a manually written
recursive traversal subroutine. In the same benchmark we compare against the fold on
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Figure 6.7: Conc-Tree Benchmarks I

functional lists from the Scala standard library commonly used in sequential functional
programming. While the memory-bandwidth is the bottleneck on the i7, we again see a
nice scaling on the UltraSPARC. The performance difference between the generic and
the specialized kernel is 2× to 3×.

The linear scaling with respect to the sequential baseline of specialized kernels in Figures
6.5 and 6.6 indicates that the kernel approach has negligible abstraction penalties.

6.3 Conc-Trees

In this section we compare various Conc-tree variants agains fundamental sequence
implementations in the Scala standard library – functional cons-lists, array buffers and
Scala Vectors. The variants of these data structures exist in most other languages under
different names. It is unclear if there are any functional languages that do not come with
a functional cons-list implementation, and mutable linked lists are used in most general
purpose languages. The defining features of a cons-list are that it prepending an element
is extremely efficient, but indexing, updating or appending an elements are all O(n)
time operations. Functional list is an immutable data structure. Scala ArrayBuffer is a
resizeable array implementation known as the ArrayList in Java and as vector in C++.
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Figure 6.8: Conc-Tree Benchmarks II

Array buffers are mutable random access sequences that can index or update elements in
optimal time with a simple memory read or write. Appending is also extremely efficient,
but it occasionally resizes the array, having to rewrite all the elements to a new memory
region. An important limitation on appending is that it takes up to 2 memory writes on
average. Finally, Scala (and Clojure) Vectors are an efficient tree data structure that can
implement mutable and immutable sequences. Their defining features are low memory
consumption and the tree depth O(log32 n) bound that ensures efficient prepending
and appending. Current implementations do not come with a concatenation operation.
Various Conc-tree variants that we described have some or all of the above listed features.

We execute the benchmarks on an Intel i7 3.4 GHz quad-core processor with hyper-
threading. We start by showing the foreach operation on immutable conc-lists from
Section 3.1 and comparing it to the foreach on the functional cons-list implementation
in Figure 6.7A. Traversing the cons-list is tail recursive and does not need to handle the
stack state. Furthermore, inner conc-lists nodes have to be traversed even though they
do not contain elements at all, which is not the case with cons-lists in which every node
holds an element. The Chunk nodes are thus needed to ensure efficient traversal and
amortize other traversal costs, as shown in Figure 6.7B. For k = 128 element chunks,
traversal running time exceeds that of Scala Vector by almost twice for both conc-rope
and conqueue buffers. In subsequent benchmarks we set k to 128.
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A conc-rope buffer is essentially a two-step array combiner, and the foreach benchmark
validates the fact that conc-ropes are a better choice for data-parallelism from the
traversal point of view than Vectors. Thus, we next evaluate the append performance.
We start with the immutable Conc-trees that do not use Chunk nodes in Figure 6.7C.
While more housekeeping causes conqueues to be twice as slow compared to immutable
Vectors, immutable conc-ropes are more efficient. This is not the case with mutable
conqueues in Figure 6.7D, where we compare conc-rope and conqueue buffers against
mutable Vector version called a VectorBuilder. Again, conc-ropes are clearly the data
structure of choice for sequence combiners. All three of them outperform array buffers,
since array buffers require more than one write to an array per element due to resizing.

When it comes to just prepending elements, functional cons-list is very efficient – prepend-
ing amounts to creating a single node. Scala functional list have the same performance as
mutable conqueue buffers, even though they are themselves immutable data structures.
Both Scala Vectors and immutable conqueues are an order of magnitude slower.

Concatenation has the same performance for both immutable and mutable Conc-tree
variants1 – we show it in Figure 6.8B, where we repeat concatenation 104 times. Con-
catenating conc-ropes is slightly more expensive than conc-list concatenation because of
the normalization, and it varies with size because the number of trees (that is, non-zeros)
in the append list fluctuates. Conqueue concatenation is an order of magnitude slower
(note the log axis) due to the longer normalization process2. Concatenating lists, array
buffers and Scala Vectors is not shown here as it is thousands of times slower for these
data structure sizes.

Random access to elements is an operation where Scala Vectors have a clear upper hand
over the other immutable sequence data structures. Although indexing Scala Vector is
an order of magnitude faster than indexing Conc-trees, both are orders of magnitudes
slower than random access in arrays. In defense of Conc-trees, applications that really
care about performance would convert immutable sequences into arrays before carrying
out many indexing operations, and would not use Vector in the first place.

Finally, we show memory consumption in Figure 6.8D. While a conc-list occupies
approximately twice as much memory as a functional cons-list, the choice of using
Chunk nodes has a clear impact on the memory footprint – both Scala Vectors and Conc-
trees with Chunk nodes occupy an almost optimal amount of memory, where optimal is
the number of elements in the data structure times the pointer size.
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Figure 6.9: Basic Ctrie Operations, Quad-core i7

6.4 Ctries

We performed experimental measurements for Ctrie operations on three separate ar-
chitectures – a JDK6 configuration with a quad-core 2.67 GHz Intel i7 processor with
8 hyperthreads, a JDK6 configuration with an 8-core 1.165 GHz Sun UltraSPARC-
T2 processor with 64 hyperthreads and a JDK7 configuration with four 8-core In-
tel Xeon 2.27 GHz processors with a total of 64 hyperthreads. The first configu-
ration has a single multicore processor, the second has a single multicore proces-
sor, but a different architecture and the third has several multicore processors on
one motherboard. We followed established performance measurement methodologies
[Georges et al.(2007)Georges, Buytaert, and Eeckhout]. We compared the performance
of the Ctrie against the ConcurrentHashMap and the ConcurrentSkipListMap from the
Java standard library, as well as the Cliff Click’s non-blocking concurrent hash map
implementation [Click(2007)]. All of the benchmarks show the number of threads used
on the x-axis and the throughput on the y-axis. In all experiments, the Ctrie supports
the snapshot operation.

The first benchmark called insert starts with an empty data structure and inserts
N = 1000000 entries into the data structure. The work of inserting the elements is
divided equally between P threads, where P varies between 1 and the maximum number
of hyperthreads on the configuration (x-axis). The y-axis shows throughput – the number
of times the benchmark is repeated per second. This benchmark is designed to test the

1Mutable variants require taking a snapshot. The basic Conc-tree is an immutable data structure
with efficient modification operations, so snapshot can be done lazily as in Section 4.2.2.

2Despite the negative ring to a phrase a magnitude slower, that is still very, very fast.
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Figure 6.10: Basic Ctrie Operations, 64 Hardware Thread UltraSPARC-T2

scalability of the resizing, since the data structure is initially empty. Data structures
like hash tables, which have a resize phase, do no seem to be very scalable for this
particular use-case, as shown in Figure 6.9. On the Sun UltraSPARC-T2 (Figure 6.10),
the Java concurrent hash map scales for up to 4 threads. Cliff Click’s nonblocking hash
table scales, but the cost of the resize is so high that this is not visible on the graph.
Concurrent skip lists scale well in this test, but Ctries are a clear winner here since they
achieve an almost linear speedup for up to 32 threads and an additional speedup as the
number of threads reaches 64.

The benchmark lookup does N = 1000000 lookups on a previously created data structure
with N elements. The work of looking up all the elements is divided between P threads,
where P varies as before. Concurrent hash tables perform especially well in this benchmark
on all three configurations – the lookup operation mostly amounts to an array read, so
the hash tables are 2− 3 times faster than Ctries. Ctries, in turn, are faster than skip
lists due to a lower number of indirections, resulting in fewer cache misses.

The remove benchmark starts with a previously created data structure with N = 1000000
elements. It removes all of the elements from the data structure. The work of removing all
the elements is divided between P threads, where P varies. On the quad-core processor
(Figure 6.9) both the Java concurrent skip list and the concurrent hash table scale, but
not as fast as Ctries or the Cliff Click’s nonblocking hash table. On the UltraSPARC-T2
configuration (Figure 6.10), the nonblocking hash table is even up to 2.5 times faster than
Ctries. However, we should point out that the nonblocking hash table does not perform
compression – once the underlying table is resized to a certain size, the memory is used
regardless of whether the elements are removed. This can be a problem for long running
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Figure 6.11: Basic Ctrie Operations, 4x 8-core i7

applications and applications using a greater number of concurrent data structures.

The next three benchmarks called 90 − 9 − 1, 80 − 15 − 5 and 60 − 30 − 10 show the
performance of the data structures when the operations are invoked in the respective
ratio. Starting from an empty data structure, a total of N = 1000000 invocations are
done. The work is divided equally among P threads. For the 90− 9− 1 ratio the Java
concurrent hash table works very well on both the quad-core configuration and the
UltraSPARC-T2. For the 60− 30− 10 ratio Ctries seem to do as well as the nonblocking
hash table. Interestingly, Ctries seem to outperform the other data structures in all three
tests on the 4x 8-core i7 (Figure 6.11).

The preallocated− 5− 4− 1 benchmark in Figure 6.10 proceeds exactly as the previous
three benchmarks with the difference that it starts with a data structure that contains
all the elements. The consequence is that the hash tables do not have to be resized –
this is why the Java concurrent hash table performs better for P up to 16, but suffers
a performance degradation for bigger P . For P > 32 Ctries seem to do better. In this
benchmarks, the nonblocking hash table was 3 times faster than the other data structures,
so it was excluded from the graph. For applications where the data structure size is
known in advance this may be an ideal solution – for others, preallocating may result in
a waste of memory.

To evaluate snapshot performance, we do 2 kinds of benchmarks. The snapshot −
remove benchmark in Figure 6.12 is similar to the remove benchmark – it measures the
performance of removing all the elements from a snapshot of a Ctrie and compares that
time to removing all the elements from an ordinary Ctrie. On both i7 configurations
(Figures 6.9 and 6.11), removing from a snapshot is up to 50% slower, but scales in the
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Figure 6.12: Remove vs. Snapshot Remove
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Figure 6.13: Lookup vs. Snapshot Lookup

same way as removing from an ordinary Ctrie. On the UltraSPARC-T2 configuration
(Figure 6.10), this gap is much smaller. The benchmark snapshot − lookup in Figure
6.13 is similar to the last one, with the difference that all the elements are looked up once
instead of being removed. Looking up elements in the snapshot is slower, since the Ctrie
needs to be fully reevaluated. Here, the gap is somewhat greater on the UltraSPARC-T2
configuration and smaller on the i7 configurations.

Finally, the PageRank benchmark in Figure 6.14 compares the performance of iterating
parts of the snapshot in parallel against the performance of filtering out the page set in
each iteration as explained in Section 4.2.2. The snapshot-based implementation is much
faster on the i7 configurations, whereas the difference is not that much pronounced on
the UltraSPARC-T2.
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Figure 6.14: PageRank with Ctries
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Figure 6.15: Irregular Workload Microbenchmarks

6.5 Work-stealing Tree Data-Parallel Scheduling

We have already compared the work-stealing tree scheduler against several other data-
parallel schedulers in Section 5.2.5, in Figures 5.13 and 5.14. In this section we focus
on comparisons with the Scala Parallel Collections scheduler from Section 2.7 and Intel
TBB [Reinders(2007)].

Figure 6.15 shows improved performance compared to Parallel Collections not only due
to overcoming abstraction penalties, but also due to improved scheduling. The Splitter
abstraction divides an iterator into its subsets before the parallel traversal begins. The
scheduler chooses a batching schedule for each worker such that the batch sizes increase
exponentially. As discussed in Section 2.7, this scheduler is adaptive – when a worker
steals a batch it divides it again. However, due to scheduling penalties of creating
splitters and task objects, and then submitting them to a thread pool, this subdivision
only proceeds up to a fixed threshold N

8P , where N is the number of elements and P is
the number of processors. Concentrating the workload in a sequence of elements smaller
than the threshold yields a suboptimal speedup. Work-stealing iterators, on the other
hand, have much smaller batches with a potential single element granularity.

In Figure 6.15A we run a parallel fold method on a step workload χ(0.97, nN ) – the
first 97% of elements have little associated with them, while the rest of the elements
require a high amount of computation. Intel TBB exhibits a sublinear scaling in this
microbenchmark, being about 25% slower compared to the work-stealing tree scheduling.
Due to a predetermined work scheduling scheme where the minimum allowed batch size
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Figure 6.16: Standard Deviation on Intel i7 and UltraSPARC T2
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Figure 6.17: Mandelbrot Set Computation on Intel i7 and UltraSPARC T2

depends on the number of threads, the task-based scheduler only yields a speedup on
UltraSPARC with more than 16 threads.

As shown in Figure 6.15B, Intel TBB is up to 2× slower compared to work-stealing tree
scheduling for an exponential workload where the amount of work assigned to the n-th
element grows with the function 2

n
100 , while the existing Scala Parallel Collections do

not cope with it well. In Figure 6.16 we show performance results for an application
computing a standard deviation of a set of measurements. The relevant part of it is as
follows:

val mean = measurements.sum / measurements.size
val variance = measurements.aggregate(0.0)(_ + _) {

(acc, x) => acc + (x - mean) * (x - mean)
}

As in the previous experiments, Parallel Collections scale but have a large constant
penalty due to boxing. On UltraSPARC boxing additionally causes excessive memory
accesses resulting in non-linear speedups for higher parallelism levels (P = 32 and
P = 64).

To show that these microbenchmarks are not just contrived examples, we show several
larger benchmark applications as well. We first show an application that renders an image
of the Mandelbrot set in parallel. The Mandelbrot set is irregular in the sense that all
points outside the circle x2 + y2 = 4 are not in the set, but all the points within the circle
require some amount of computation to determine their set membership. Rendering an
image a part of which contains the described circle thus results in an irregular workload.
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Figure 6.18: Raytracing on Intel i7 and UltraSPARC T2
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Figure 6.19: (A) Barnes-Hut Simulation; (B) PageRank on Intel i7

We show the running times of rendering a Mandelbrot set in Figure 6.17. In Figure 6.17
the aforementioned computationally demanding circle is in the lower left part of the
image. We can see a similar effect as in the Figure 6.15A – with a fixed threshold there
is only a 50% to 2× speedup until P becomes larger than 16.

In Figure 6.18 we show the performance of a parallel raytracer, implemented using
existing Parallel Collections and work-stealing tree scheduling. Raytracing renderers
project a ray from each pixel of the image being rendered, and compute the intersection
between the ray and the objects in the scene. The ray is then reflected several times up
until a certain threshold. This application is inherently data-parallel – computation can
proceed independently for different pixels. The workload characteristics depend on the
placement of the objects in the scene. If the objects are distributed uniformly throughout
the scene, the workload will be uniform. The particular scene we choose contains a large
number of objects concentrated in one part of the image, making the workload highly
irregular.

The fixed threshold on the batch sizes causes the region of the image containing most of
the objects to end up in a single batch, thus eliminating most of the potential parallelism.
On the i7 Parallel Collections barely manage to achieve the speedup of 2×, while the data
structure aware work-stealing easily achieves up to 4× speedups. For higher parallelism
levels the batch size becomes small enough to divide the computationally expensive part
of the image between processors, so the plateau ends at P = 32 on UltraSPARC. The
speedup gap still exists at P = 64 – existing Parallel Collections scheduler is 3× slower
than the work-stealer tree scheduler.
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Figure 6.20: Triangular Matrix Multiplication on Intel i7 and UltraSPARC T2

We have parallelized the Barnes-Hut n-body simulation algorithm. This simulation starts
by finding the bounding box of all the particles, and then dividing them into a fixed
number of rectangular sectors within that bounding box, both in parallel. Quadtrees
are then constructed in parallel for the particles within each sector and merged into a
singular quadtree. Finally, the positions and speeds of all the particles are updated in
parallel using the quad tree to approximate the net force from the distant particles.

We used the Barnes-Hut simulation to simulate the movement of two stellar bodies
composed of 25k stars. We recorded the average simulation step length across a number
of simulation iterations. Although this turned out to be a relatively uniformly distributed
workload with most of the stars situated in the sectors in the middle of the scene, we
still observed a consistent 10% increase in speed with respect to preemptive scheduling
in Scala Parallel Collections, as shown in Figure 6.19A.

The PageRank benchmark in Figure 6.19B shows how fusing the operations such as
map, reduce, groupBy and aggregate leads to significant speedups. The single-threaded
work-stealing tree version is already 35% faster compared to the standard sequential
Scala collections.

The last application we choose is triangular matrix multiplication, in which a triangular
n×n matrix is multiplied with a vector of size n. Both the matrix and the vector contain
arbitrary precision values. This is a mild irregular workload, since the amount of work
required to compute the i-th element in the resulting vector is w(i) = i – in Figure 5.13
we called this workload triangular.

Figure 6.20 shows a comparison of the existing Parallel Collections scheduler and data-
structure-aware work-stealing. The performance gap is smaller but still exists, work-
stealing tree being 18% faster on the i7 and 20% faster on the UltraSPARC. The downsides
of fixed size threshold and preemptive batching are thus noticeable even for less irregular
workloads, although less pronounced.
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7 Conclusion

This thesis presented a data-parallel programming framework for shared-memory mul-
tiprocessors. The data-parallel computing model was applied to single-threaded data
structures operating under the bulk-synchronous processing and quiescence assumptions,
and to concurrent data structures that allow concurrent modifications. We have shown
how to efficiently assign data-parallel workloads to different processors, and how to handle
particularly irregular workloads. We hope that the readers had as much fun reading it as
we had writing it.

We feel that the research done as part of this thesis had important impact on both the
state-of-the-art of concurrent programming and the ecosystem of several programming
languages. The basic data-parallel framework described in Chapter 2 is now a part
of the Scala standard library Parallel Collections. An abstraction called spliterator
similar to our splitter is now a part of JDK8. The Ctrie data structure from Chapter
4 was originally implemented in Scala and subsequently made part of the Scala stan-
dard library. It was already independently reimplemented in other languages like Java
[Levenstein(2012)] and Common Lisp [Lentz(2013)], and is available as a Haskell module
[Schröder(2014)]. A monotonically growing variant of the Ctrie is used in Prolog for
tabling techniques [Areias and Rocha(2014)]. The work-stealing tree scheduler is now a
part of the efficient data-parallel computing module written in Scala called ScalaBlitz
[Prokopec and Petrashko(2013)].

The concurrent data structure parallelization through the use of efficient, linearizable,
lock-free snapshots presented in this thesis poses a significant breakthrough in the field
of concurrent data structures. We have shown how to apply the snapshot approach to
two separate lock-free concurrent data structures and identified the key steps in doing so
A plethora of interesting lock-free concurrent data structures amenable to the snapshot
approach remain unexplored – we feel confident that the findings in this thesis will drive
future research in this direction.
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A Conc-Tree Proofs

This appendix does not aim to prove the correctness of the Conc-tree data structure.
The basic Conc-tree data structure is used by a single thread, and reasoning about its
operations is intuitive – the Conc-tree correctness is much easier to establish than that
of lock-free concurrent data structures shown later. Thus, we do not consider it valuable
to formalize the effects of the Conc-tree operations. Instead, we focus our efforts towards
proving the claims about the asymptotic running time bounds from Chapter 3. We
assume that the reader is well acquainted with the content of the Chapter 3.

Throughout the appendix, we use the terms height, depth and level interchangeably, and
mean – the longest path from the root to some leaf. When we say rank, we refer to the
depth of the Conc-trees in the Num node of the conqueue.

We start by recalling the basic theorems about the performance of the concatenation
operation on Conc-tree list. Some of these theorems were already proved earlier – we
refer the reader to the appropriate section where necessary.

Theorem A.1 (Conc-tree Height) A Conc-tree list with n elements has O(logn)
depth.

Proof. These bounds follow directly from the Conc-tree list invariants, and were proved
in Section 3.1. �

The following corollary is a direct consequence of this theorem, and the fact that the
Conc-tree list lookup operation traverses at most one path from the root to a leaf:

Corollary A.2 The Conc-tree list lookup operation (apply) runs in O(logn) time, were
n is the number of elements contained in the Conc-tree list.
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Lemma A.3 (Linking Cost) Conc-tree linking (new <>) is an O(1) operation.

Proof. Here, we assume that a memory allocator allocates an object in worst-case
constant time. Proving the lemma is then trivial. We note that even without the
fineprint about the memory allocator, the linking cost is in practice acceptable, and the
approximation of this assumption is reasonable – it is the goal of most memory allocators
to allocate small objects in amortized constant time with very low constant factors. �

Theorem A.1 also dictates the running time of the update operation. Recall that the
update operation does not insert a new node into the Conc-tree list, but replaces a
specific leaf, and re-links the trees on the path between the root and the leaf. The amount
of work done during the update is bound by the depth of the Conc-tree list and the cost
of the linking operation from Lemma A.3.

Corollary A.4 The Conc-tree list update operation (update) runs in O(logn) time,
were n is the number of elements contained in the Conc-tree list.

Showing the asymptotic running time of the insert operation (insert) is slightly more
demanding, as it involves Conc-tree list concatenation, rather than just simple Conc-tree
linking. We first consider several fundamental theorems about Conc-trees.

Theorem A.5 (Height Increase) Concatenating two Conc-tree lists of heights h1 and
h2 yields a tree with height h such that h−max(h1, h2) ≤ 1.

Proof. This theorem was proved in Section 3.1, by analyzing the cases in the concat
method. �

Theorem A.6 (Concatenation Running Time) Concatenating two Conc-tree lists
of heights h1 and h2 is an O(|h1 − h2|) asymptotic running time operation.

Proof. This theorem was proved in Section 3.1. �

The following corollary is a simple consequence of the fact that in O(n) time, a program
can visit (e.g. allocate) only O(n) space.

Corollary A.7 Concatenating two Conc-tree lists of heights h1 and h2, respectively,
allocates O(|h1 − h2|) nodes.
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Note that the insert method was particularly picky about the order in which it zips the
trees after adding the node. It turns out that this order drives the running time of the
insert method, and must be done bottom-up.

Theorem A.8 (Increasing Concatenation Sequence) Take any sequence of Conc-
tree lists c0, c1, c2, . . . , ck of increasing heights h0, h1, h2, . . . , hk, such that no two trees
have the same height, except possibly the first two, whose height differs by 1:

h0 − 1 ≤ h1 < h2 < . . . < hk

Let C denote the left-to-right concatenation of the Conc-tree lists c0, c1, c2, . . . , ck:

C = (. . . ((c0 � c1) � c2) � . . .) � ck)

Computing the Conc-tree list C takes O(hk) time, where hk is the height of the largest
Conc-tree ck.

Proof. We prove this by induction. For a sequence of one or two Conc-tree lists, the
claim trivially follows from the Theorem A.6. Now, assume that we need to concatenate
a sequence of Conc-tree lists Cl ≤ cl+1 < cl+2 < . . . < ck with heights:

Hl − 1 ≤ hl+1 < hl+2 < . . . < hk

The Conc-tree list Cl is the concatenation accumulation of the first l + 1 Conc-tree lists.
From the induction hypothesis, the total amount of work to compute Cl is bound by
O(hl), where hl is the height of the largest Conc-tree list cl previously merged to obtain
Cl. By Theorem A.6, concatenating Cl and cl+1 runs in O(hl+1 −Hl) time, making the
total amount of work bound by O(hl + hl+1 −Hl). From Theorem A.5 and the inductive
hypothesis that Hl−1 − 1 ≤ hl, we know that Hl − hl ≤ 2. It follows the total amount of
work performed so far is bound by O(hl+1). Also, by Theorem A.5, concatenating Cl and
cl+1 yields a Conc-tree list Cl+1, whose height is Hl+1 ≤ Hl + 1 ≤ hl+1 + 2 ≤ hl+2 + 1.
We end up with a sequence of Conc-tree lists Cl+1 ≤ cl+2 < cl+3 < . . . < ck with heights:

Hl+1 − 1 ≤ hl+2 < hl+3 < . . . < hk

which proves the inductive step – eventually, we concatenate all the trees in O(hk) time,
and arrive at the Conc-tree list Ck. Note that Ck = C. �

Lemma A.9 (Rope Spine Length) A Conc-tree rope can contain at most O(logn)
Append nodes, where n is the number of elements in the Conc-tree rope.

Proof. Consider a strictly increasing sequence R of Conc-tree lists, containing in total
n elements. Such a sequence has two extreme cases. The first is that R contains a single
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Conc-tree list, which contains all n elements. In this case, a Conc-tree rope append
operation takes O(1) time by Lemma A.3 – appending a single-element Conc-tree list is
a simple linking operation. The other extreme case is that the sequence R contains k
Conc-tree lists, heights of which differ by exactly 1. In this case:

2
5−
√

5
((1 +

√
5

2 )k+1 − 1) =
k∑
i=0

1√
5

(1 +
√

5
2 )i ≈

k∑
i=0

F (i) ≤ n ≤
k∑
i=0

2i = 2k+1 − 1

where F (i) is the i-th Fibonacci number. It follows that k is bound by Θ(logn). At any
time, there can be at most O(logn) Conc-tree lists in the sequence R. �

In the Conc-tree list split operation, and the Conc-tree rope normalization, series of
concatenations proceed in strictly increasing manner. In the the Conc-tree list insert
operation, series of concatenations proceed in a similar manner, but the first Conc-tree in
the series of concatenation can always be higher by at most 1. The following corollaries
are a consequence of the Theorem A.8 and the Lemma A.9.

Corollary A.10 The Conc-tree insert operation (insert), Conc-tree list split operation
(split), and Conc-tree rope normalization (normalize) run in O(logn) time, were n is
the number of elements contained in the Conc-tree list.

Note that the normalization bound affects the basic Conc-tree rope operations. The
only difference with respect to the Conc-tree lists is the jump to O(log max(n1, n2)) time
Conc-tree rope concatenation from the O(log n1

n2
) Conc-tree list concatenation.

Corollary A.11 Conc-tree rope concatenation (concat) runs in O(logn) time.

Lemma A.9 has a direct consequence on the running time of the persistent append
operation, as the persistent use of the Conc-tree rope can maintain an instance in the
worst-case configuration with the maximum number of Append nodes.

Corollary A.12 (Persistent Append Running Time) The persistent Conc-tree rope
append operation has worst-case O(logn) running time.

An ephemeral Conc-tree rope append operation benefits from amortization, and has an
improved running time bound.

Theorem A.13 (Ephemeral Append Running Time) The ephemeral Conc-tree rope
append operation has amortized O(1) running time.
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Proof. First, note that a sequence of append operations in a Conc-tree rope corresponds
to incrementing binary numbers, where a Conc-tree list at level l in the spine corresponds
to a binary 1-digit at position l in the binary number, the lack of a Conc-tree list at
level l corresponds to a binary 0-digit at position l in the binary number, and linking
two Conc-tree lists of height l corresponds to a carry operation. We need to prove that,
given that the cost of a carry operation is O(1), the average amount of work in n binary
number increments approaches O(1), as n grows.

To do this, we consider a binary number with w digits, in which the digit at the highest
position w − 1 has just become 1. After O(2w) increment operations, the digit at the
position w − 1 again becomes 0. We count how many digits were flipped from 1 to 0
during these O(2w) increment operations, in other words – we count the carry operations.
The digit at position w − i is flipped O(2i) times, so the total flip count is O(2w). It
follows that the average amount of work is O(1). �

Having proved the running times of basic Conc-tree list and Conc-tree rope operations,
we turn to conqueues.

Theorem A.14 (Tree shaking) The left-shake (right-shake) operation always returns
a tree that is either left-leaning or locally balanced (respectively, right-leaning or locally
balanced). If the height of the resulting tree is different than the input tree, then the
resulting tree is locally balanced. The resulting tree is by at most 1 lower than the input
tree.

Proof. Trivially, by analyzing the cases in the shake-left operation (shakeLeft), and
the analogous shake-right operation (shakeRight). �

Going from amortized time to worst-case time is typically achieved by employing some
sort of execution scheduling [Okasaki(1996)]. In this technique, parts of the work are
performed incrementally, rather than letting work accumulate and eventually cascade
throughout the data structure, distancing the worst-case bound from the amortized
one. Analysis is made more difficult by the fact that we need to prove not only that
the total amount of work and the total amount of operations have the same asymptotic
complexity, but also need to show the exact ratio between the two. In worst-case analysis
of persistent data structures that rely on execution scheduling, constant factors matter
not only for performance, but also for proving the exact running time bounds.

Lazy conqueues rely on a variant of execution scheduling to avoid cascading. The
importance of a precise ratio between the work spent in the operation and the work spent
scheduling is apparent for conqueues. As we will see, the conqueue pushHead operation
(which corresponds to an increment operation in a positional 4-digit base-2 number system)
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requires evaluating a single Spine node (corresponding to a single carry operation). By
contrast, the popHead operation (which corresponds to a decrement operation in the
same number system) requires evaluating two Spine nodes (corresponding to two borrow
operations). This extra work in the borrow case results from the fact that the Conc-tree
lists are relaxed and need not be perfectly balanced. Where these relaxed invariants
reduce the Conc-tree list concatenation running time from O(n) to O(logn), they induce
a constant penalty in the popHead operation. Nothing is for free in computer science –
the art is in knowing when to pay for what.

In the following, we prove that evaluating a single Spine node per pushHead is sufficient
to achieve a constant time execution. We do so by showing that the pushHead operation
cannot create two subsequent $4 suspensions.

Theorem A.15 (Carry Tranquility) Call a conqueue wing with no two consecutive
$4 suspensions a valid wing. Assume that we have a sequence of increment steps in a
valid wing, in which we pay up to 1 carry operations after each increment step. Then,
after every carry operation A at any rank n+ 2, there is an increment step B after which
there are no suspensions at rank lower than the rank n+ 2, and there is a carry left to
spend. Between the steps A and B, there are no suspensions at the depth n+ 1.

Proof. We inductively prove this by relating the wing to a 4-digit base-2 number.

Observe any digit y ∈ {3, $4} at rank n+ 2 after a carry operation A:

pn 2n+1 yn+2

We know that the digit at the rank n + 1 must be 2, or else a carry would not have
occurred at n + 2. Before the next suspension appears at rank n + 1, a sequence of
increment steps must flip the digit at n+ 1 to 3:

p′n 3n+1 yn+2

Since the carry step just occurred at rank n+ 1, the inductive hypothesis now holds for
rank n+ 1 and n. If there is a subsequent increment step B after which there are not
suspensions at rank lower than the rank n+ 1, and a carry left to spend, then the same
holds for the rank n+ 2. �

Next, we show that the popHead operation cannot create an arbitrary long sequence of
Zero nodes or unbalanced One nodes.

Theorem A.16 (Borrow Tranquility) Assume that we have a sequence of decrement
steps in a wing, in which we pay up to 2 borrow operations after each decrement step.
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Then, after every borrow operation A at any rank n, there is a decrement step B after
which there are no Zero trees lower than the rank n, and there is a borrow left to spend.
Between the steps A and B, there are no Zero trees at the depths n− 1 and n− 2.

Proof. The proof is similar to that in Theorem A.15. �

Although a program using a conqueue can invoke any sequence of arbitrary deque
operations, note that a pushHead is beneficial for borrow suspensions, and popHead is
beneficial for carry suspensions – either operation just buys additional time to evaluate
the opposite kind of a suspension. Orthogonally, to account for operations pushLast
and popLast, we pay the cost of additional 2 suspensions on the opposite wing of the
conqueue, as was shown in the pseudocode in Figure 3.10. The following corollary is a
direct consequence of Theorem A.15 and Theorem A.16.

Corollary A.17 Persistent lazy conqueue deque operations run in worst-case O(1) time.

Finally, the conqueue normalization must run in logarithmic time. By implementing
a recursive wrap method that concatenates Conc-tree lists from both conqueue wings
in an order with strictly increasing heights [Prokopec(2014a)], we achieve an O(logn)
worst-case running time normalization operation by Theorem A.8.

Corollary A.18 Persistent lazy conqueue concatenation operation runs in worst-case
O(log max(n1, n2)) time.
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B Ctrie Proofs

In this appendix we prove several important properties of Ctrie operations. First of all,
we prove that any basic Ctrie operation is safe. Before we start, we must first define
what being safe means.

A data structure in this context is defined as a collection of objects in memory each of
which holds some number of pointers to other objects. The allowed configurations of
objects and pointers are defined by the invariants of the data structure. We say that a
data structure is in a valid state if it respects a specific set of invariants.

Every data structure state S is consistent with a specific abstract state A. In the context
of sets and maps, an abstract state is represented by an abstract set of elements. An
abstract data structure operation is defined by changing the abstract state from A to A′.
Every data structure operation implementation must correspond to an abstract operation.
A data structure operation implementation (or simply, data structure operation) is
correct if it changes the state S of the data structure to some other state S′ such that S
corresponds to the abstract state A and S′ corresponds to the abstract state A′.

We will start by defining the Ctrie invariants and the mapping from Ctrie memory layout
to the abstract state (set of elements) it represents. We will then do the same for its
operations and prove that every Ctrie operation is correct in the way described above.

Linearizability [Herlihy and Wing(1990)] is an important property to prove about the
operations on concurrent data structures. An operation executed by some thread is
linearizable if the rest of the system observes the corresponding data structure state
change occurring instantaneously at a single point in time after the operation started
and before it finished.

Lock-freedom [Herlihy and Shavit(2008)] is another important property. An operation
executed by some thread is lock-free if and only if at any point of the execution of
that operation some (potentially different) thread completes some (potentially different)
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concurrent operation after a finite number of execution steps. This property guarantees
system-wide progress, as at least one thread must always complete its operations. We
prove this by showing that every data structure state change is a finite number of
execution steps apart from another. This is not sufficient – not every data structure state
change necessarily needs to result in abstract state changes, as the mapping between
data structure state and the abstract state does not need to be a bijection. Therefore,
we will show that in any sequence of operations there can only be finitely many data
structure changes that do not result in an abstract state change.

Finally, we will show that the Ctrie data structure is compact – it eventually occupies
the amount of memory bound by O(|A|), where A is the abstract set it corresponds to.

In what follows, we will simplify the proof by assuming the Ctrie depth is unbound and
we never use L-nodes. The existence of L-nodes, however, does not change the structure
of this proof, and it can easily be generalized to include L-nodes as well.

The proofs are similar to the previously published proofs for a Ctrie variant with somewhat
more complicated invariants [Prokopec et al.(2011a)Prokopec, Bagwell, and Odersky]
compared to later work [Prokopec et al.(2012a)Prokopec, Bronson, Bagwell, and Odersky].

Basics. Value W is called the branching width. An I-node in is a node holding a
reference main to other nodes. A C-node cn is a node holding a bitmap bmp and an set
of references to other nodes called array. A C-node is k-way if length(cn.array) = k.
An S-node sn is a node holding a key k and a value v. An S-node can be tombed,
denoted by sn†, meaning its tomb flag is set 1. A reference cn.arr(r) in the array defined
as array(#(((1 << r)− 1)� cn.bmp)), where # is the bitcount and � is the bitwise-and
operation. Any node nl,p is at level l if there are l/W C-nodes on the simple path
between itself and the root I-node. Hashcode chunk of a key k at level l is defined
as m(l, k) = (hashcode(k) >> l) mod 2W . A node at level 0 has a hashcode prefix
p = ε, where ε is an empty string. A node n at level l+W has a hashcode prefix p = q · r
if and only if it can be reached from the closest parent C-node cnl,q by following the
reference cnl,q.arr(r). A reference cnl,p.sub(k) is defined as:

cnl,p.sub(k) =
{
cnl,p.arr(m(l, k)) if cnl,p.f lg(m(l, k))
null otherwise

cnl,p.f lg(r)⇔ cnl,p.bmp� (1� r) 6= 0

Ctrie. A Ctrie is defined as the reference root to a root node of the trie. A Ctrie state
S is defined as the configuration of nodes reachable from the root by following references
in the nodes. A key is within the configuration if and only if it is in a node reachable

1To simplify the proof, we will use this representation for T-nodes from section 4.2.2.
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from the root. More formally, the relation hasKey(inl,p, k) on an I-node in at the level l
with a prefix p and a key k holds if and only if (several relations for readability):

holds(inl,p, k)⇔ inl,p.main = sn : SNode ∧ sn.k = k

holds(cnl,p, k)⇔ cnl,p.sub(k) = sn : SNode ∧ sn.k = k

hasKey(cnl,p, k)⇔ holds(cnl,p, k)∨
(cnl,p.sub(k) = inl+w,p·m(l,k) ∧ hasKey(inl+w,p·m(l,k), k))
hasKey(inl,p, k)⇔ holds(inl,p, k)∨
(inl,p.main = cnl,p : CNode ∧ hasKey(cnl,p, k))

Definition. We define the following invariants for the Ctrie.

INV1 inodel,p.main = cnodel,p|snode†

INV2 #(cn.bmp) = length(cn.array)

INV3 cnl,p.f lg(r) 6= 0⇔ cnl,p.arr(r) ∈ {sn, inl+W,p·r}

INV4 cnl,p.arr(r) = sn⇔ hashcode(sn.k) = p · r · s

INV5 inl,p.main = sn† ⇔ hashcode(sn.k) = p · r

Validity. A state S is valid if and only if the invariants INV1-5 are true in the state S.

Abstract set. An abstract set A is a mapping K ⇒ {⊥,>} which is true only for
those keys which are a part of the abstract set, where K is the set of all keys. An
empty abstract set ∅ is a mapping such that ∀k,∅(k) = ⊥. Abstract set operations
are insert(k,A) = A1 : ∀k′ ∈ A1, k

′ = k ∨ k′ ∈ A, lookup(k,A) = > ⇔ k ∈ A and
remove(k,A) = A1 : k 6∈ A1 ∧ ∀k′ ∈ A, k 6= k′ ⇒ k′ ∈ A. Operations insert and remove
are destructive.

Consistency. A Ctrie state S is consistent with an abstract set A if and only if
k ∈ A ⇔ hasKey(Ctrie, k). A destructive Ctrie operation op is consistent with the
corresponding abstract set operation op′ if and only if applying op to a state S consistent
with A changes the state into S′ consistent with an abstract set A′ = op(k,A). A Ctrie
lookup is consistent with the abstract set lookup if and only if it returns the same value
as the abstract set lookup, given that the state S is consistent with A. A consistency
change is a change from state S to state S′ of the Ctrie such that S is consistent with
an abstract set A and S′ is consistent with an abstract set A′ and A 6= A′.

We point out that there are multiple valid states corresponding to the same abstract set.
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Theorem B.1 (Safety) At all times t, a Ctrie is in a valid state S, consistent with
some abstract set A. All Ctrie operations are consistent with the semantics of the abstract
set A.

First, it is trivial to see that if the state S is valid, then the Ctrie is also consistent
with some abstract set A. Second, we prove the theorem using structural induction. As
induction base, we take the empty Ctrie which is valid and consistent by definition. The
induction hypothesis is that the Ctrie is valid and consistent at some time t. We use the
hypothesis implicitly from this point on. Before proving the induction step, we introduce
additional definitions and lemmas.

Definition. A node is live if and only if it is a C-node, a non-tombed S-node or an
I-node whose main reference points to a C-node. A nonlive node is a node which is not
live. A tomb-I-node is an I-node with a main set to a tombed S-node sn†. A node is
a singleton if it is an S-node or an I-node in such that in.main = sn†, where sn† is
tombed.

Lemma B.2 (End of life) If an I-node in is a tomb-I-node at some time t0, then
∀t > t0 in.main is not written.

Proof. For any I-node in which becomes reachable in the Ctrie at some time t, all
assignments to in.main at any time t0 > t occur in a CAS instruction – we only have to
inspect these writes.

Every CAS instruction on in.main is preceded by a check that the expected value of
in.main is a C-node. From the properties of CAS, it follows that if the current value is
a tombed S-node, the CAS will not succeed. Therefore, tomb-I-nodes can be written to
in.main. �

Lemma B.3 C-nodes and S-nodes are immutable – once created, they no longer change
the value of their fields.

Proof. Trivial inspection of the pseudocode reveals that k, v, tomb, bmp and array are
never assigned a value after an S-node or a C-node was created. �

Definition. A contraction ccn of a C-node cn seen at some time t0 is a node such
that:

• ccn = sn† if length(cn.array) = 1 and cn.array(0) is an S-node at t0
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• otherwise, ccn is a cn

A compression ccn of a C-node cn seen at some time t0 is the contraction of the C-node
obtained from cn so that at least those tomb-I-nodes in existing at t0 are resurrected -
that is, replaced by untombed copies sn of sn† = in.main.

Lemma B.4 Methods toCompressed and toContracted return the compression and the
contraction of a C-node cn, respectively.

Proof. From lemma B.3 we know that a C-node does not change values of bmp or
array once created. From lemma B.2 we know that all the nodes that are nonlive at
t0 must be nonlive ∀t > t0. Methods toCompressed or toContracted scan the array of
cn sequentially and make checks which are guaranteed to stay true if they pass – when
these methods complete at some time t > t0 they will have resurrected at least those
I-nodes that were nonlive at some point t0 after the operation began. �

Lemma B.5 Invariants INV1, INV2 and INV3 are always preserved.

Proof. INV1: I-node creation and every CAS instruction abide this invariant. There
are no other writes to main.

INV2, INV3: Trivial inspection of the pseudocode shows that the creation of C-nodes
abides these invariants. From lemma B.3 we know that C-nodes are immutable. These
invariants are ensured during construction and do not change subsequently. �

Lemma B.6 If any CAS instruction makes an I-node in unreachable from its parent at
some time t, then in is nonlive at time t.

Proof. We will show that all the I-nodes a CAS instruction could have made unreachable
from their parents at some point t1 were nonlive at some time t0 < t1. The proof then
follows directly from lemma B.2. We now analyze successful CAS instructions.

In lines 110 and 122, if r is an I-node and it is removed from the trie, then it must have
been previously checked to be a a nonlive I-node by a call to resurrect in lines 97 and
121, respectively, as implied by lemma B.4.

In lines 33, 48 and 44, a C-node cn is replaced with a new C-node ncn which contains
all the references to I-nodes as cn does, and possibly some more. These instructions do
not make any I-nodes unreachable.

In line 79, a C-node cn is replaced with a new ncn which contains all the node references
as cn but without one reference to an S-node – all the I-nodes remain reachable. �
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Corollary B.7 Lemma B.6 has a consequence that any I-node in can only be made
unreachable in the Ctrie through modifications in their immediate parent I-node (or the
root reference if in is referred by it). If there is a parent that refers to in, then that
parent is live by definition. If the parent had been previously removed, lemma B.6 tells us
that the parent would have been nonlive at the time. From lemma B.2 we know that the
parent would remain nonlive afterwards. This is a contradiction.

Lemma B.8 If at some time t1 an I-node in is read by some thread (lines 2, 11, 24,
36, 60, 66 followed by a read of C-node cn = in.main in the same thread at time t2 > t1
(lines 7, 28, 66, 83, 113), then in is reachable from the root at time t2. Trivially, so is
in.main.

Proof. Assume, that I-node in is not reachable from the root at t2. That would mean
that in was made unreachable at an earlier time t0 < t2. Corollary B.7 says that in was
then nonlive at t0. However, from lemma B.2 it follows that in must be nonlive for all
times greater than t0, including t2. This is a contradiction – in is live at t2, since it
contains a C-node cn = in.main. �

Lemma B.9 (Presence) Reading a C-node cn at some time t0 and then sn = cn.sub(k)
such that k = sn.k at some time t1 > t0 means that the relation hasKey(root, k) holds
at time t0. Trivially, k is then in the corresponding abstract set A.

Proof. We know from lemma B.8 that the corresponding C-node cn was reachable at
some time t0. Lemma B.3 tells us that cn and sn were the same ∀t > t0. Therefore, sn
was present in the array of cn at t0, so it was reachable. Furthermore, sn.k is the same
∀t > t0. It follows that hasKey(root, x) holds at time t0. �

Definition. A longest path of nodes π(h) for some hashcode h is the sequence of
nodes from the root to a leaf of a valid Ctrie such that:

• if root = Inode{main = Cnode{array = ∅}} then π(h) = ε

• otherwise, the first node in π(h) is root, which is an I-node

• ∀in ∈ π(h) if in.main = cn ∈ Cnode, then the next element in the path is cn

• ∀sn ∈ π(h) if sn ∈ Snode, then the last element in the path is sn

• ∀cnl,p ∈ π(h), h = p · r · s if cn.flg(r) = ⊥, then the last element in the path is cn,
otherwise the next element in the path is cn.arr(r)
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Lemma B.10 (Longest path) Assume that a non-empty Ctrie is in a valid state at
some time t. The longest path of nodes π(h) for some hashcode h = r0 · r1 · · · rn is a
sequence in0,ε → cn0,ε → inW,r0 → . . .→ inW ·m,r0···rm → x, where, with ∀z, cnz ∈ Cnode
and ∀, snz ∈ Snode, x ∈ {cnW ·m,r0···rm , sn, cnW ·m,r0···rm → sn}.

Proof. Trivially from the invariants and the definition of the longest path. �

Lemma B.11 (Absence I) Assume that at some time t0 ∃cn = in.main for some
node inl,p and the algorithm is searching for a key k. Reading a C-node cn at some
time t0 such that cn.sub(k) = null and hashcode(k) = p · r · s implies that the relation
hasKey(root, k) does not hold at time t0. Trivially, k is not in the corresponding abstract
set A.

Proof. Lemma B.8 implies that in is in the configuration at time t0, because cn = cnl,p
such that hashcode(k) = p · r · s is live. The induction hypothesis states that the Ctrie
was valid at t0. We prove that hasKey(root, k) does not hold by contradiction. Assume
there exists an S-node sn such that sn.k = k. By lemma B.10, sn can only be the last
node of the longest path π(h), and we know that cn is the last node in π(h). �

Lemma B.12 (Absence II) Assume that the algorithm is searching for a key k. Read-
ing a live S-node sn at some time t0 and then x = sn.k 6= k at some time t1 > t0 means
that the relation hasKey(root, x) does not hold at time t0. Trivially, k is not in the
corresponding abstract set A.

Proof. Contradiction similar to the one in the previous lemma. �

Lemma B.13 (Fastening) 1. Assume that one of the CAS instructions in lines 33 and
44 succeeds at time t1 after in.main was read in line 28 at time t0. The ∀t, t0 ≤ t < t1,
relation hasKey(root, k) does not hold.

2. Assume that the CAS instruction in line 48 succeeds at time t1 after in.main was
read in line 28 at time t0. The ∀t, t0 ≤ t < t1, relation hasKey(root, k) holds.

3. Assume that the CAS instruction in line 79 succeeds at time t1 after in.main was
read in line 66 at time t0. The ∀t, t0 ≤ t < t1, relation hasKey(root, k) holds.

Proof. The algorithm never creates a reference to a newly allocated memory areas unless
that memory area has been previously reclaimed. Although it is possible to extend the
pseudocode with memory management directives, we omit memory-reclamation from
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the pseudocode and assume the presence of a garbage collector which does not reclaim
memory areas as long as there are references to them reachable from the program. In
the pseudocode, CAS instructions always work on memory locations holding references –
CAS(x, r, r′) takes a reference r to a memory area allocated for nodes as its expected
value, meaning that a reference r that is reachable in the program exists from the time t0
when it was read until CAS(x, r, r′) was invoked at t1. On the other hand, the new value
for the CAS is in all cases a newly allocated object. In the presence of a garbage collector
with the specified properties, a new object cannot be allocated in any of the areas still
being referred to. It follows that if a CAS succeeds at time t1, then ∀t, t0 ≤ t < t1,
where t0 is the time of reading a reference and t1 is the time when CAS occurs, the
corresponding memory location x had the same value r.

We now analyze specific cases from the lemma statement:

1. From lemma B.10 we know that for some hashcode h = hashcode(k) there exists a
longest path of nodes π(h) = in0,ε → . . .→ cnl,p such that h = p · r · s and that sn such
that sn.k = k cannot be a part of this path – it could only be referenced by cnl,p.sub(k)
of the last C-node in the path. We know that ∀t, t0 ≤ t < t1 reference cn points to the
same C-node. We know from B.3 that C-nodes are immutable. In the case of line 33,
the check to cn.bmp preceding the CAS ensures that ∀t, t0 ≤ t < t1 cn.sub(k) = null. In
the case of line 44, there is a preceding check that the key k is not contained in sn. We
know from B.6 that cn is reachable during this time, because in is reachable. Therefore,
hasKey(root, k) does not hold ∀t, t0 ≤ t < t1.

2., 3. We know that ∀t, t0 ≤ t < t1 reference cn points to the same C-node. C-node cn is
reachable as long as its parent I-node in is reachable. We know that in is reachable by
lemma B.6, since in is live ∀t, t0 ≤ t < t1. We know that cn is immutable by lemma B.3
and that it contains a reference to sn such that sn.k = k. Therefore, sn is reachable and
hasKey(root, k) holds ∀t, t0 ≤ t < t1. �

Lemma B.14 Assume that the Ctrie is valid and consistent with some abstract set A
∀t, t1− δ < t < t1. CAS instructions from lemma B.13 induce a change into a valid state
which is consistent with the abstract set semantics.

Proof. Observe a successful CAS in line 33 at some time t1 after cn was read in line 28
at time t0 < t1. From lemma B.13 we know that ∀t, t0 ≤ t < t1, relation hasKey(root, k)
does not hold. If the last CAS instruction occuring anywhere in the Ctrie before the
CAS in line 33 was at tδ = t1− δ, then we know that ∀t,max(t0, tδ) ≤ t < t1 the hasKey
relation on all keys does not change. We know that at t1 cn is replaced with a new C-node
with a reference to a new S-node sn such that sn.k = k, so at t1 relation hasKey(root, k)
holds. Consequently, ∀t,max(t0, tδ) ≤ t < t1 the Ctrie is consistent with an abstract set
A and at t1 it is consistent with an abstract set A ∪ {k}. Validity is trivial.

200



Proofs for the CAS instructions in lines 44, 48 and 79 are similar. �

Lemma B.15 Assume that the Ctrie is valid and consistent with some abstract set A
∀t, t1 − δ < t < t1. If one of the operations clean or cleanParent succeeds with a CAS
at t1, the Ctrie will remain valid and consistent with the abstract set A at t1.

Proof. Operations clean and cleanParent are atomic - their linearization point is the
first successful CAS instruction occuring at t1. We know from lemma B.4 that methods
toCompressed and toContracted produce a compression and a contraction of a C-node,
respectively.

We first prove the property ∃k, hasKey(n, k) ⇒ hasKey(f(n), k), where f is either a
compression or a contraction. Omitting a tomb-I-node may omit exactly one key, but
f = toCompressed resurrects copies sn of removed I-nodes in such that in.main = sn†.
The f = toContracted replaces a cn with a single key with an sn with the same key.
Therefore, the hasKey relation is exactly the same for both n and f(n).

We only have to look at cases where CAS instructions succeed. If CAS in line 110 at time
t1 succeeds, then ∀t, t0 < t < t1 in.main = cn and at t1 in.main = toCompressed(cn).
Assume there is some time tδ = t1 − δ at which the last CAS instruction in the Ctrie
occuring before the CAS in line 110 occurs. Then ∀t,max(t0, tδ) ≤ t < t1 the hasKey
relation does not change. Additionally, it does not change at t1, as shown above.
Therefore, the Ctrie remains consistent with the abstract set A. Validity is trivial.

Proof for cleanParent is similar. �

Corollary B.16 From lemmas B.14 and B.15 it follows that invariants INV4 and INV5
are always preserved.

Safety. We proved at this point that the algorithm is safe - Ctrie is always in a valid
(lemma B.5 and corollary B.16) state consistent with some abstract set. All operations
are consistent with the abstract set semantics (lemmas B.9, B.11, B.12 B.14 and B.15).
�

Theorem B.17 (Linearizability) Operations insert, lookup and remove are lineariz-
able.

Linearizability. An operation is linearizable if we can identify its linearization point.
The linearization point is a single point in time when the consistency of the Ctrie changes.
The CAS instruction itself is linearizable, as well as atomic reads. It is known that a
single invocation of a linearizable instruction has a linearization point.
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1. We know from lemma B.15 that operation clean does not change the state of the
corresponding abstract set. Operation clean is followed by a restart of the operation it
was called from and is not preceded by a consistency change – all successful writes in the
insert and iinsert that change the consistency of the Ctrie result in termination.

CAS in line 33 that succeeds at t1 immediately returns. By lemma B.14, ∃δ > 0∀t, t1−δ <
t < t1 the Ctrie is consistent with an empty abstract set A and at t1 it is consistent
with A ∪ {k}. If this is the first invocation of iinsert, then the CAS is the first and the
last write with consistent semantics. If iinsert has been recursively called, then it was
preceded by an insert or iinsert. We have shown that if its preceded by a call to insert,
then there have been no preceding consistency changes. If it was preceded by iinsert,
then there has been no write in the previous iinsert invocation. Therefore, it is the
linearization point.

Similar arguments hold for CAS instructions in lines 48 and 44. It follows that if some
CAS instruction in the insert invocation is successful, then it is the only successful CAS
instruction. Therefore, insert is linearizable.

2. Operation clean is not preceded by a write that results in a consistency change and
does not change the consistency of the Ctrie.

Assume that a node m is read in line 7 at t0. By the immutability lemma B.3, if
cn.sub(k) = null at t0 then ∀t, cn.sub(k) = null. By corollary B.7, cn is reachable at
t0, so at t0 the relation hasKey(root, k) does not hold. The read at t0 is not preceded
by a consistency changing write and followed by a termination of the lookup so it is a
linearization point if the method returns in line 10. By similar reasoning, if the operation
returns after line 14, the read in line 7 is the linearization point.

We have identified linearization points for the lookup, therefore lookup is linearizable.

3. Again, operation clean is not preceded by a write that results in a consistency change
and does not change the consistency of the Ctrie.

By lemma B.15 operations clean and cleanParent do not cause a consistency change.

Assume that a node m is read in line 66 at t0. By similar reasoning as with lookup above,
the read in line 66 is a linearization point if the method returns in either of the lines 69
or 75.

Assume that the CAS in line 79 succeeds at time t0. By lemma B.14, ∃δ > 0∀t, t1 − δ <
t < t1 the Ctrie is consistent with an abstract set A and at t1 it is consistent with
A \ {k}. This write is not preceded by consistency changing writes and followed only by
cleanParent which also do not change consistency. Therefore, it is a linearization point.

We have identified linearization points for the remove, so remove is linearizable. �
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Definition. Assume that a multiple number of threads are invoking a concurrent opera-
tion op. The concurrent operation op is lock-free if and only if after a finite number of
thread execution steps some thread completes the operation.

Theorem B.18 (Lock-freedom) Ctrie operations insert, lookup and remove are lock-
free.

The rough idea of the proof is the following. To prove lock-freedom we will first show
that there is a finite number of steps between state changes. Then we define a reduction
of the space of possible states and show that there can only be finitely many successful
CAS instructions which do not result in a consistency change. We have shown in lemmas
B.14 and B.15 that only CAS instructions in lines 110 and 122 do not cause a consistency
change. We proceed by introducing additional definitions and proving the necessary
lemmas. In all cases, we assume there has been no state change which is a consistency
change, otherwise that would mean that some operation was completed.

Lemma B.19 The root is never a tomb-I-node.

Proof. A tomb S-node can only be assigned to in.main of some I-node in in clean,
cleanParent and iremove in line 79. Neither clean nor cleanParent are ever called for
the in in the root of the Ctrie, as they are preceded by the check if parent is different than
null. The CAS in line 79 replaces the current C-node with the result of toContracted,
which in turn produces a tomb S-node only if the level is greater than 0. �

Lemma B.20 If a CAS in one of the lines 33, 48, 44, 79, 110 or 122 fails at some time
t1, then there has been a state change since the time t0 when a respective read in one of
the lines 28, 66, 109 or 113 occured. Trivially, the state change preceded the CAS by a
finite number of execution steps.

Proof. The configuration of nodes reachable from the root has changed, since the
corresponding in.main has changed. Therefore, the state has changed by definition. �

Lemma B.21 In each operation there is a finite number of execution steps between 2
consecutive calls to a CAS instruction.

Proof. The ilookup and iinsert operations have a finite number of executions steps.
There are no loops in the pseudocode for ilookup in iinsert, the recursive calls to them
occur on the lower level of the trie and the trie depth is bound – no non-consistency
changing CAS increases the depth of the trie.
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The lookup operation is restarted if and only if clean (which contains a CAS) is called
in ilookup. Due to this and the trie depth bound, there are a finite number of execution
steps between two calls to a CAS instruction.

The insert operation is restarted if and only if clean (which contains a CAS) is called in
iinsert or due to a preceding failed CAS in lines 33, 48 or 44.

In iremove, CAS instructions in calls to clean are a finite number of execution steps
apart, as before. Method cleanParent contain no loops, but is recursive. In case it
restarts itself, a CAS is invoked at least once. Between these CAS instructions there is a
finite number of execution steps.

A similar analysis as for lookup above can be applied to the first phase of remove which
consists of all the execution steps preceding a successful CAS in line 79.

All operations have a finite number of executions steps between consecutive CAS in-
structions, assuming that the state has not changed since the last CAS instruction.
�

Corollary B.22 The consequence of lemmas B.21 and B.20 is that there is a finite
number of execution steps between two state changes. At any point during the execution
of the operation we know that the next CAS instruction is due in a finite number of
execution steps (lemma B.21). From lemmas B.14 and B.15 we know that if a CAS
succeeds, it changes the state. From lemma B.20 we know that if the CAS fails, the state
was changed by someone else.

We remark at this point that corollary B.22 does not imply that there is a finite number
of execution steps between two operations. A state change is not necessarily a consistency
change.

Definition. Let there at some time t0 be a 1-way C-node cn such that cn.array(0) = in

and in.main = sn† where sn† is tombed or, alternatively, cn is a 0-way node. We call
such cn a single tip of length 1. Let there at some time t0 be a 1-way C-node cn such
that cn.array(0) = Inode{main = cn′} and cn′ is a single tip of length k. We call such
cn a single tip of length k + 1.

Definition. The total path length d is the sum of the lengths of all the paths from
the root to some leaf.

Definition. Assume the Ctrie is in a valid state. Let t be the number of reachable
tomb-I-nodes in this state, l the number of live I-nodes, r the number of single tips of
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any length and d the total path length. We denote the state of the Ctrie as St,l,r,d. We
call the state S0,l,r,d the clean state.

Lemma B.23 Observe all CAS instructions which never cause a consistency change
and assume they are successful. Assuming there was no state change since reading in
prior to calling clean, the CAS in line 110 changes the state of the Ctrie from the state
St,l,r,d to St−j,l,r,d′≤d where j > 0 and t ≥ j.

Furthermore, the CAS in line 122 changes the state from St,l,r,d to St−1,l,r−j,d−1 where
t ≥ 1, d ≥ 1 and j ∈ {0, 1}.

Proof. We have shown in lemma B.15 that the CAS in line 110 does not change the
number of live nodes. In lemma B.4 we have shown that toCompressed returns a
compression of the C-node cn which replaces cn at in.main at time t.

Provided there is at least one single tip immediately before time t, the compression of
the C-node cn can omit at most one single tip, decreasing r by one. Omitting a single
tip will also decrease d by one.

This proves the statement for CAS in line 110. The CAS in line 122 can be proved by
applying a similar line of reasoning. �

Lemma B.24 If the Ctrie is in a clean state and n threads are executing operations on
it, then some thread will execute a successful CAS resulting in a consistency change after
a finite number of execution steps.

Proof. Assume that there are m ≤ n threads in the clean operation or in the cleanup
phase of the remove. The state is clean, so there are no nonlive I-nodes – none of the
m threads performing clean will invoke a CAS after their respective next (unsuccessful)
CAS. This means that these m threads will either complete in a finite number of steps or
restart the original operation after a finite number of steps. From this point on, as shown
in lemma B.21, the first CAS will be executed after a finite number of steps. Since the
state is clean, there are no more nonlive I-nodes, so clean will not be invoked. Therefore,
the first subsequent CAS will result in a consistency change. Since it is the first CAS, it
will also be successful. �

Lock-freedom. Assume we start in some state St,l,r,d. We prove there are a finite
number of state changes before reaching a clean state by contradiction. Assume there
is an infinite sequence of state changes. We now use results from lemma B.23. In this
infinite sequence, a state change which decreases d may occur only finitely many times,
since no state change increases d. After this finitely many state changes d = 0 so the
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sequence can contain no more state changes which decrease d. We apply the same
reasoning to r – no available state change can increase the value of r, so after finitely
many steps r = 0. Therefore, the assumption is wrong – such an infinite sequence of
state changes does not exist.

From corollary B.22 there are a finite number of execution steps between state changes,
so there are a finite number of execution steps before reaching a clean state. By lemma
B.24, if the Ctrie is in a clean state, then there are an additional finite number of steps
until a consistency change occurs.

This proves that some operation completes after a finite number of steps, so all Ctrie
operations are lock-free. �

Theorem B.25 (Compactness) Assume all remove operations have completed execu-
tion. Then there is at most 1 single tip of length 1 in the trie.

Compactness. We will prove that if there is a non-root single tip of length 1 in the trie
on the longest path π(h) of some hashcode h, then there is at least one remove operation
in the cleanup phase working on the longest path π(h).

By contradiction, assume that there are no remove operations on the longest path π(h)
ending with a single tip of length 1. A single tip cn can be created at time t0 by a remove
invoking a CAS instruction in line 79, by a clean invoking a CAS instruction in line 110
or by a cleanParent invoking a CAS instruction in line 122. A clean operation can only
create a single tip of length 1 in line 110 by removing another single tip of length 1,
which would imply that there was no remove operation on the longest path π(h) in the
cleanup phase before that clean. Similarly cleanParent can only create a single tip of
length 1 in line 122 by removing another single tip of length 1, implying there were no
remove operation on the longest path π(h) before. This is a contradiction, because only
the remove operation can call cleanParent. A remove operation can create a single tip
of length 1 where without removing another one in line 79, but that puts the remove
operation in the cleanup phase, which again leads to a contradiction.

Now, we have to show that if the cleanParent ends, the corresponding single tip was
removed. If upon reading the state of in at t0 in line 113, the cleanParent does not
attempt or fails to remove the tip with a CAS at t1 > t0 in line 122, then the tip was
already removed at this level of the trie by some clean method after the read in line 122.
This is because all other CAS instructions fail if the S-node is tombed, and all operations
call clean if their read in lines 7, 28 and 66 detected a tombed S-node. Alternatively, the
cleanParent removes the tip with a successful CAS in line 122. In both cases, a CAS at
t1 > t0 removing the single tip can introduce a single tip at the parent of in was a single
tip of length 2 at t1. If so, remove calls cleanParent at the parent of in recursively.
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The single tip may either be a 0-way C-node, meaning it is the root, or be a C-node with
a single tombed S-node. This proves the initial statement. �
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C FlowPool Proofs

In this appendix we prove the correctness of the proposed flow pool implementation,
and identify the linearization points for its operations, proving that the operations are
linearizable, as discussed in Appendix B. For the lock-freedom proof we refer the reader to
related work [Prokopec et al.(2012b)Prokopec, Miller, Schlatter, Haller, and Odersky].

Data types. A Block b is an object which contains an array b.array, which itself
can contain elements, e ∈ Elem, where Elem represents the type of e and can be any
countable set. A given block b additionally contains an index b.index which represents
an index location in b.array, a unique index identifying the array b.blockIndex, and
b.next, a reference to a successor block c where c.blockIndex = b.blockIndex + 1. A
Terminal term is a sentinel object, which contains an integer term.sealed ∈ {−1} ∪N0,
and term.callbacks, a set of functions f ∈ Elem⇒ Unit.

We define the following functions:

following(b : Block) =

∅ if b.next = null,
b.next ∪ following(b.next) otherwise

reachable(b : Block) = {b} ∪ following(b)
last(b : Block) = b′ : b′ ∈ reachable(b) ∧ b′.next = null

size(b : Block) = |{x : x ∈ b.array ∧ x ∈ Elem}|

Based on them we define the following relation:
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reachable(b, c)⇔ c ∈ reachable(b)

FlowPool. A FlowPool pool is an object that has a reference pool.start, to the first
block b0 (with b0.blockIndex = 0), as well as a reference pool.current. We sometimes
refer to these just as start and current, respectively.

A scheduled callback invocation is a pair (f, e) of a function f ∈ Elem => Unit

and an element e ∈ Elem. The programming construct that adds such a pair to the set
of futures is future { f(e) }.

The FlowPool state is defined as a pair of the directed graph of objects transitively
reachable from the reference start and the set of scheduled callback invocations called
futures.

A state changing or destructive instruction is any atomic write or CAS instruction
that changes the FlowPool state.

We say that the FlowPool has an element e at some time t0 if and only if the relation
hasElem(start, e) holds.

hasElem(start, e)⇔ ∃b ∈ reachable(start), e ∈ b.array

We say that the FlowPool has a callback f at some time t0 if and only if the relation
hasCallback(start, f) holds.

hasCallback(start, f) ⇔ ∀b = last(start), b.array = xP · t · yN , x ∈ Elem,
t = Terminal(seal, callbacks), f ∈ callbacks

We say that a callback f in a FlowPool will be called for the element e at some time
t0 if and only if the relation willBeCalled(start, e, f) holds.
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willBeCalled(start, e, f)⇔ ∃t1, ∀t > t1, (f, e) ∈ futures

We say that the FlowPool is sealed at the size s at some t0 if and only if the relation
sealedAt(start, s) holds.

sealedAt(start, s) ⇔ s 6= −1 ∧ ∀b = last(start), b.array = xP · t · yN ,
x ∈ Elem, t = Terminal(s, callbacks)

FlowPool operations are append, foreach and seal, and are defined by pseudocodes
in Figures 4.7 and 4.8.

Invariants. We define the following invariants for the FlowPool:

INV1 start = b : Block, b 6= null, current ∈ reachable(start)

INV2 ∀b ∈ reachable(start), b 6∈ following(b)

INV3 ∀b ∈ reachable(start), b 6= last(start)
⇒ size(b) = LASTELEMPOS ∧ b.array(BLOCKSIZE − 1) ∈ Terminal

INV4 ∀b = last(start), b.array = p · c · n, where:

p = XP , c = c1 · c2, n = nullN

x ∈ Elem, c1 ∈ Terminal, c2 ∈ {null} ∪ Terminal

P +N + 2 = BLOCKSIZE

INV5 ∀b ∈ reachable(start), b.index > 0⇒ b.array(b.index− 1) ∈ Elem

Validity. A FlowPool state S is valid if and only if the invariants [INV1-5] hold for that
state.

Abstract pool. An abstract pool P is a function from time t to a tuple (elems, callbacks, seal)
such that:
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seal ∈ {−1} ∪ N0

callbacks ⊂ {(f : Elem => Unit, called)}

called ⊆ elems ⊆ Elem

We say that an abstract pool P is in state A = (elems, callbacks, seal) at time t if and
only if P(t) = (elems, callbacks, seal).

Abstract pool operations. We say that an abstract pool operation op that is
applied to some abstract pool P in abstract state A0 = (elems0, callbacks0, seal0) at some
time t changes the abstract state of the abstract pool to A = (elems, callbacks, seal) if
∃t0,∀τ, t0 < τ < t,P(τ) = A0 and P(t) = A. We denote this as A = op(A0).

Abstract pool operation foreach(f) changes the abstract state at t0 from (elems, callbacks, seal)
to (elems, (f, ∅) ∪ callbacks, seal). Furthermore:

∃t1 ≥ t0, ∀t2 > t1,P(t2) = (elems2, callbacks2, seal2)
∧∀(f, called2) ∈ callbacks2, elems ⊆ called2 ⊆ elems2

Abstract pool operation append(e) changes the abstract state at t0 from (elems, callbacks, seal)
to ({e} ∪ elems, callbacks, seal). Furthermore:

∃t1 ≥ t0, ∀t2 > t1,P(t2) = (elems2, callbacks2, seal2)
∧∀(f, called2) ∈ callbacks2, (f, called) ∈ callbacks⇒ e ∈ called2

Abstract pool operation seal(s) changes the abstract state of the FlowPool at t0 from
(elems, callbacks, seal) to (elems, callbacks, s), assuming that seal ∈ {−1} ∪ {s} and
s ∈ N0, and |elems| ≤ s.

Consistency. A FlowPool state S is consistent with an abstract pool P = (elems, callbacks, seal)
at t0 if and only if S is a valid state and:

∀e ∈ Elem, hasElem(start, e)⇔ e ∈ elems
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∀f ∈ Elem => Unit, hasCallback(start, f)⇔ f ∈ callbacks

∀f ∈ Elem => Unit,∀e ∈ Elem,willBeCalled(start, e, f)⇔ ∃t1 ≥ t0,∀t2 > t1,P(t2) =
(elems2, (f, called2) ∪ callbacks2, seal2), elems ⊆ called2

∀s ∈ N0, sealedAt(start, s)⇔ s = seal

A FlowPool operation op is consistent with the corresponding abstract state operation
op′ if and only if S′ = op(S) is consistent with an abstract state A′ = op′(A).

A consistency change is a change from state S to state S′ such that S is consistent
with an abstract state A and S′ is consistent with an abstract set A′, where A 6= A′.

Proposition C.1 Every valid state is consistent with some abstract pool.

Theorem C.2 (Safety) FlowPool operation create creates a new FlowPool consistent
with the abstract pool P = (∅, ∅,−1). FlowPool operations foreach, append and seal
are consistent with the abstract pool semantics.

Lemma C.3 (End of life) For all blocks b ∈ reachable(start), if value v ∈ Elem is
written to b.array at some position idx at some time t0, then ∀t > t0, b.array(idx) = v.

Proof. The CAS in line 20 is the only CAS which writes an element. No other CAS has
a value of type Elem as the expected value. This means that once the CAS in line 20
writes a value of type Elem, no other write can change it.

Corollary C.4 The end of life lemma implies that if all the values in b.array are of
type Elem at t0, then ∀t > t0 there is no write to b.array.

Lemma C.5 (Valid hint) For all blocks b ∈ reachable(start), if b.index > 0 at some
time t0, then b.array(b.index− 1) ∈ Elem at time t0.

Proof. Observe every write to b.index – they are all unconditional. However, at every
such write occurring at some time t1 that writes some value idx we know that some
previous value at b.array entry idx− 1 at some time t0 < t1 was of type Elem. Hence,
from C.3 it follows that ∀t ≥ t1, b.array(idx− 1) ∈ Elem.

Corollary C.6 (Compactness) For all blocks b ∈ reachable(start), if for some idx
b.array(idx) ∈ Elem at time t0 then b.array(idx− 1) ∈ Elem at time t0. This follows
directly from the C.3 and C.5, and the fact that the CAS in line 20 only writes to array
entries idx for which it previously read the value from b.index.
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Transition. If for a function f(t) there exist times t0 and t1 such that ∀t, t0 < t <

t1, f(t) = v0 and f(t1) = v1, then we say that the function f goes through a transition
at t1. We denote this as:

f : v0
t1→ v1

Or, if we don’t care about the exact time t1, simply as:

f : v0 → v1

Monotonicity. A function of time f(t) is said to be monotonic, if every value in its
string of transitions occurs only once.

Lemma C.7 (Freshness) For all blocks b ∈ reachable(start), and for all x ∈ b.array,
function x is monotonic.

Proof. CAS instruction in line 20 writes a value of type Elem. No CAS instruction has
a value of type Elem as the expected value, so this write occurs only once.

Trivial analysis of CAS instructions in lines 93 and 113, shows that their expected values
are of type Terminal. Their new values are always freshly allocated.

The more difficult part is to show that CAS instruction in line 19 respects the statement
of the lemma.

Since the CAS instructions in lines 93 and 113 are preceeded by a read of idx = b.index,
from C.5 it follows that b.array(idx− 1) contains a value of type Elem. These are also
the only CAS instructions which replace a Terminal value with another Terminal value.
The new value is always unique, as shown above.

So the only potential CAS to write a non-fresh value to idx+ 1 is the CAS in line 19.

A successful CAS in line 19 overwrites a value cb0 at idx+ 1 read in line 16 at t0 with a
new value cb2 at time t2. Value cb2 was read in line 17 at t1 from the entry idx. The
string of transitions of values at idx is composed of unique values at least since t1 (by
C.3), since there is a value of type Elem at the index idx− 1.

The conclusion above ensures that the values read in line 17 to be subsequently used as
new values for the CAS in line 19 form a monotonic function f(t) = b.array(idx) at t.

Now assume that a thread T1 successfully overwrites cb0 via CAS in line 19 at idx+ 1
at time t2 to a value cb2 read from idx at t1, and that another thread T2 is the first
thread (since the FlowPool was created) to subsequently successfully complete the CAS
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in line 19 at idx+ 1 at time tprev2 > t2 with some value cbprev2 which was at idx+ 1 at
some time t < t0.

That would mean that b.array(idx+ 1) does not change during 〈t0, t2〉, since T2 was the
first thread the write a non-fresh value to idx+ 1, and any other write would cause the
CAS in line 19 by T1 to fail.

Also, that would mean that the thread T2 read the value cbprev2 in line 17 at some
time tprev1 < t1 and successfully completed the CAS at time tprev2 > t2. If the CAS
was successful, then the read in line 16 by T2 occured at tprev0 < tprev1 < t1. Since we
assumed that T2 is the first thread to write a value cbprev2 to idx+ 1 at time tprev2 which
was previously in idx + 1 at some time t < t0, then the CAS in line 19 at time tprev2
could not have succeeded, since its expected value is cbprev0 read at some time tprev0, and
we know that the value at idx+ 1 was changed at least once in 〈tprev0, tprev2〉 because of
the write of a fresh value by thread T1 at t2 ∈ 〈tprev0, tprev2〉. This value is known to
be fresh because b.array(idx) is a monotonic function at least since tprev1, and the read
of the new value written by T1 occurred at t1 > tprev1. We also know that there is no
other thread T3 to write the value cbprev0 during 〈tprev0, tprev2〉 back to idx+ 1, since we
assumed that T2 is the first to write a non-fresh value at that position.

Hence, a contradiction shows that there is no thread T2 which is the first to write a
non-fresh value via CAS in line 19 at idx + 1 for any idx, so there is no thread that
writes a non-fresh value at all.

Lemma C.8 (Lifecycle) For all blocks b ∈ reachable(start), and for all x ∈ b.array,
function x goes through and only through the prefix of the following transitions:

null→ cb1 → · · · → cbn → elem, where:

cbi ∈ Terminal, i 6= j ⇒ cbi 6= cbj , elem ∈ Elem

Proof. First of all, it is obvious from the code that each block that becomes an element
of reachable(start) at some time t0 has the value of all x ∈ b.array set to null.

Next, we inspect all the CAS instructions that operate on entries of b.array.

The CAS in line 20 has a value curo ∈ Terminal as an expected value and writes an
elem ∈ Elem. This means that the only transition that this CAS can cause is of type
cbi ∈ Terminal→ elem ∈ Elem.

We will now prove that the CAS in line 19 at time t2 is successful if and only if the entry
at idx + 1 is null or nexto ∈ Terminal. We know that the entry at idx + 1 does not
change ∀t, t0 < t < t2, where t0 is the read in line 16, because of C.7 and the fact that
CAS in line 19 is assumed to be successful. We know that during the read in line 17 at
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time t1, such that t0 < t1 < t2, the entry at idx was curo ∈ Terminal, by trivial analysis
of the check procedure. It follows from corollary C.6 that the array entry idx + 1 is
not of type Elem at time t1, otherwise array entry idx would have to be of type Elem.
Finally, we know that the entry at idx+ 1 has the same value during the interval 〈t1, t2〉,
so its value is not Elem at t2.

The above reasoning shows that the CAS in line 19 always overwrites a one value of type
Terminal (or null) with another value of type Terminal. We have shown in C.7 that
it never overwrites the value cb0 with a value cb2 that was at b.array(idx) at an earlier
time.

Finally, note that the statement for CAS instructions in lines 93 and 113 also follows
directly from the proof for C.7.

Lemma C.9 (Subsequence) Assume that for some block b ∈ reachable(start) the
transitions of b.array(idx) are:

b.array(idx) : null→ cb1 → · · · → cbn
t0→ elem : Elem

Assume that the transitions of b.array(idx+ 1) up to time t0 are:

b.array(idx+ 1) : null→ cb′1 → · · · → cb′m

The string of transitions null → cb′1 → · · · → cb′m is a subsequence of null → cb1 →
· · · → cbn.

Proof. Note that all the values written to idx + 1 before t0 by CAS in line 19 were
previously read from idx in line 17. This means that the set of values occurring in
b.array(idx + 1) before t0 is a subset of the set of values in b.array(idx). We have to
prove that it is actually a subsequence.

Assume that there exist two values cb1 and cb2 read by threads T1 and T2 in line 17 at
times t1 and t2 > t1, respectively. Assume that these values are written to idx+ 1 by
threads T1 and T2 in line 19 in the opposite order, that is at times tcas1 and tcas2 < tcas1,
respectively. That would mean that the CAS by thread T1 would have to fail, since its
expected value cb0 has changed between the time it was read in line 16 and the tcas1 at
least once to a different value, and it could not have been changed back to cb0 as we
know from the C.7.
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Notice that we have actually prooved a stronger result above. We have also shown that
the string of values written at idx+ 1 by CAS in line 19 successfully is a subsequence of
all the transitions of values at idx (not just until t0).

Lemma C.10 (Valid writes) Given a FlowPool in a valid state, all writes in all
operations produce a FlowPool in a valid state.

Proof. A new FlowPool is trivially in a valid state.

Otherwise, assume that the FlowPool is in a valid state S. In the rest of the proof,
whenever some invariant is trivially unaffected by a write, we omit mentioning it. We
start by noting that we already prooved the claim for atomic writes in lines 21, 37 and 75
(which only affect [INV5]) in C.5. We proceed by analyzing each atomic CAS instruction.

CAS in line 44 at time t1 maintains the invariant [INV1]. This is because its expected
value is always null, which ensures that the lifecycle of b.next is null → b′ : Block,
meaning that the function reachable(start) returns a monotonically growing set. So if
current ∈ reachable(start) at t0, then this also holds at t1 > t0. It also maintains [INV2]
because the new value nb is always fresh, so ∀b, b 6∈ following(b). Finally, it maintains
[INV3] because it is preceeded with a bounds check and we know from corollary C.6 and
the C.3 that all the values in b.array(idx), idx < LASTELEMPOS must be of type
Elem.

CAS in line 47 at time t1 maintains the invariant [INV1], since the new value for the
current 6= null was read from b.next at t0 < t1 when the invariant was assumed to hold,
and it is still there a t1, as shown before.

For CAS instructions in lines 20, 113 and 93 that write to index idx we know from C.5
that the value at idx− 1 is of type Elem. This immediately shows that CAS instructions
in lines 113 and 93 maintain [INV3] and [INV4].

For CAS in line 20 we additionally know that it must have been preceeded by a successful
CAS in line 19 which previously wrote a Terminal value to idx+ 1. From C.8 we know
that idx+ 1 is still Terminal when the CAS in line 20 occurs, hence [INV4] is kept.

Finally, CAS in line 19 succeeds only if the value at idx + 1 is of type Terminal, as
shown before in C.8. By the same lemma, the value at idx is either Terminal or Elem
at that point, since idx− 1 is known to be Elem by C.5. This means that [INV4] is kept.

Lemma C.11 (Housekeeping) Given a FlowPool in state S consistent with some
abstract pool state A, CAS instructions in lines 19, 44 and 47 do not change the abstract
pool state A.
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Proof. Since none of the relations hasElem, hasCallback, willBeCalled and sealedAt
are defined by the value of current CAS in line 47 does not change them, hence it does
not change the abstract pool state.

No CAS changes the set of scheduled futures, nor is succeeded by a future construct so
it does not affect the willBeCalled relation.

It is easy to see that the CAS in line 44 does not remove any elements, nor make any
additional elements reachable, since the new block nb which becomes reachable does not
contain any elements at that time. Hence the hasElem relation is not affected. It does
change the value last(start) to nb, but since nb.array = t · nullBLOCKSIZE−1, where
t ∈ Terminal was previously the last non-null element in b.array, it does changes neither
the sealedAt nor the hasCallback relation.

The CAS in line 19 does not make some new element reachable, hence the hasElem
relation is preserved.

Note now that this CAS does not change the relations hasCallback and sealedAt as long
as there is a value of type Terminal at the preceeding entry idx. We claim that if the
CAS succeeds at t2, then either the value at idx is of type Terminal (trivially) or the
CAS did not change the value at idx+ 1. In other words, if the value at idx at time t2 is
of type Elem, then the write by CAS in line 19 does not change the value at idx+ 1 at
t2. This was, in fact, already shown in the proof of C.9.

The argument above proves directly that relations hasCallback and sealedAt are not
changed by the CAS in line 19.

Lemma C.12 (Append correctness) Given a FlowPool in state S consistent with
some abstract pool state A, a successful CAS in line 20 at some time t0 changes the state
of the FlowPool to S0 consistent with an abstract pool state A0, such that:

A = (elems, callbacks, seal)

A0 = ({elem} ∪ elems, callbacks, seal)

Furthermore, given a fair scheduler, there exists a time t1 > t0 at which the FlowPool is
consistent with an abstract pool in state A1, such that:

A1 = (elems1, callbacks1, seal1), where:

∀(f, called1) ∈ callbacks1, (f, called) ∈ callbacks⇒ elem ∈ called1

Proof. Assume that the CAS in line 20 succeeds at some time t3, the CAS in line 19
succeeds at some time t2 < t3, the read in line 17 occurs at some time t1 < t2 and the
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read in line 17 occurs at some time t0 < t1.

It is easy to see from the invariants, check procedure and the corollary C.4 that the CAS
in line 20 can only occur if b = last(start).

We claim that for the block b ∈ reachable(start) such that b = last(b) the following
holds at t2:

b.array = elemN · cb1 · cb2 · nullBLOCKSIZE−N−2

where cb1 = cb2, since there was no write to idx after cb1, otherwise the CAS in line 20
at t3 would not have been successful (by lemma C.7).

Furthermore, cb1 = cb2 at t3, as shown in the C.9. Due to the same lemma, the entries
of b.array stay the same until t3, otherwise the CAS in line 20 would not have been
successful. After the successful CAS at t3, we have:

b.array = elemN · e · cb1 · nullBLOCKSIZE−N−2

where e : Elem is the newly appended element– at t3 the relation hasElem(start, e)
holds, and sealedAt(start, s) and hasCallback(start, f) did not change between t2 and
t3.

It remains to be shown that willBeCalled(start, e, f) holds at t3. Given a fair scheduler,
within a finite number of steps the future store will contain a request for an asynchronous
computation that invokes f on e. The fair scheduler ensures that the future is scheduled
within a finite number of steps.

Lemma C.13 (Foreach correctness) Given a FlowPool in state S consistent with
some abstract pool state A, a successful CAS in line 113 at some time t0 changes the
state of the FlowPool to S0 consistent with an abstract pool state A0, such that:

A = (elems, callbacks, seal)

A0 = (elems, (f, ∅) ∪ callbacks, seal)

Furthermore, given a fair scheduler, there exists a time t1 ≥ t0 at which the FlowPool is
consistent with an abstract pool in state A1, such that:

A1 = (elems1, callbacks1, seal1), where:

elems ⊆ elems1

∀(f, called1) ∈ callbacks1, elems ⊆ called1
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Appendix C. FlowPool Proofs

Proof. From C.7 and the assumption that the CAS is successful we know that the
value at b.array(idx) has not changed between the read in line 106 and the CAS in line
113. From C.5 we know that the value at idx− 1 was of type Elem since b.index was
read. This means that neither hasElem(start, e) nor sealedAt have changed after the
CAS. Since after the CAS there is a Terminal with an additional function f at idx, the
hasCallback(start, f) holds after the CAS. Finally, the willBeCalled(start, e, f) holds
for all elements e for which the hasElem(e) holds, since the CAS has been preceeded by
a call f(e) in line 116 for each element. The C.3 ensures that for each element f was
called for stays in the pool indefinitely (i.e. is not removed).

Trivially, the time t1 from the statement of the lemma is such that t1 = t0.

Lemma C.14 (Seal correctness) Given a FlowPool in state S consistent with some
abstract pool state A, a successful CAS in line 93 at some time t0 changes the state of
the FlowPool to S0 consistent with an abstract pool state A0, such that:

A = (elems, callbacks, seal), where seal ∈ {−1} ∪ {s}

A0 = (elems, callbacks, {s})

Proof. Similar to the proof of C.13.

Obstruction-freedom. Given a FlowPool in a valid state, an operation op is obstruction-
free if and only if a thread T executing the operation op completes within a finite number
of steps given that no other thread was executing the operation op since T started
executing it.

We say that thread T executes the operation op in isolation.

Lemma C.15 (Obstruction-free operations) All operations on FlowPools are obstruction-
free.

Proof. By trivial sequential code analysis supported by the fact that the invariants
(especially [INV2]) hold in a valid state.

Safety. From C.11, C.12, C.13 and C.14 directly, along with the fact that all operations
executing in isolation complete after a finite number of steps by C.15.

Linearizability. We say that an operation op is linearizable if every thread observers
that it completes at some time t0 after it was invoked and before it finished executing.
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Theorem C.16 (Linearizable operations) FlowPool operations append and seal
are linearizable.

Linearizable operations. This follows directly from statements about CAS instruc-
tions in C.11, C.12 and C.14, along with the fact that a CAS instruction itself is
linearizable.

Note that foreach starts by executing an asynchronous computation and then returns
the control to the caller. This means that the linearization point may happen outside
the execution interval of that procedure – so, foreach is not linearizable.
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D Randomized Batching in the
Work-Stealing Tree

This appendix is an extension to the Chapter 5. Unlike the previous two appendices, this
appendix does not aim to prove the correctness of the work-stealing tree data structure.
Although lock-free, this data structure is a monotonically growing tree, and its correctness
is much easier to establish than that of FlowPools or Ctries.

Instead, the goal of this appendix is to present a preliminary analysis of how adding
randomization to the batching schedules within single work-stealing nodes impacts
scalability. We will theoretically and empirically show that a randomized batching
schedule can be beneficial, as long as adequate locality in accessing the data is retained.
Note that, in the Chapter 5, we settled for the exponential batching schedule, although
this lead to suboptimal speedups for certain workloads. In fact, in Section 5.3, it was
shown that for any deterministic batching schedule there exists a workload which results
in suboptimal speedup. The appendix assumes that the reader is well acquainted with
the content in the Chapter 5, and especially Section 5.3. We start with a theoretical
treatment of using a randomized batching schedule, and conclude by studying randomized
batching schedules in practice.

Recall that the workload distribution that led to a bad speedup in our evaluation consisted
of a sequence of very cheap elements followed by a minority of elements which were
computationally very expensive. On the other hand, when we inverted the order of
elements, the speedup became linear. The exponential backoff approach is designed to
start with smaller batches first in hopes of hitting the part of the workload which contains
most work as early as possible. This allow other workers to steal larger pieces of the
remaining work, hence allowing a more fine grained batch subdivision. In this way the
scheduling algorithm is workload-driven – it gives itself its own feedback. In the absence
of other information about the workload, the knowledge that some worker is processing
some part of the workload long enough that it can be stolen from is the best sign that the
workload is different than the baseline, and that the batch subdivision can circumvent
the baseline constraint. This heuristic worked in the example from figure 5.14-36 when
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the expensive elements were reached first, but failed when they were reached in the last,
largest batch, and we know that there has to be a largest batch by Lemma 5.1 – a single
worker must divide the range into batches the mean size of which has a lower bound. In
fact, no other deterministic scheduler can yield an optimal speedup for all schedules, as
shown by Lemma 5.2. For this reason we look into randomized schedulers.

In particular, in the example from the evaluation we would like the scheduler to put the
smallest batches at the end of the range, but we have no way of knowing if the most
expensive elements are positioned somewhere else. With this in mind we randomize the
batching order. The baseline constraint still applies in oblivious conditions, so we have
to pick different batch sizes with respect to the constraints from Lemma 5.1. Lets pick
exactly the same set of exponentially increasing batches, but place consequent elements
into different batches randomly. In other words, we permute the elements of the range
and then apply the previous scheme. We expect some of the more expensive elements to
be assigned to the smaller batches, giving other workers a higher opportunity to steal a
part of the work.

In evaluating the effectiveness of this randomized approach we will assume a particular
distribution we found troublesome. We define it more formally.

Step workload distribution. A step workload distribution is a function which assigns
a computational cost w(i) to each element i of the range of size N as follows:

w(i) =

we, i ∈ [i1, i2]
w0, i 6∈ [i1, i2]

(D.1)

where [i1, i2] is a subsequence of the range, w0 is the minimum cost of computation
per element and we � w0. If we ≥ f · Td, where f is the computation speed and Td
is the worker delay, then we additionally call the workload highly irregular. We call
D = 2d = i2 − i1 the span of the step distribution. If (N −D) · w0

f ≤ Td we also call the
workload short.

We can now state the following lemma. We will refer to the randomized batching schedule
we have described before as the randomized permutation with an exponential
backoff. Note that we implicitly assume that the worker delay Td is significantly
greater than the time Tc spent scheduling a single batch (this was certainly true in our
experimental evaluation).

Lemma D.1 When parallelizing a workload with a highly irregular short step workload
distribution the expected speedup inverse of a scheduler using randomized permutations

224



with an exponential backoff is:

〈s−1
p 〉 = 1

P
+ (1− 1

P
) · (2k − 2d − 1)!

(2k − 1)! ·
k−1∑
i=0

2i (2k − 2i − 1)!
(2k − 2i − 2d)! (D.2)

where D = 2d � P is the span of the step workload distribution.

Proof. The speedup sp is defined as sp = T0
Tp

where T0 is the running time of the
optimal sequential execution and Tp is the running time of the parallelized execution.
We implicitly assume that all processors have the same the same computation speed f .
Since we � w0, the total amount of work that a sequential loop executes is arbitrarily
close to D · we, so T0 = D

f . When we analyze the parallel execution, we will also ignore
the work w0. We will call the elements with cost we expensive.

We assumed that the workload distribution is highly irregular. This means that if the
first worker ω starts the work on an element from [i1, i2] at some time t0 then at the
time t1 = t0 + we

f some other worker must have already started working as well, because
t1 − t0 ≥ Td. Also, we have assumed that the workload distribution is short. This means
that the first worker ω can complete work on all the elements outside the interval [i1, i2]
before another worker arrives. Combining these observations, as soon as the first worker
arrives at an expensive element, it is possible for the other workers to parallelize the rest
of the work.

We assume that after the other workers arrive there are enough elements left to efficiently
parallelize work on them. In fact, at this point the scheduler will typically change the
initially decided batching schedule – additionally arriving workers will steal and induce a
more fine-grained subdivision. Note, however, that the other workers cannot subdivide
the batch on which the current worker is currently working on – that one is no longer
available to them. The only batches with elements of cost we that they can still subdivide
are the ones coming after the first batch in which the first worker ω found an expensive
element. We denote this batch with cω. The batch cω may, however, contain additional
expensive elements and the bigger the batch the more probable this is. We will say that
the total number of expensive elements in cω is X. Finally, note that we assumed that
D � P , so our expression will only be an approximation if D is very close to P .

We thus arrive at the following expression for speedup:

sp = D

X + D−X
P

(D.3)

Speedup depends on the value X. But since the initial batching schedule is random, the
speedup depends on the random variable and is itself random. For this reason we will
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look for its expected value. We start by finding the expectation of the random variable
X.

We will now solve a more general problem of placing balls to an ordered set of bins and
apply the solution to finding the expectation of X. There are k bins, numbered from
0 to k − 1. Let ci denote the number of balls that fit into the ith bin. We randomly
assign D balls to bins, so that the number of balls in each bin i is less than or equal to
ci. In other words, we randomly select D slots from all the N =

∑k−1
i=0 ci slots in all the

bins together. We then define the random variable X to be the number of balls in the
non-empty bin with the smallest index i. The formulated problem corresponds to the
previous one – the balls are the expensive elements and the bins are the batches.

An alternative way to define X is as follows [Makholm(2013)]:

X =
k−1∑
i=0

no. balls in bin i if all the bins j < i are empty
0 otherwise

(D.4)

Applying the linearity property, the expectation 〈X〉 is then:

〈X〉 =
k−1∑
i=0
〈no. balls in bin i if the bins j < i are empty; 0 otherwise〉 (D.5)

The expectation in the sum is conditional on the event that all the bins coming before i
are empty. We call the probability of this event pi. We define bi as the number of balls
in any bin i. From the properties of conditional expectation we than have:

〈X〉 =
k−1∑
i=0

pi · 〈bi〉 (D.6)

The number of balls in any bin is the sum of the balls in all the slots of that bin which
spans slots ni−1 through ni−1 + ci. The expected number of balls in a bin i is thus:

〈bi〉 =
ni−1+ci∑
i=ni−1

〈expected no. balls in a single slot〉 (D.7)

We denote the total capacity of all the bins j ≥ i as qi (so that q0 = N and qk−1 = 2k−1).
We assign balls to slots randomly with a uniform distribution – each slot has a probability
D
qi

of being selected. Note that the denominator is not N – we are calculating a conditional
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probability for which all the slots before the ith bin are empty. The expected number of
balls in a single slot is thus D

qi
. It follows that:

〈bi〉 = ci ·
D

qi
(D.8)

Next, we compute the probability pi that all the bins before the bin i are empty. We do
this by counting the events in which this is true, namely, the number of ways to assign
balls in bins j ≥ i. We will pick combinations of D slots, one for each ball, from a set
of qi slots. We do the same to enumerate all the assignments of balls to bins, but with
N = q0 slots, and obtain:

pi =
(qi
D

)(q0
D

) (D.9)

We assumed here that qi ≥ D, otherwise we cannot fill all D balls into bins. We could
create a constraint that the last batch is always larger than the number of balls. Instead,
we simply define

(qi
D

)
= 0 if qi < D – there is no chance we can fit more than qi balls to

qi slots. Combining these relations, we get the following expression for 〈X〉:

〈X〉 = D · (q0 −D)!
q0!

k−1∑
i=0

ci ·
(qi − 1)!
(qi −D)! (D.10)

We use this expression to compute the expected speedup inverse. By the linearity of
expectation:

〈s−1
p 〉 = 1

P
+
(

1− 1
P

)
· (q0 −D)!

q0!

k−1∑
i=0

ci ·
(qi − 1)!
(qi −D)! (D.11)

This is a more general expression than the one in the claim. When we plug in the
exponential backoff batching schedule, i.e. ci = 2i and qi = 2k − 2i, the lemma follows.

The expression derived for the inverse speedup does not have a neat analytical form, but
we can evaluate it for different values of d to obtain a diagram. As a sanity check, the
worst expected speedup comes with d = 0. If there is only a single expensive element
in the range, then there is no way to parallelize execution – the expression gives us the
speedup 1. We expect a better speedup as d grows – when there are more expensive
elements, it is easier for the scheduler to stumble upon some of them. In fact, for d = k,
with the conventions established in the proof, we get that the speedup is 1

P +
(
1− 1

P

)
· c0
D .
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Figure D.1: Randomized Scheduler Executing Step Workload – Speedup vs. Span

This means that when all the elements are expensive the proximity to the optimal speedup
depends on the size c0 of the first batch – the less elements in it, the better. Together
with the fact that many applications have uniform workloads, this is also the reason why
we advocate exponential backoff for which the size of the first batch is 1.

We call the term (q0−D)!
q0!

∑k−1
i=0 ci ·

(qi−1)!
(qi−D)! the slowdown and plot it with respect to span

D on the diagram in Figure D.1. In this diagram we choose k = 10, and the number
of elements N = 210 = 1024. As the term nears 1, the speedup nears 1. As the term
approaches 0, the speedup approaches the optimal speedup P . The quicker the term
approaches 0 as we increase d, the better the scheduler. We can see that fixed-size
batching should work better than the exponential backoff if the span D is below 10
elements, but is much worse than the exponential backoff otherwise. Linearly increasing
the batch size from 0 in some step a = 2·(2k−1)

k·(k−1) seems to work well even for span D < 10.
However, the mean batch size ci = S

k means that this approach may easily violate the
baseline constraint, and for P ≈ D the formula is an approximation anyway.

The conclusion is that selecting a random permutation of the elements should work very
well in theory. For example, the average speedup becomes very close to optimal if less
than D = 10 elements out of N = 1024 are expensive. However, randomly permuting
elements would in practice either require a preparatory pass in which the elements are
randomly copied or would require the workers to randomly jump through the array,
leading to cache miss issues. In both cases the baseline performance would be violated.
Even permuting the order of the batches seems problematic, as it would require storing
information about where each batch started and left off, as well as its intermediate result.

There are many approaches we could study, many of which could have viable implemen-
tations, but we focus on a particular one which seems easy to implement for ranges and
other data structures. Recall that in the example in Figure 5.14-36 the interval with
expensive elements was positioned at the end of the range. What if the worker alternated
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def workOn(ptr: Ptr): Boolean =
val node = READ(ptr.child)
var batch = -1
var sum = 0
do

val p = READ(node.progress)
if (notCompleted(p) && notStolen(p))

if (coinToss())
batchs = tryAdvanceLeft(node, p)
if (notStolen(batch)) sum += kernel(p, p + decodeStep(batch))

else
batch = tryAdvanceRight(node, p)
if (notStolen(batch)) sum += kernel(p, p + decodeStep(batch))

else batch = -1
while (batch 6= -1)
complete(sum, ptr)

Figure D.2: Randomized loop Method
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Figure D.3: The Randomized Work-Stealing Tree and the STEP3 Workload

the batch in each step by tossing the coin to decide if the next batch should be from
the left (start) or from the right (end)? Then the worker could arrive at the expensive
interval on the end while the batch size is still small with a relatively high probability.
The changes to the work-stealing tree algorithm are minimal – in addition to another
field called rresult (the name of which should shed some light on the previous choice
of name for lresult), we have to modify the workOn, complete and pushUp methods.
While the latter two are straightforward, the lines 41 through 45 of workOn are modified.
The new workOn method is shown in Figure D.2.

The main issue here is to encode and atomically update the iteration state, since it
consists of two pieces of information – the left and the right position in the subrange.
We can encode these two positions by using a long integer field and a long CAS op-
eration to update it. The initial 32 bits can contain the position on the left side of
the subrange and the subsequent 32 on the right side. With this in mind, the meth-
ods tryAdvanceLeft, tryAdvanceRight, notStolen, notCompleted and decodeStep
should be straightforward.

We evaluate the new scheduler on the distribution from Figure 5.14-36 and show the
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results in Figure D.3. The first two diagrams (STEP2 and STEP3) show that with
the expensive interval at the beginning and the end of the range the work-stealing tree
achieves a close to optimal speedup. However, there is still a worst case scenario that we
have to consider, and that is to have a step workload with the expensive interval exactly
in the middle of the range. Intuition tells us that the probability to hit this interval
early on is smaller, since a worker has to progress through more batches to arrive at it.
The workload STEP4 in the third diagram of Figure D.3 contains around 25% expensive
elements positioned in the middle of the range. The speedup is decent, but not linear for
STEP4, since the bigger batches seem to on average hit the middle of the range more
often.

These preliminary findings indicate that randomization can help scheduling both in theory
and in practice. We conclude that the problem of overcoming particularly bad workload
distributions is an algorithmic problem of finding a randomized batching schedule which
can be computed and maintained relatively quickly. Here, an important concern is that of
data locality – although a randomized batching schedule that picks elements at random
can cope with irregularity well, it slows down the sequential baseline due to cache misses.
We do not dive into this problem further, but leave it as part of future research.
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collections/overview.html). 

Evolutionary Computing IDE (M.A. thesis)– Java-basierte IDE für die Entwicklung von Algorithmen, Visualisierungs-und 
Performance-Tuning, miteinemSchwerpunkt auf evolutionärenAlgorithmen (https://github.com/axel22/Evolutionary-
Computing-IDE). 

ScalaMeter – microbenchmarking und LeistungRegressionstestsModul for JVM (http://axel22.github.io/scalameter). 

Awards and Honors 

IC Best Teaching Assistant Award, EPFL 2013. 
Best Student Presentation Award, LCPC 2011. 
University of Zagreb Rector Award for the Best Student Project (VHDLLab), 2008. 
Faculty of Electrical Engineering and Computing “Josip Loncar” Award for Excellent Students 2007. 
Faculty of Electrical Engineering and Computing “Josip Loncar” Award for Excellent Students 2006. 
Croatian National Scholarship for Excellent Students, 2005. 
International Physics Olympiad, IPhO 2004. 
State Physics Competition 1st place, 2004. 

Sprache 

Kroatisch Müttersprache 
Englisch C2, nutzt auf der Arbeit5-Jahrelang, schriebForschungsarbeitenin Englisch 
Deutsch B2 
Französich A2 

PersönlicheInformationen 

27Jahre alt, unverheiratet, SlowenischStaatsbürgerschaft, Schweizer Permit B 
Hobbies: Sporte (laufen, steigen and cycling), Entwicklungeines Open-Source-Computer-Spiel-Engine mitOpenGL und Scala 

Strengths: 
 Expert für paralleleProgrammierung 
 8 JahrepraktischeErfahrung in der Programmierung 
 starkeanalytischeFähigkeiten 


