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Abstract. Implementing correct and deterministic parallel programs is
challenging. Even though concurrency constructs exist in popular pro-
gramming languages to facilitate the task of deterministic parallel pro-
gramming, they are often too low level, or do not compose well due to
underlying blocking mechanisms. In this paper, we present the design
and implementation of a fundamental data structure for composable de-
terministic parallel dataflow computation through the use of functional
programming abstractions. Additionally, we provide a correctness proof,
showing that the implementation is linearizable, lock-free, and determin-
istic. Finally, we show experimental results which compare our FlowPool
against corresponding operations on other concurrent data structures,
and show that in addition to offering new capabilities, FlowPools reduce
insertion time by 49− 54% on a 4-core i7 machine with respect to com-
parable concurrent queue data structures in the Java standard library.

Keywords: dataflow, concurrent data-structure, deterministic parallelism

1 Introduction

Multicore architectures have become ubiquitous– even most mobile devices now
ship with multiple core processors. Yet parallel programming has yet to enter
the daily workflow of the mainstream developer. One significant obstacle is an
undesirable choice programmers must often face when solving a problem that
could greatly benefit from leveraging available parallelism. Either choose a non-
deterministic, but performant, data structure or programming model, or sacrifice
performance for the sake of clarity and correctness.

Programming models based on dataflow [1, 2] have the potential to simplify
parallel programming, since the resulting programs are deterministic. Moreover,
dataflow programs can be expressed more declaratively than programs based on
mainstream concurrency constructs, such as shared-memory threads and locks,
as programmers are only required to specify data and control dependencies. This
allows one to reason sequentially about the intended behavior of their program,
meanwhile enabling the underlying framework to effectively extract parallelism.

In this paper, we present the design and implementation of FlowPools, a
fundamental dataflow collections abstraction which can be used as a building
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block for larger and more complex deterministic and parallel dataflow programs.
Our FlowPool abstraction is backed by an efficient non-blocking data structure,
which we go on to prove is lock-free.

As a result, our data structure benefits from the increased robustness pro-
vided by lock-freedom [9], since its operations are unaffected by thread delays.
We provide a lock-freedom proof, which guarantees progress regardless of the
behavior, including the failure, of concurrent threads.

In combining lock-freedom with a functional interface, we go on to show that
FlowPools are composable. That is, using prototypical higher-order functions
such as foreach and aggregate, one can concisely form dataflow graphs, in
which associated functions are executed asynchronously in a completely non-
blocking way, as elements of FlowPools in the dataflow graph become available.

Finally, we show that FlowPools are able to overcome practical issues, such
as out-of-memory errors, thus enabling programs based upon FlowPools to run
indefinitely. By using a builder abstraction, instead of something like iterators or
streams (which can lead to non-determinism) we are able to garbage collect parts
of the data structure we no longer need, thus reducing memory consumption.

Our contributions are the following:

1. The design and Scala implementation1 of a parallel dataflow abstraction and
underlying data structure that is deterministic, lock-free, & composable.

2. Proofs of lock-freedom, linearizability, and determinism.
3. Detailed benchmarks comparing the performance of our FlowPools against

other popular concurrent data structures.

2 Model of Computation

FlowPools can be thought of as similar to a typical collections abstraction. That
is, operations invoked on a FlowPool are executed on its individual elements.
However, FlowPools do not only act as a data container full of elements– un-
like a typical collecion, FlowPools also act as nodes and edges of a directed
acyclic computation graph (DAG), in which the operations to be performed are
registered with the FlowPool.

Nodes in this directed acyclic graph are data containers which are first class
values. This makes it possible to use FlowPools as function arguments or to
receive them as return values. Edges, on the other hand, can be thought of
as combinators or higher-order functions whose associated functions are the
previously-mentioned operations that are registered with the FlowPool. In addi-
tion to providing composability, this means that the DAG does not have to be
specified at compile time, but can be generated dynamically at run time instead.

This structure allows for complete asynchrony, allowing the runtime to ex-
tract parallelism as a result. That is, elements can be asynchronously inserted,
all registered operations can be asynchronously executed, and new operations
can be asynchronously registered.

1 http://ASSEMBLA-REPO-URL-HERE
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t ::= terms
p << v append
create p pool creation
p foreach f foreach
p seal n seal
t1 ; t2 sequence

p ∈ {(vs, σ, cbs) | vs ⊆ Elem, σ ∈ {−1} ∪ N, cbs ⊂ Elem⇒ Unit} v ∈ Elem
f ∈ Elem⇒ Unit n ∈ N

Fig. 1. Syntax

Therefore, invoking several higher-order functions in succession on a given
FlowPool doesn’t add barriers between nodes in the DAG, it only extends the
DAG. This means that individual elements can flow through different edges of
the DAG independently of each other.

Properties of FlowPools. In our model, FlowPools have a few important
properties which work together to ensure that resulting programs are determin-
istic.

1. Data elements in FlowPools are unordered.
2. Operations passed to FlowPools must be pure and associative.
3. All callbacks are eventually executed on all elements.

Determinism. FlowPools are deterministic in the sense that all execution
schedules either lead to non-termination (e.g., an exception), or no difference
can be observed in the final state of the resulting data structures. For a more
formal definition and proof, see section 5.

3 Programming Interface

A FlowPool can be viewed as a concurrent pool data structure, and as such has
no guarantees on ordering. In this section, we describe the semantics of a handful
of functional combinators and other basic operations defined on FlowPools.

Append (<<). The most fundamental of all operations on FlowPools is the
append operation. As its name suggests, it simply takes an argument of type
Elem and appends it to a given FlowPool.

Foreach and Aggregate. A pool containing a set of elements is of little use
if the elements cannot be manipulated in some manner. One of the basic data
structure operations is element traversal, often provided by iterators or streams
– stateful objects storing the current position in the data structure. Since they
can be manipulated by several threads, they allow nondeterministic execution.

Another way to traverse the elements is to provide a higher-level foreach
operation which takes a user-specified function as an argument and applies it to
every element. To ensure determinism, it is called for every element that is even-
tually in the FlowPool, rather than only those present when foreach is called.
To ensure non-blocking behaviour, it must not wait until additional elements
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are added to the FlowPool. For these reasons, the foreach operation must exe-
cute asynchronously and is eventually applied to every element. Its signature is
def foreach[U](f: T => U): Future[Int]. The return type Future[Int] is
an integer value which becomes available once foreach traverses all the elements
added to the pool. It denotes the number of times the foreach has been called.
The user-specified function return value of type U is ignored.

The aggregate operation aggregates the elements of the pool and has the
following signature: def aggregate[S](zero: =>S) (cb: (S, S) => S)

(op: (S, T) => S): Future[S], where zero is the initial aggregation, cb is
an associative operator which combines several aggregations, op is an operator
that adds an element to the aggregation, and Future[S] is the final aggregation
of all the elements which becomes available once all the elements have been
added. The aggregate operator divides elements into subsets and applies the
aggregation operator op to aggregate elements in each subset starting from the
zero aggregation, and then combines aggregations from different subsets with
the cb operator. In essence, the first part of aggregate defines the commutative
monoid and the functions involved must be non-side-effecting. In contrast, the
operator op is guaranteed to be called only once for each element and it can have
side effects.

While in an imperative programming model foreach and aggregate are
equivalent in the sense that one can be implemented in terms of the other,
in a single-assignment programming model aggregate is more expressive than
foreach. The foreach operation can be implemented using aggregate, but not
vice versa, due to the absence of side effects.

Builders. The FlowPool described so far must maintain a reference to all
the elements at all times to implement the foreach operation correctly. Since
elements are never removed, the pool may grow indefinitely and run out of
memory.

At the same time, appending new elements does not require a reference to
any of the existing elements. We use this observation to factor out the << opera-
tion into a different abstraction called a builder. A typical application starts by
registering all the foreach operations and then releases the references to Flow-
Pools. In a managed environment the GC then implicitly takes care of discarding
the no longer needed objects.

Seal. When clients are sure that no more elements will be added to the pool
they can disallow further appends by calling seal. This has the advantage of
discarding the registered foreach operations. More importantly, aggregate can
only complete its resulting future once it is certain that no more elements will
be added.

A seal which just closes the FlowPool at the moment when it is called,
however, yields a nondeterministic programming model. Imagine a thread that
attempts to seal the pool executing concurrently with a thread that appends an
element. In one execution, the append preceeds the seal, and in the other the
append follows the seal causing an error. To avoid nondeterminism, there has to
be an agreement on the state of the pool when it is sealed. A convenient and
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sufficient way to make seal deterministic is to provide the expected pool size
as an argument. The semantics of seal is then such that it fails if the pool is
already sealed with a different size or the number of elements is greater than the
desired size.

Higher-level operations. We now show how the basic abstractions above
can be used to build higher-level abstractions. To begin with, in addition to a
default FlowPool constructor, it is convenient to have generators which create
certain types of pools. In a dataflow graph FlowPools created using generators
are source nodes. As a simple example, tabulate (see below) creates a sequence
of elements by applying a user-specified function f to each natural number.
One can imagine more complicated generators, adding elements from a network
socket or a file.

def tabulate[T]
(n: Int, f: Int => T)
val p = new FlowPool[T]
val b = p.builder
def recurse(i: Int) {

b << f(i)
if i < n recurse(i + 1)
}
future { recurse(0) }
p

def map[S](f: T => S)
val p = new FlowPool[S]
val b = p.builder
for (x <- this) {

b << f(x)
} map {

sz => b.seal(sz)
}
p

def foreach[U](f: T => U)
aggregate(0)(_ + _) {

(acc, x) =>
f(x)
acc + 1
}

The tabulate generator starts by creating a FlowPool of an arbitrary type
T and creating its builder instance. It then starts an asynchronous computation
using the future construct, which recursively applies f to each number and
appends it to the builder. Finally, the reference to the pool is returned.

A typical higher-level collection operation map is used to map each element
of a dataset to produce a new one. This corresponds to chaining the nodes in
a dataflow graph. We implement it by traversing the elements of the receiver
FlowPool (this) and appending each mapped element to the builder. The for

loop is syntactic sugar for calling the foreach method on this. We assume that
the foreach return type Future[Int] has map and flatMap operations, which
are executed once the future value becomes available. The Future.map above
ensures that if the current pool (this) is ever sealed, the mapped pool is sealed
to the appropriate size.

As argued before, foreach can be expressed in terms of aggregate by ac-
cumulating the number of elements and invoking the callback f each time. We
further show that some patterns cannot be expressed in terms of a mere foreach.
The filter combinator filters out the elements for which a specified predicate
does not hold. Appending the elements to a new pool can proceed as before,
but the seal needs to know the exact number of elements added. The aggregate

accumulator is thus used to track the number of added elements.
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type Terminal {
sealed: Int
callbacks: List[Elem => Unit]
}

type Elem

type Block {
array: Array[Elem]
next: Block
index: Int
blockindex: Int
}

type FlowPool {
start: Block
current: Block
}
LASTELEMPOS = BLOCKSIZE - 2
NOSEAL = -1

Fig. 2. FlowPool data-types

def filter
(pred: T => Boolean)
val p = new FlowPool[T]
val b = p.builder
aggregate(0)(_ + _) {

(acc, x) => if pred(x) {
b << x
1
} else 0
} map { sz => b.seal(sz) }
p

def flatMap[S]
(f: T => FlowPool[S])
val p = new FlowPool[S]
val b = p.builder
aggregate(future(0))(add) {

(af, x) =>
val sf = for (y <- f(x))

b << y
add(af, sf)
} map { sz => b.seal(sz) }
p

def add(f: Future[Int], g: Future[Int]) =
for (a <- f; b <- g) yield a + b

def union[T]
(that: FlowPool[T])
val p = new FlowPool[T]
val b = p.builder
val f = for (x <- this) b << x
val g = for (y <- that) b << y
for (s1 <- f; s2 <- g)

b.seal(s1 + s2)
p

The flatMap operation retrieves a pool for each element of this pool and
adds its elements to the resulting pool. Given two FlowPools, it can be used to
generate the cartesian product of their elements. The implementation is similar
to that of filter, but we reduce the size on the future values of the sizes,
because each intermediate pool may not yet be sealed. The operation q union r

produces a new pool which has elements of both pool q and pool r.
The last two operations correspond to joining nodes in the dataflow graph.

Note that if we could somehow merge the two different foreach loops to imple-
ment the third join type zip, we would obtain a nondeterministic operation. The
programming model does not allow us to do so, however. The zip function is
more suited for data structures with deterministic ordering, such as Oz streams
– which would in turn have a nondeterministic union.

4 Implementation

We now describe the FlowPool and its basic operations. In doing so, we omit the
details not relevant to the algorithm2 and focus on a high-level description of a
non-blocking data structure. One straightforward way to implement a growing
pool is to use a linked list of nodes that wrap elements. As we are concerned
about the memory footprint and cache-locality, we store the elements into ar-
rays instead, which we call blocks. Whenever a block becomes full, a new block
is allocated and the previous block is made to point to the next block. This
way, most writes amount to a simple array-write, while allocation occurs only

2 Specifically the builder abstraction and the aggregate operation. The aggregate

can be implemented using foreach with a side-effecting accumulator.
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def create()1

new FlowPool {2

start = createBlock(0)3

current = start4

}5

6

def createBlock(bidx: Int)7

new Block {8

array = new Array(BLOCKSIZE)9

index = 010

blockindex = bidx11

next = null12

}13

14

def append(elem: Elem)15

b = READ(current)16

idx = READ(b.index)17

nexto = READ(b.array(idx + 1))18

curo = READ(b.array(idx))19

if check(b, idx, curo) {20

if CAS(b.array(idx + 1), nexto, curo) {21

if CAS(b.array(idx), curo, elem) {22

WRITE(b.index, idx + 1)23

invokeCallbacks(elem, curo)24

} else append(elem)25

} else append(elem)26

} else {27

advance()28

append(elem)29

}30

31

def check(b: Block, idx: Int, curo: Object)32

if idx > LASTELEMPOS return false33

else curo match {34

elem: Elem =>35

return false36

term: Terminal =>37

if term.sealed = NOSEAL return true38

else {39

if totalElems(b, idx) < term.sealed40

return true41

else error("sealed")42

}43

null =>44

error("unreachable")45

}46

47

def advance()48

b = READ(current)49

idx = READ(b.index)50

if idx > LASTELEMPOS51

expand(b, b.array(idx))52

else {53

obj = READ(b.array(idx))54

if obj is Elem WRITE(b.index, idx + 1)55

}56

57

def expand(b: Block, t: Terminal)58

nb = READ(b.next)59

if nb is null {60

nb = createBlock(b.blockindex + 1)61

nb.array(0) = t62

if CAS(b.next, null, nb)63

expand(b, t)64

} else {65

CAS(current, b, nb)66

}67

def totalElems(b: Block, idx: Int)68

return b.blockindex * (BLOCKSIZE - 1) + idx69

70

def invokeCallbacks(e: Elem, term: Terminal)71

for (f <- term.callbacks) future {72

f(e)73

}74

75

def seal(size: Int)76

b = READ(current)77

idx = READ(b.index)78

if idx <= LASTELEMPOS {79

curo = READ(b.array(idx))80

curo match {81

term: Terminal =>82

if ¬tryWriteSeal(term, b, idx, size)83

seal(size)84

elem: Elem =>85

WRITE(b.index, idx + 1)86

seal(size)87

null =>88

error("unreachable")89

}90

} else {91

expand(b, b.array(idx))92

seal(size)93

}94

95

def tryWriteSeal(term: Terminal, b: Block,96

idx: Int, size: Int)97

val total = totalElems(b, idx)98

if total > size error("too many elements")99

if term.sealed = NOSEAL {100

nterm = new Terminal {101

sealed = size102

callbacks = term.callbacks103

}104

return CAS(b.array(idx), term, nterm)105

} else if term.sealed 6= size {106

error("already sealed with different size")107

} else return true108

109

def foreach(f: Elem => Unit)110

future {111

asyncFor(f, start, 0)112

}113

114

def asyncFor(f: Elem => Unit, b: Block, idx: Int)115

if idx <= LASTELEMPOS {116

obj = READ(b.array(idx))117

obj match {118

term: Terminal =>119

nterm = new Terminal {120

sealed = term.sealed121

callbacks = f ∪ term.callbacks122

}123

if ¬CAS(b.array(idx), term, nterm)124

asyncFor(f, b, idx)125

elem: Elem =>126

f(elem)127

asyncFor(f, b, idx + 1)128

null =>129

error("unreachable")130

}131

} else {132

expand(b, b.array(idx))133

asyncFor(f, b.next, 0)134

}135

Fig. 3. FlowPool operations pseudocode
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occasionally. Each block contains a hint index to the first free entry in the ar-
ray, i.e. one that does not contain an element. An index is a hint, since it may
actually reference an earlier index. The FlowPool maintains a reference to the
first block called start. It also maintains a hint to the last block in the chain
of blocks, called current. This reference may not always be up to date, but it
always points to some block in the chain.

Each FlowPool is associated with a list of callbacks which have to be called
in the future as new elements are added. Each FlowPool can be in a sealed state,
meaning there is a bound on the number of elements it stores. This information
is stored as a Terminal value in the first free entry of the array. At all times
we maintain the invariant that the array in each block starts with a sequence
of elements, followed by a Terminal delimiter. From a higher-level perspective,
appending an element starts by copying the Terminal value to the next entry
and then overwriting the current entry with the element being appended.

The append operation starts by reading the current block and the index

of the free position. It then reads the nexto after the first free entry, followed
by a read of the curo at the free entry. The check procedure checks the bounds
conditions, whether the FlowPool was already sealed or if the current array
entry contains an element. In either of these events, the current and index

values need to be set – this is done in the advance procedure. We call this the
slow path of the append method. Notice that there are several causes that
trigger the slow path. If some other thread completes the append method but
is preempted before updating the value of the hint index, then the curo will
have the type Elem. The same happens if a preempted thread updates the value
of the hint index after additional elements have been added, via unconditional
write in line 23. Finally, reaching an end of block triggers the slow path.

Otherwise, the operation executes the fast path and appends an element. It
first copies the Terminal value to the next entry with a CAS instruction in line
21, with nexto being the expected value. If it fails (e.g. due to a concurrent CAS),
the append operation is restarted. Otherwise, it proceeds by writing the element
to the current entry with a CAS in line 22, the expected value being curo. On
success it updates the b.index value and invokes all the callbacks (present when
the element was added) with the future construct. In the implementation we
do not schedule an asynchronous computation for each element. Instead, the
callback invocations are batched to avoid the schedulling overhead – the array
is scanned for new elements until there are no more left.

Interestingly, inverting the order of the reads in lines 18 and 19 would cause
a race in which a thread could overwrite a Terminal value with some older
Terminal value if some other thread appended an element in between.

The seal operation continuously increases the index in the block until it
finds the first free entry. It then tries to replace the Terminal value there with a
new Terminal value which has the seal size set. An error occurs if a different seal
size is set already. The foreach operation works in a similar way, but is executed
asynchronously. Unlike seal, it starts from the first element in the pool and calls
the callback for each element until it finds the first free entry. It then replaces the
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Terminal value with a new Terminal value with the additional callback. From
that point on the append method is responsible for scheduling that callback for
subsequently added elements. Note that all three operations call expand to add
an additional block once the current block is empty, to ensure lock-freedom.

Multi-Lane FlowPools. Using a single block sequence (i.e. lane) to imple-
ment a FlowPool doesn’t fully take advantage of the lack of ordering guarantees
and – as elements are inserted in sequence – may cause slowdowns due to colli-
sions when multiple concurrent writers are present. Multi-Lane FlowPools solve
this limitation by having a lane for each CPU, where each lane is following the
same implementation as for a normal FlowPool.

This has several implications:

– CAS failures during insertion are to a high extent avoided.

– Less memory contetion due to “private” blocks for each processor.

– seal needs to be globally synchronized in a non-blocking fashion.

– Callbacks for aggregate have to be added to each lane individually and
aggregated once all of them have completed.

In practice, a hash on the ID of the inserting thread has to be used instead of
the CPU index, as such information is currently not available through the Java
framework. Also note that the remaining slots resulting from a seal have to be
split up amongst the lanes and a writer might switch lanes if his lane is full (and
hence CAS failures may happen).

You find an evaluation of the performance of Multi-Lane FlowPools in sec-
tion 6.

5 Correctness

We give an outline of the correctness proof here. More formal definitions, a
complete set of lemmas and proofs can be found in the appendix.

We define the notion of an abstract pool A = (elems, callbacks, seal) of
elements in the pool, callbacks and the seal size. Given an abstract pool, abstract
pool operations produce a new abstract pool. The key to showing correctness is to
show that an abstract pool operation corresponds to a FlowPool operation– that
is, it produces a new abstract pool corresponding to the state of the FlowPool
after the FlowPool operation has been completed.

Lemma 5.1 Given a FlowPool consistent with some abstract pool, CAS in-
structions in lines 21, 63 and 66 do not change the corresponding abstract pool.

Lemma 5.2 Given a FlowPool consistent with an abstract pool (elems, cbs, seal),
a successful CAS in line 22 changes it to the state consistent with an abstract
pool ({elem} ∪ elems, cbs, seal). There exists a time t1 ≥ t0 at which every
callback f ∈ cbs has been called on elem.
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t ::= terms
p << v append
create p pool creation
p foreach f foreach
p seal n seal
t1 ; t2 sequence

p ∈ {(vs, σ, cbs) | vs ⊆ Elem, σ ∈ {−1} ∪ N, cbs ⊂ Elem⇒ Unit} v ∈ Elem
f ∈ Elem⇒ Unit n ∈ N

Fig. 4. Syntax

Lemma 5.3 Given a FlowPool consistent with an abstract pool (elems, cbs, seal),
a successful CAS in line 125 changes it to the state consistent with an abstract
pool (elems, (f, ∅) ∪ cbs, seal) There exists a time t1 ≥ t0 at which f has been
called for every element in elems.

Lemma 5.4 Given a FlowPool consistent with an abstract pool (elems, cbs, seal),
a successful CAS in line 125 changes it to the state consistent with an abstract
pool (elems, cbs, s), where either seal = −1 ∧ s ∈ N0 or seal ∈ N0 ∧ s = seal.

Theorem 5.5 [Safety] FlowPool operations append, foreach and seal are con-
sistent with the abstract pool semantics.

Theorem 5.6 [Linearizable operations] FlowPool operations append and seal

are linearizable.

Lemma 5.7 [Non-consistency changing instructions] After invoking a FlowPool
operation append, seal or foreach, if a non-consistency changing CAS instruc-
tion in lines 21, 63, or 66 fails, they must have already been completed by another
thread since the FlowPool operation began.

Lemma 5.8 [Consistency changing instructions] After invoking a FlowPool op-
eration append, seal or foreach, if a consistency-changing CAS instruction in
lines 22, 105, or 124 fails, then some thread has successfully completed a consis-
tency changing CAS after some finite number of steps.

Lemma 5.9 [Consistency changing operations] After invoking a FlowPool op-
eration append, seal or foreach, a consistency changing instruction will be
completed after a finite number of steps.

Lemma 5.10 Assuming some concurrent FlowPool operation is started. If some
thread completes a consistency changing CAS instruction, then some concurrent
operation is guaranteed to be completed.

Theorem 5.11 [Lock-freedom] FlowPool operations append, foreach and seal

are lock-free.
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Determinism. We claim that the FlowPool abstraction is deterministic in
the sense that a program computes the same result (which can also be an error)
regardless of the interleaving of concurrent operations. We give an outline of the
determinism proof – a complete formal proof can be found in the appendix.

The following definitions and the determinism theorem are based on the lan-
guage shown in Figure 4. The semantics of our core language is defined using
reduction rules which define transitions between execution states. An execution
state is a pair T | P where T is a set of concurrent threads and P is a set of Flow-
Pools. Each thread executes a term of the core language (typically a sequence of
terms). State of a thread is represented as the (rest of) the term that it still has
to execute; this means there is a one-to-one mapping between threads and terms.
For example, the semantics of append is defined by the following reduction rule
(a complete summary of all the rules can be found in the appendix):

t = p << v ; t′ p = (vs,−1, cbs) p′ = ({v} ∪ vs,−1, cbs)

t, T | p, P −→ t′, T | p′, P
(Append1)

Append simply adds the value v to the pool p, yielding a modified pool p′. Note
that this rule can only be applied if the pool p is not sealed (the seal size is −1).
The rule for foreach modifies the set of callback functions in the pool:

t = p foreach f ; t′ p = (vs, n, cbs)
T ′ = {g(v) | g ∈ {f} ∪ cbs, v ∈ vs} p′ = (vs, n, {f} ∪ cbs)

t, T | p, P −→ t′, T, T ′ | p′, P
(Foreach2)

This rule only applies if p is sealed at size n, meaning that no more elements will
be appended later. Therefore, an invocation of the new callback f is scheduled
for each element v in the pool. Each invocation creates a new thread in T ′.

Programs are built by first creating one or more FlowPools using create.
Concurrent threads can then be started by (a) appending an element to a Flow-
Pool, (b) sealing the FlowPool and (c) registering callback functions (foreach).

Definition 5.12 [Termination] A term t terminates with result P if its reduc-
tion ends in execution state {t : t = {ε}} | P .

Definition 5.13 [Interleaving] Consider the reduction of a term t: T1 | P1 −→
T2 | P2 −→ . . . −→ {t : t = {ε}} | Pn. An interleaving is a reduction of t
starting in T1 | P1 in which reduction rules are applied in a different order.

Definition 5.14 [Determinism] The reduction of a term t is deterministic iff
either (a) t does not terminate for any interleaving, or (b) t always terminates
with the same result for all interleavings.

Theorem 5.15 [FlowPool Determinism] Reduction of terms t is deterministic.
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6 Evaluation

We evaluate our implementation (single-lane and multi-lane FlowPools) against
the LinkedTransferQueue [11] for all benchmarks and the ConcurrentLinkedQueue
[14] for the insert benchmark, both found in JDK 1.7, on three different archi-
tectures – a quad-core 3.4 GHz i7-2600, 4x octa-core 2.27 GHz Intel Xeon x7560
(both with hyperthreading) and an octa-core 1.2GHz UltraSPARC T2 with 64
hardware threads. The level of parallelism P we vary as follows: On the first
architecture we have P ∈ [1, 8], on the latter two P ∈ [1, 64]. Here, we discuss
the scaling of the said data structures (see fig 5). For additional evaluations,
please refer to section D in the appendix.

In the Insert benchmark, we evaluate the ability to write concurrently –
often the most difficult task – by distributing the work of inserting N elements
into the data structure concurrently across P threads. We can see that both
single-lane FlowPools and concurrent queues do not scale well with the number
of concurrent threads, particularly on the i7 architecture. They seem to slow
down rapidly due to cache line collisions and CAS failures. On the other hand,
multi-lane FlowPools scale well, as threads write to different lanes and hence
different cache lines in most occasions, while avoiding CAS failures. This may
reduce execution time for insertions up to 54% on 4-core i7, 63% on 32-core Xeon
and 92% on UltraSPARC T2.

Usage of the inserted data is evaluated in the Reduce, Map and Histogram
benchmark, where the latter – serving as a “real life” example here – uses the
former two primitives, whose evaluation is discussed in the appendix.

In the Histogram benchmark, P threads produce a total of N elements and
add it to the FlowPool. The aggregate operation is then used to produce 10
different histograms concurrently with a different number of bins. Each sepa-
rate histogram is constructed by its own thread (or up to P , for multi-lane
FlowPools). A crucial difference between queues and FlowPools in the latter
benchmark is that with FlowPools, multiple histograms are produced by invok-
ing several aggregate operations, while queues require writing each element to
several queues – one for each histogram. Without additional synchronization,
reading a single queue is not an option since elements have to be removed from
the queue eventually and it is not clear to each reader when an element is no
longer needed. With FlowPools, elements are implicitly garbage collected when
no longer needed.

Finally, to validate the last claim of garbage being implicitly collected, in
the Comm benchmark we create a pool in which a large number of elements
N is added concurrently by P threads. Each element is then processed by one
of P threads through the use of the aggregate operation. With linked transfer
queues, P threads concurrently remove elements from the queue and process it.

7 Related Work

An introduction to linearizability, lock-freedom and basic concurrent program-
ming techniques is given by Herlihy and Shavit [10]. A detailed overview of
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Fig. 5. Execution time vs parallelization across three different architectures on three
important FlowPool operations; insert, map, reduce.

concurrent data structures is given by Moir and Shavit [15]. To date, concurrent
data structures remain an active area of research – it is out of scope to list them
all, so we restrict ourselves to those relevant to this work.

Concurrently accessible queues have been present for a while – an implemen-
tation is described by [13]. Non-blocking concurrent linked queues are described
by Michael and Scott [14]. This CAS-based linked-list queue implementation
is cited and used widely today, a variant of which is present in the Java stan-
dard library. More recently, Scherer, Lea and Scott [11] describe a synchronous
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queues which internally hold both data and requests. Both approaches above
entail blocking (or spinning) at least on the consumer’s part when the queue is
empty.

While the abstractions above fit well in the concurrent imperative model,
they have the disadvantage that the programs written using them are inherently
nondeterministic. Book by Roy and Haridi [17] describes the Oz programming
language a subset of which yields programs deterministic by construction. The
Oz dataflow streams are built on top of single-assignment variables and are de-
terministically ordered. They allow multiple consumers, but only one producer at
a time. Oz has its own runtime which implements blocking using continuations.
Blocking is less efficient on the JVM, CLR and many native environments.

The concept of single-assignment variables is also embodied in futures pro-
posed by Baker and Hewitt [8], and promises first mentioned by Friedman and
Wise [6]. Futures were first implemented in MultiLISP [7], and have been em-
ployed in many languages and frameworks since. Scala futures [?] and Finagle
futures [?] are of interest, because they define monadic operators and a number of
high-level combinators which produce new futures. This provides an API which
avoids blocking. Futures have been generalized to data-driven futures, which
can provide additional information to the scheduler [19]. Many frameworks have
constructs which start an asynchronous computation and yield a future holding
its result. For example, Habanero Java [3] offers an async construct and Scala
futures offer a future construct.

A number of other models and frameworks recognized the need to embed
the concept of futures into other data-structures. Single-assignment variables
have been generalized to I-Structures proposed by Arvind [1] which are essen-
tially single-assignment arrays. The CnC model [4] [2] is a parallel programming
model influenced by dynamic dataflow, stream-processing and tuple spaces. In
CnC the user provides high-level operations along with the ordering constraints
that form a computation dependency graph. FlumeJava [5] is a distributed pro-
gramming model which relies heavily on the concept of collections containing a
set of futures. An issue that often arises with dataflow programming models are
unbalanced loads. This is often solved through the use of bounded buffers which
prevent the producer from overflowing the consumer. Analytical approaches to
modeling pipelined applications have also been addressed [16].

Opposed to the correct-by-construction determinism described thus far, a
type-systematic approach can also ensure that concurrent executions have de-
terministic results. Recently, work on Deterministic Parallel Java showed that a
region-based type system can ensure determinism [12]. X10’s constrained-based
dependent types can similarly ensure determinism and deadlock-freedom [18].

8 Conclusion

We have shown that deterministic higher-level operations can be build on top of
<< and foreach, which corresponds to sequential collections. The prerequisite is
that << can be invoked concurrently and that foreach executes asynchronously.
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We emphasize a property of FlowPools which goes beyond a dataflow model
such as Oz (or some other future/promise based model) in which more complex
data structures such as streams are built on top of single-assignment variables.
With single-assignment pools multiple threads can add elements without agree-
ing on where the added element should structurally be, as is the case with
dataflow streams. A consequence of this is a more flexible programming model.

In conclusion, we postulate the existence of a range of other concurrent
collection types with deterministic semantics fitting the presented correct-by-
construction single-assignment model, such as bounded buffers, dataflow streams
and maps, all of which have higher-level operations expressed in terms of the
same basic primitives. On the implementation level, we anticipate the need of
embedding the callbacks within the data-structure itself, as is the case with
callback-based futures and FlowPools – this offers a particular benefit on plat-
forms which do not by default support efficient continuations.
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A Proof of Correctness

Definition A.1 [Data types] A Block b is an object which contains an array
b.array, which itself can contain elements, e ∈ Elem, where Elem represents
the type of e and can be any countable set. A given block b additionally contains
an index b.index which represents an index location in b.array, a unique index
identifying the array b.blockIndex, and b.next, a reference to a successor block c
where c.blockIndex = b.blockIndex+ 1. A Terminal term is a sentinel object,
which contains an integer term.sealed ∈ {−1} ∪ N0, and term.callbacks, a set
of functions f ∈ Elem⇒ Unit.

We define the following functions:

following(b : Block) =

{
∅ if b.next = null,

b.next ∪ following(b.next) otherwise

reachable(b : Block) = {b} ∪ following(b)

last(b : Block) = b′ : b′ ∈ reachable(b) ∧ b′.next = null

size(b : Block) = |{x : x ∈ b.array ∧ x ∈ Elem}|

Based on them we define the following relation:

reachable(b, c)⇔ c ∈ reachable(b)

Definition A.2 [FlowPool] A FlowPool pool is an object that has a reference
pool.start, to the first block b0 (with b0.blockIndex = 0), as well as a reference
pool.current. We sometimes refer to these just as start and current, respectively.

A scheduled callback invocation is a pair (f, e) of a function f ∈ Elem =>
Unit and an element e ∈ Elem. The programming construct that adds such a
pair to the set of futures is future { f(e) }.

The FlowPool state is defined as a pair of the directed graph of objects
transitively reachable from the reference start and the set of scheduled callback
invocations called futures.

A state changing or destructive instruction is any atomic write or CAS
instruction that changes the FlowPool state.

We say that the FlowPool has an element e at some time t0 if and only if
the relation hasElem(start, e) holds.

hasElem(start, e)⇔ ∃b ∈ reachable(start), e ∈ b.array

We say that the FlowPool has a callback f at some time t0 if and only if
the relation hasCallback(start, f) holds.
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hasCallback(start, f)⇔ ∀b = last(start), b.array = xP · t · yN , x ∈ Elem,
t = Terminal(seal, callbacks), f ∈ callbacks

We say that a callback f in a FlowPool will be called for the element e at
some time t0 if and only if the relation willBeCalled(start, e, f) holds.

willBeCalled(start, e, f)⇔ ∃t1,∀t > t1, (f, e) ∈ futures

We say that the FlowPool is sealed at the size s at some t0 if and only if
the relation sealedAt(start, s) holds.

sealedAt(start, s)⇔ s 6= −1 ∧ ∀b = last(start), b.array = xP · t · yN ,
x ∈ Elem, t = Terminal(s, callbacks)

FlowPool operations are append, foreach and seal, and are defined by
pseudocodes in figures ...

Definition A.3 [Invariants] We define the following invariants for the Flow-
Pool:

INV1 start = b : Block, b 6= null, current ∈ reachable(start)
INV2 ∀b ∈ reachable(start), b 6∈ following(b)

INV3 ∀b ∈ reachable(start), b 6= last(start)⇒ size(b) = LASTELEMPOS ∧
b.array(BLOCKSIZE − 1) ∈ Terminal

INV4 ∀b = last(start), b.array = p · c · n, where:

p = XP , c = c1 · c2, n = nullN

x ∈ Elem, c1 ∈ Terminal, c2 ∈ {null} ∪ Terminal
P +N + 2 = BLOCKSIZE

INV5 ∀b ∈ reachable(start), b.index > 0⇒ b.array(b.index− 1) ∈ Elem

Definition A.4 [Validity] A FlowPool state S is valid if and only if the invari-
ants [INV1-5] hold for that state.

Definition A.5 [Abstract pool] An abstract pool P is a function from time t
to a tuple (elems, callbacks, seal) such that:

seal ∈ {−1} ∪ N0

callbacks ⊂ {(f : Elem => Unit, called)}
called ⊆ elems ⊆ Elem

We say that an abstract pool P is in state A = (elems, callbacks, seal) at time
t if and only if P(t) = (elems, callbacks, seal).
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Definition A.6 [Abstract pool operations] We say that an abstract pool op-
eration op that is applied to some abstract pool P in abstract state A0 =
(elems0, callbacks0, seal0) at some time t changes the abstract state of the ab-
stract pool to A = (elems, callbacks, seal) if ∃t0,∀τ, t0 < τ < t,P(τ) = A0 and
P(t) = A. We denote this as A = op(A0).

Abstract pool operation foreach(f) changes the abstract state at t0 from
(elems, callbacks, seal) to (elems, (f, ∅) ∪ callbacks, seal). Furthermore:

∃t1 ≥ t0, ∀t2 > t1,P(t2) = (elems2, callbacks2, seal2)

∧∀(f, called2) ∈ callbacks2, elems ⊆ called2 ⊆ elems2

Abstract pool operation append(e) changes the abstract state at t0 from
(elems, callbacks, seal) to ({e} ∪ elems, callbacks, seal). Furthermore:

∃t1 ≥ t0, ∀t2 > t1,P(t2) = (elems2, callbacks2, seal2)

∧∀(f, called2) ∈ callbacks2, (f, called) ∈ callbacks⇒ e ∈ called2

Abstract pool operation seal(s) changes the abstract state of the FlowPool
at t0 from (elems, callbacks, seal) to (elems, callbacks, s), assuming that seal ∈
{−1} ∪ {s} and s ∈ N0, and |elems| ≤ s.

Definition A.7 [Consistency] A FlowPool state S is consistent with an ab-
stract pool P = (elems, callbacks, seal) at t0 if and only if S is a valid state
and:

∀e ∈ Elem, hasElem(start, e)⇔ e ∈ elems
∀f ∈ Elem => Unit, hasCallback(start, f)⇔ f ∈ callbacks
∀f ∈ Elem => Unit,∀e ∈ Elem,willBeCalled(start, e, f)⇔ ∃t1 ≥ t0,P(t1) =

(elems1, (f, called1) ∪ callbacks1, seal1), elems ⊆ called1
∀s ∈ N0, sealedAt(start, s)⇔ s = seal

A FlowPool operation op is consistent with the corresponding abstract state
operation op′ if and only if S′ = op(S) is consistent with an abstract state
A′ = op′(A).

A consistency change is a change from state S to state S′ such that S is
consistent with an abstract state A and S′ is consistent with an abstract set A′,
where A 6= A′.

Proposition 1. Every valid state is consistent with some abstract pool.

Theorem A.8 [Safety] FlowPool operation create creates a new FlowPool con-
sistent with the abstract pool P = (∅, ∅,−1). FlowPool operations foreach,
append and seal are consistent with the abstract pool semantics.

Lemma A.9 [End of life] For all blocks b ∈ reachable(start), if value v ∈
Elem is written to b.array at some position idx at some time t0, then ∀t >
t0, b.array(idx) = v.
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Proof. The CAS in line 22 is the only CAS which writes an element. No other
CAS has a value of type Elem as the expected value. This means that once the
CAS in line 22 writes a value of type Elem, no other write can change it.

Corollary 1. The end of life lemma implies that if all the values in b.array are
of type Elem at t0, then ∀t > t0 there is no write to b.array.

Lemma A.10 [Valid hint] For all blocks b ∈ reachable(start), if b.index > 0 at
some time t0, then b.array(b.index− 1) ∈ Elem at time t0.

Proof. Observe every write to b.index – they are all unconditional. However, at
every such write occurring at some time t1 that writes some value idx we know
that some previous value at b.array entry idx−1 at some time t0 < t1 was of type
Elem. Hence, from Lemma A.9 it follows that ∀t ≥ t1, b.array(idx−1) ∈ Elem.

Corollary 2 (Compactness). For all blocks b ∈ reachable(start), if for some
idx b.array(idx) ∈ Elem at time t0 then b.array(idx − 1) ∈ Elem at time t0.
This follows directly from the Lemma A.9 and Lemma A.10, and the fact that
the CAS in line 22 only writes to array entries idx for which it previously read
the value from b.index.

Definition A.11 [Transition] If for a function f(t) there exist times t0 and t1
such that ∀t, t0 < t < t1, f(t) = v0 and f(t1) = v1, then we say that the function
f goes through a transition at t1. We denote this as:

f : v0
t1→ v1

Or, if we don’t care about the exact time t1, simply as:
f : v0 → v1

Definition A.12 [Monotonicity] A function of time f(t) is said to be mono-
tonic, if every value in its string of transitions occurs only once.

Lemma A.13 [Freshness] For all blocks b ∈ reachable(start), and for all x ∈
b.array, function x is monotonic.

Proof. CAS instruction in line 22 writes a value of type Elem. No CAS instruc-
tion has a value of type Elem as the expected value.

Trivial analysis of CAS instructions in lines 105 and 125, shows that their
expected values are of type Terminal. Their new values are always freshly allo-
cated.

The more difficult part is to show that CAS instruction in line 21 respects
the statement of the lemma.

Since the CAS instructions in lines 105 and 125 are preceeded by a read of
idx = b.index, from Lemma A.10 it follows that b.array(idx − 1) contains a
value of type Elem. These are also the only CAS instructions which replace a
Terminal value with another Terminal value. The new value is always unique,
as shown above.

So the only potential CAS to write a non-fresh value to idx + 1 is the CAS
in line 21.
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A successful CAS in line 21 overwrites a value cb0 at idx+ 1 read in line 18
at t0 with a new value cb2 at time t2. Value cb2 was read in line 19 at t1 from
the entry idx. The string of transitions of values at idx is composed of unique
values at least since t1 (by Lemma A.9), since there is a value of type Elem at
the index idx− 1.

The conclusion above ensures that the values read in line 19 to be subse-
quently used as new values for the CAS in line 21 form a monotonic function
f(t) = b.array(idx) at t.

Now assume that a thread T1 successfully overwrites cb0 via CAS in line
21 at idx + 1 at time t2 to a value cb2 read from idx at t1, and that another
thread T2 is the first thread (since the FlowPool was created) to subsequently
successfully complete the CAS in line 21 at idx+1 at time tprev2 > t2 with some
value cbprev2 which was at idx+ 1 at some time t < t0.

That would mean that b.array(idx+1) does not change during 〈t0, t2〉, since
T2 was the first thread the write a non-fresh value to idx + 1, and any other
write would cause the CAS in line 21 by T1 to fail.

Also, that would mean that the thread T2 read the value cbprev2 in line 19 at
some time tprev1 < t1 and successfully completed the CAS at time tprev2 > t2.
If the CAS was successful, then the read in line 18 by T2 occured at tprev0 <
tprev1 < t1. Since we assumed that T2 is the first thread to write a value cbprev2
to idx+1 at time tprev2 which was previously in idx+1 at some time t < t0, then
the CAS in line 21 at time tprev2 could not have succeeded, since its expected
value is cbprev0 read at some time tprev0, and we know that the value at idx+ 1
was changed at least once in 〈tprev0, tprev2〉 because of the write of a fresh value
by thread T1 at t2 ∈ 〈tprev0, tprev2〉. This value is known to be fresh because
b.array(idx) is a monotonic function at least since tprev1, and the read of the
new value written by T1 occurred at t1 > tprev1. We also know that there is no
other thread T3 to write the value cbprev0 during 〈tprev0, tprev2〉 back to idx+ 1,
since we assumed that T2 is the first to write a non-fresh value at that position.

Hence, a contradiction shows that there is no thread T2 which is the first to
write a non-fresh value via CAS in line 21 at idx+ 1 for any idx, so there is no
thread that writes a non-fresh value at all.

Lemma A.14 [Lifecycle] For all blocks b ∈ reachable(start), and for all x ∈
b.array, function x goes through and only through the prefix of the following
transitions:

null→ cb1 → · · · → cbn → elem, where:
cbi ∈ Terminal, i 6= j ⇒ cbi 6= cbj , elem ∈ Elem

Proof. First of all, it is obvious from the code that each block that becomes an
element of reachable(start) at some time t0 has the value of all x ∈ b.array set
to null.

Next, we inspect all the CAS instructions that operate on entries of b.array.
The CAS in line 22 has a value curo ∈ Terminal as an expected value and

writes an elem ∈ Elem. This means that the only transition that this CAS can
cause is of type cbi ∈ Terminal→ elem ∈ Elem.
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We will now prove that the CAS in line 21 at time t2 is successful if and only
if the entry at idx+ 1 is null or nexto ∈ Terminal. We know that the entry at
idx+ 1 does not change ∀t, t0 < t < t2, where t0 is the read in line 18, because
of Lemma A.13 and the fact that CAS in line 21 is assumed to be successful.
We know that during the read in line 19 at time t1, such that t0 < t1 < t2, the
entry at idx was curo ∈ Terminal, by trivial analysis of the check procedure.
It follows from corollary 2 that the array entry idx + 1 is not of type Elem at
time t1, otherwise array entry idx would have to be of type Elem. Finally, we
know that the entry at idx+ 1 has the same value during the interval 〈t1, t2〉, so
its value is not Elem at t2.

The above reasoning shows that the CAS in line 21 always overwrites a one
value of type Terminal (or null) with another value of type Terminal. We have
shown in Lemma A.13 that it never overwrites the value cb0 with a value cb2
that was at b.array(idx) at an earlier time.

Finally, note that the statement for CAS instructions in lines 105 and 125
also follows directly from the proof for Lemma A.13.

Lemma A.15 [Subsequence] Assume that for some block b ∈ reachable(start)
the transitions of b.array(idx) are:

b.array(idx) : null→ cb1 → · · · → cbn
t0→ elem : Elem

Assume that the transitions of b.array(idx+ 1) up to time t0 are:

b.array(idx+ 1) : null→ cb′1 → · · · → cb′m

The string of transitions null→ cb′1 → · · · → cb′m is a subsequence of null→
cb1 → · · · → cbn.

Proof. Note that all the values written to idx+1 before t0 by CAS in line 21 were
previously read from idx in line 19. This means that the set of values occurring
in b.array(idx+ 1) before t0 is a subset of the set of values in b.array(idx). We
have to prove that it is actually a subsequence.

Assume that there exist two values cb1 and cb2 read by threads T1 and T2
in line 19 at times t1 and t2 > t1, respectively. Assume that these values are
written to idx+ 1 by threads T1 and T2 in line 21 in the opposite order, that is
at times tcas1 and tcas2 < tcas1, respectively. That would mean that the CAS by
thread T1 would have to fail, since its expected value cb0 has changed between
the time it was read in line 18 and the tcas1 at least once to a different value, and
it could not have been changed back to cb0 as we know from the Lemma A.13.

Notice that we have actually prooved a stronger result above. We have also
shown that the string of values written at idx+ 1 by CAS in line 21 successfully
is a subsequence of all the transitions of values at idx (not just until t0).

Lemma A.16 [Valid writes] Given a FlowPool in a valid state, all writes in all
operations produce a FlowPool in a valid state.
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Proof. A new FlowPool is trivially in a valid state.
Otherwise, assume that the FlowPool is in a valid state S. In the rest of

the proof, whenever some invariant is trivially unaffected by a write, we omit
mentioning it. We start by noting that we already prooved the claim for atomic
writes in lines 23, 55 and 86 (which only affect [INV5]) in Lemma A.10. We
proceed by analyzing each atomic CAS instruction.

CAS in line 63 at time t1 maintains the invariant [INV1]. This is because its
expected value is always null, which ensures that the lifecycle of b.next is null→
b′ : Block, meaning that the function reachable(start) returns a monotonically
growing set. So if current ∈ reachable(start) at t0, then this also holds at
t1 > t0. It also maintains [INV2] because the new value nb is always fresh, so
∀b, b 6∈ following(b). Finally, it maintains [INV3] because it is preceeded with
a bounds check and we know from corollary 2 and the Lemma A.9 that all the
values in b.array(idx), idx < LASTELEMPOS must be of type Elem.

CAS in line 66 at time t1 maintains the invariant [INV1], since the new value
for the current 6= null was read from b.next at t0 < t1 when the invariant was
assumed to hold, and it is still there a t1, as shown before.

For CAS instructions in lines 22, 125 and 105 that write to index idx we know
from Lemma A.10 that the value at idx− 1 is of type Elem. This immediately
shows that CAS instructions in lines 125 and 105 maintain [INV3] and [INV4].

For CAS in line 22 we additionally know that it must have been preceeded by
a successful CAS in line 21 which previously wrote a Terminal value to idx+ 1.
From Lemma A.14 we know that idx+ 1 is still Terminal when the CAS in line
22 occurs, hence [INV4] is kept.

Finally, CAS in line 21 succeeds only if the value at idx + 1 is of type
Terminal, as shown before in Lemma A.14. By the same lemma, the value
at idx is either Terminal or Elem at that point, since idx − 1 is known to be
Elem by Lemma A.10. This means that [INV4] is kept.

Lemma A.17 [Housekeeping] Given a FlowPool in state S consistent with some
abstract pool state A, CAS instructions in lines 21, 63 and 66 do not change the
abstract pool state A.

Proof. Since none of the relations hasElem, hasCallback, willBeCalled and
sealedAt are defined by the value of current CAS in line 66 does not change
them, hence it does not change the abstract pool state.

No CAS changes the set of scheduled futures, nor is succeeded by a future

construct so it does not affect the willBeCalled relation.
It is easy to see that the CAS in line 63 does not remove any elements,

nor make any additional elements reachable, since the new block nb which be-
comes reachable does not contain any elements at that time. Hence the hasElem
relation is not affected. It does change the value last(start) to nb, but since
nb.array = t · nullBLOCKSIZE−1, where t ∈ Terminal was previously the
last non-null element in b.array, it does changes neither the sealedAt nor the
hasCallback relation.

The CAS in line 21 does not make some new element reachable, hence the
hasElem relation is preserved.
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Note now that this CAS does not change the relations hasCallback and
sealedAt as long as there is a value of type Terminal at the preceeding entry
idx. We claim that if the CAS succeeds at t2, then either the value at idx is of
type Terminal (trivially) or the CAS did not change the value at idx + 1. In
other words, if the value at idx at time t2 is of type Elem, then the write by
CAS in line 21 does not change the value at idx + 1 at t2. This was, in fact,
already shown in the proof of Lemma A.15.

The argument above proves directly that relations hasCallback and sealedAt
are not changed by the CAS in line 21.

Lemma A.18 [Append correctness] Given a FlowPool in state S consistent with
some abstract pool state A, a successful CAS in line 22 at some time t0 changes
the state of the FlowPool to S0 consistent with an abstract pool state A0, such
that:

A = (elems, callbacks, seal)
A0 = ({elem} ∪ elems, callbacks, seal)
Furthermore, given a fair scheduler, there exists a time t1 > t0 at which the

FlowPool is consistent with an abstract pool in state A1, such that:
A1 = (elems1, callbacks1, seal1), where:
∀(f, called1) ∈ callbacks1, (f, called) ∈ callbacks⇒ elem ∈ called1

Proof. Assume that the CAS in line 22 succeeds at some time t3, the CAS in
line 21 succeeds at some time t2 < t3, the read in line 19 occurs at some time
t1 < t2 and the read in line 19 occurs at some time t0 < t1.

It is easy to see from the invariants, check procedure and the corollary 1 that
the CAS in line 22 can only occur if b = last(start).

We claim that for the block b ∈ reachable(start) such that b = last(b) the
following holds at t2:

b.array = elemN · cb1 · cb2 · nullBLOCKSIZE−N−2

where cb1 = cb2, since there was no write to idx after cb1, otherwise the CAS
in line 22 at t3 would not have been successful (by lemma Lemma A.13).

Furthermore, cb1 = cb2 at t3, as shown in the Lemma A.15. Due to the same
lemma, the entries of b.array stay the same until t3, otherwise the CAS in line
22 would not have been successful. After the successful CAS at t3, we have:

b.array = elemN · e · cb1 · nullBLOCKSIZE−N−2

where e : Elem is the newly appended element– at t3 the relation hasElem(start, e)
holds, and sealedAt(start, s) and hasCallback(start, f) did not change between
t2 and t3.

It remains to be shown that willBeCalled(start, e, f) holds at t3. Given a
fair scheduler, within a finite number of steps the future store will contain a
request for an asynchronous computation that invokes f on e. The fair scheduler
ensures that the future is scheduled within a finite number of steps.

Lemma A.19 [Foreach correctness] Given a FlowPool in state S consistent with
some abstract pool state A, a successful CAS in line 125 at some time t0 changes
the state of the FlowPool to S0 consistent with an abstract pool state A0, such
that:
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A = (elems, callbacks, seal)
A0 = (elems, (f, ∅) ∪ callbacks, seal)
Furthermore, given a fair scheduler, there exists a time t1 ≥ t0 at which the

FlowPool is consistent with an abstract pool in state A1, such that:
A1 = (elems1, callbacks1, seal1), where:
elems ⊆ elems1
∀(f, called1) ∈ callbacks1, elems ⊆ called1

Proof. From Lemma A.13 and the assumption that the CAS is successful we
know that the value at b.array(idx) has not changed between the read in line 117
and the CAS in line 125. From Lemma A.10 we know that the value at idx−1 was
of type Elem since b.index was read. This means that neither hasElem(start, e)
nor sealedAt have changed after the CAS. Since after the CAS there is a
Terminal with an additional function f at idx, the hasCallback(start, f) holds
after the CAS. Finally, the willBeCalled(start, e, f) holds for all elements e for
which the hasElem(e) holds, since the CAS has been preceeded by a call f(e)
in line 127 for each element. The Lemma A.9 ensures that for each element f
was called for stays in the pool indefinitely (i.e. is not removed).

Trivially, the time t1 from the statement of the lemma is such that t1 = t0.

Lemma A.20 [Seal correctness] Given a FlowPool in state S consistent with
some abstract pool state A, a successful CAS in line 105 at some time t0 changes
the state of the FlowPool to S0 consistent with an abstract pool state A0, such
that:

A = (elems, callbacks, seal), where seal ∈ {−1} ∪ {s}
A0 = (elems, callbacks, {s})

Proof. Similar to the proof of Lemma A.19.

Definition A.21 [Obstruction-freedom] Given a FlowPool in a valid state, an
operation op is obstruction-free if and only if a thread T executing the oper-
ation op completes within a finite number of steps given that no other thread
was executing the operation op since T started executing it.

We say that thread T executes the operation op in isolation.

Lemma A.22 [Obstruction-free operations] All operations on FlowPools are
obstruction-free.

Proof. By trivial sequential code analysis supported by the fact that the invari-
ants (especially [INV2]) hold in a valid state.

Proof (Safety). From Lemma A.17, Lemma A.31, Lemma A.19 and Lemma A.20
directly, along with the fact that all operations executing in isolation complete
after a finite number of steps by Lemma A.22.

Definition A.23 [Linearizability] We say that an operation op is linearizable
if every thread observers that it completes at some time t0 after it was invoked
and before it finished executing.
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Theorem A.24 [Linearizable operations] FlowPool operations append and seal

are linearizable.

Proof (Linearizable operations). This follows directly from statements about
CAS instructions in Lemma A.17, Lemma A.31 and Lemma A.20, along with
the fact that a CAS instruction itself is linearizable.

Note that foreach starts by executing an asynchronous computation and
then returns the control to the caller. This means that the linearization point
may happen outside the execution interval of that procedure – so, foreach is
not linearizable.

Definition A.25 [Lock-freedom] In a scenario where some finite number of
threads are executing a concurrent operation, that concurrent operation is lock-
free if and only if that concurrent operation is completed after a finite number
of steps by some thread.

Theorem A.26 [Lock-freedom] FlowPool operations append, seal, and foreach
are lock-free.

We begin by first proving that there are a finite number of execution steps
before a consistency change occurs.

By Lemma A.31, after invoking append, a consistency change occurs after a
finite number of steps. Likewise, by Lemma A.34, after invoking seal, a consis-
tency change occurs after a finite number of steps. And finally, by Lemma A.35,
after invoking foreach, a consistency change likewise occurs after a finite num-
ber of steps.

By Lemma A.36, this means a concurrent operation append, seal, or foreach
will successfully complete. Therefore, by Definition A.25, these operations are
lock-free.

Note. For the sake of clarity in this section of the correctness proof, we assign
the following aliases to the following CAS and WRITE instructions:

– CASappend−out corresponds to the outer CAS in append, on line 21.
– CASappend−inn corresponds to the inner CAS in append, on line 22.
– CASexpand−nxt corresponds to the CAS on next in expand, line 63.
– CASexpand−curr corresponds to the CAS on current in expand, line 66.
– CASseal corresponds to the CAS on the Terminal in tryWriteSeal, line 105.
– CASforeach corresponds to the CAS on the Terminal in asyncFor, line 124.
– WRITEapp corresponds to the WRITE on the new index in append, line 23.
– WRITEadv corresponds to the WRITE on the new index in advance, line 55.
– WRITEseal corresponds to the WRITE on the new index in seal, line 86.

Lemma A.27 After invoking an operation op, if non-consistency changing CAS
operations CASappend−out, CASexpand−nxt, or CASexpand−curr, in the pseu-
docode fail, they must have already been successfully completed by another
thread since op began.



FlowPools: Lock-Free Deterministic Concurrent Dataflow Queues 27

Proof. Trivial inspection of the pseudocode reveals that since CASappend−out
makes up a check that precedes CASappend−inn, and since CASappend−inn is
the only operation besides CASappend−out which can change the expected value
of CASappend−out, in the case of a failure of CASappend−out, CASappend−inn (and
thus CASappend−out) must have already successfully completed or CASappend−out
must have already successfully completed by a different thread since op began
executing.

Likewise, by trivial inspection CASexpand−nxt is the only CAS which can
update the b.next reference, therefore in the case of a failure, some other thread
must have already successfully completed CASexpand−nxt since the beginning of
op.

Like above, CASexpand−curr is the only CAS which can change the current
reference, therefore in the case of a failure, some other thread must have already
successfully completed CASexpand−curr since op began. ut

Lemma A.28 [Expand] Invoking the expand operation will execute a non- con-
sistency changing instruction after a finite number of steps. Moreover, it is guar-
anteed that the current reference is updated to point to a subsequent block
after a finite number of steps. Finally, expand will return after a finite number
of steps

Proof. From inspection of the pseudocode, it is clear that the only point at
which expand(b) can be invoked is under the condition that for some block b,
b.index > LASTELEMPOS, where LASTELEMPOS is the maximum size
set aside for elements of type Elem in any block. Given this, we will proceed by
showing that a new block will be created with all related references b.next and
current correctly set.

There are two conditions under which a non-consistency changing CAS in-
struction will be carried out.

– Case 1: if b.next = null, a new block nb will be created and CASexpand−nxt
will be executed. From Lemma A.27, we know that CASexpand−nxt must
complete successfully on some thread. Afterwards recursively calling expand
on the original block b.

– Case 2: if b.next 6= null, CASexpand−curr will be executed. Lemma A.27
guarantees that CASexpand−curr will update current to refer to b.next, which
we will show can only be a new block. Likewise, Lemma A.27 has shown
that CASexpand−nxt is the only state changing instruction that can initiate
a state change at location b.next, therefore, since CASexpand−nxt takes place
within Case 1, Case 2 can only be reachable after Case 1 has been executed
successfully. Given that Case 1 always creates a new block, therefore, b.next
in this case, must always refer to a new block.

Therefore, since from Lemma A.27 we know that both CASexpand−nxt and
CASexpand−curr can only fail if already completed guaranteeing their finite com-
pletion, and since CASexpand−nxt and CASexpand−curr are the only state chang-
ing operations invoked through expand, the expand operation must complete in
a finite number of steps.
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Finally, since we saw in Case 2 that a new block is always created and related
references are always correctly set, that is both b.next and current are correctly
updated to refer to the new block, it follows that numBlocks strictly increases
after some finite number of steps. ut

Lemma A.29 [CASappend−inn] After invoking append(elem), if CASappend−inn
fails, then some thread has successfully completed CASappend−inn or CASseal

(or likewise, CASforeach) after some finite number of steps.

Proof. First, we show that a thread attempting to complete CASappend−inn can’t
fail due to a different thread completing CASappend−out so long as seal has not
been invoked after completing the read of currobj. We address this exception
later on.

Since after check, the only condition under which CASappend−out, and by
extension, CASappend−inn can be executed is the situation where the current
object currobj with index location idx is the Terminal object, it follows that
CASappend−out can only ever serve to duplicate this Terminal object at location
idx+1, leaving at most two Terminals in block refered to by current momentar-
ily until CASappend−inn can be executed. By Lemma A.27, since CASappend−out
is a non-consistency changing instruction, it follows that any thread holding any
element elem′ can execute this instruction without changing the expected value
of currobj in CASappend−inn, as no new object is ever created and placed in lo-
cation idx. Therefore, CASappend−inn cannot fail due to CASappend−out, so long
as seal has not been invoked by some other thread after the read of currobj.

This leaves only two scenarios in which consistency changing CASappend−inn
can fail:

– Case 1: Another thread has already completed CASappend−inn with a dif-
ferent element elem′.

– Case 2: Another thread completes an invocation to the seal operation after
the current thread completes the read of currobj. In this case, CASappend−inn
can fail because CASseal (or, likewise CASforeach) might have completed be-
fore, in which case, it inserts a new Terminal object term into location idx
(in the case of a seal invocation, term.sealed ∈ N0, or in the case of a
foreach invocation, term.callbacks ∈ {Elem⇒ Unit}).

We omit the proof and detailed discussion of CASforeach because it can be
proven using the same steps as were taken for CASseal. ut

Lemma A.30 [Finite Steps Before State Change] All operations with the ex-
ception of append, seal, and foreach execute only a finite number of steps
between each state changing instruction.

Proof. The advance, check, totalElems, invokeCallbacks, and tryWriteSeal

operations have a finite number of execution steps, as they contain no recursive
calls, loops, or other possibility to restart.
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While the expand operation contains a recursive call following a CAS instruc-
tion, it was shown in Lemma A.28 that an invocation of expand is guaranteed
to execute a state changing instruction after a finite number of steps.

ut

Lemma A.31 [Append] After invoking append(elem), a consistency changing
instruction will be completed after a finite number of steps.

Proof. The append operation can be restarted in three cases. We show that in
each case, it’s guaranteed to either complete in a finite number of steps, or leads
to a state changing instruction:

– Case 1: The call to check, a finite operation by Lemma A.30, returns false,
causing a call to advance, also a finite operation by Lemma A.30, followed
by a recursive call to append with the same element elem which in turn once
again calls check.
We show that after a finite number of steps, the check will evaluate to true,
or some other thread will have completed a consistency changing operation
since the initial invocation of append. In the case where check evaluates to
true, Lemma A.29 applies, as it guarantees that a consistency changing CAS
is completed after a finite number of steps.
When the call to the finite operation check returns false, if the subsequent
advance finds that a Terminal object is at the current block index idx, then
the next invocation of append will evaluate check to true. Otherwise, it must
be the case that another thread has moved the Terminal to a subsequent
index since the initial invocation of append, which is only possible using a
consistency changing instruction.
Finally, if advance finds that the element at idx is an Elem, b.index will be
incremented after a finite number of steps. By INV 1, this can only happen a
finite number of times until a Terminal is found. In the case that expand is
meanwhile invoked through advance, by Lemma A.28 it’s guaranteed to com-
plete state changing instructions CASexpand−nxt or CASexpand−curr in a fi-
nite number of steps. Otherwise, some other thread has moved the Terminal
to a subsequent index. However, this latter case is only possible by success-
fully completing CASappend−inn, a consistency changing instruction, after
the initial invocation of append.

– Case 2: CASappend−out fails, which we know from Lemma A.27means that
it must’ve already been completed by another thread, guaranteeing that
CASappend−inn will be attempted. If CASappend−inn fails, after a finite num-
ber of steps, a consistency changing instruction will be completed. If CASappend−inn
succeeds, as a consistency changing instruction, consistency will have clearly
been changed.

– Case 3: CASappend−inn fails, which, by Lemma A.29, indicates that either
some other thread has already completed CASappend−inn with another ele-
ment, or another consistency changing instruction, CASseal or CASforeach

has successfully completed.
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Therefore, append itself as well as all other operations reachable via an in-
vocation of append are guaranteed to have a finite number of steps between
consistency changing instructions. ut

Lemma A.32 [CASseal] After invoking seal(size), if CASseal fails, then some
thread has successfully completed CASseal or CASappend−inn after some finite
number of steps.

Proof. Since by Lemma A.29, we know that CASappend−out only duplicates an
existing Terminal, it can not be the cause for a failing CASseal. This leaves
only two cases in which CASseal can fail:

– Case 1: Another thread has already completed CASseal.
– Case 2: Another thread completes an invocation to the append(elem) op-

eration after the current thread completes the read of currobj. In this case,
CASseal can fail because CASappend−inn might have completed before, in
which case, it inserts a new Elem object elem into location idx. ut

Lemma A.33 [WRITEadv andWRITEseal] After updating b.index usingWRITEadv

or WRITEseal, b.index is guaranteed to be incremented after a finite number
of steps.

Proof. For some index, idx, both calls to WRITEadv and WRITEseal attempt
to write idx+1 to b.index. In both cases, it’s possible that another thread could
complete either WRITEadv or WRITEseal, once again writing idx to b.index
after the current thread has completed, in effect overwriting the current thread’s
write with idx + 1. By inspection of the pseudocode, both WRITEadv and
WRITEseal will be repeated if b.index has not been incremented. However, since
the number of threads operating on the FlowPool is finite, p, we are guaranteed
that in the worst case, this scenario can repeat at most p times, before a write
correctly updates b.index with idx+ 1. ut

Lemma A.34 [Finite Steps Before Consistency Change] After invoking seal(size),
a consistency changing instruction will be completed after a finite number of
steps, or the initial invocation of seal(size) completes.

Proof. The seal operation can be restarted in two scenarios.

– Case 1: The check idx ≤ LASTELEMPOS succeeds, indicating that we
are at a valid location in the current block b, but the object at the current
index location idx is of type Elem, not Terminal, causing a recursive call
to seal with the same size size.
In this case, we begin by showing that the atomic write of idx+1 to b.index,
required to iterate through the block b for the recursive call to seal, will be
correctly incremented after a finite number of steps.
Therefore, by both the guarantee that, in a finite number of steps, b.index
will eventually be correctly incremented as we saw in Lemma A.33, as
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well as by INV 1 we know that the original invocation of seal will cor-
rectly iterate through b until a Terminal is found. Thus, we know that
the call to tryWriteSeal will be invoked, and by both Lemma A.30 and
Lemma A.31, we know that either tryWriteSeal, will successfully complete
in a finite number of steps, in turn successfully completing seal(size),
or CASappend−inn, another consistency changing operation will successfully
complete.

– Case 2: The check idx ≤ LASTELEMPOS fails, indicating that we must
move on to the next block, causing first a call to expand followed by a
recursive call to seal with the same size size.
We proceed by showing that after a finite number of steps, we must end up
in Case 1, which we have just showed itself completes in a finite number of
steps, or that a consistency change must’ve already occurred.
By Lemma A.28, we know that an invocation of expand returns after a finite
number of steps, and pool.current is updated to point to a subsequent block.
If we are in the recursive call to seal, and the idx ≤ LASTELEMPOS
condition is false, trivally, a consistency changing operation must have oc-
curred, as, the only way for the condition to evaluate to true is through a
consistency changing operation, in the case that a block has been created
during an invocation to append, for example.
Otherwise, if we are in the recursive call to seal, and the idx ≤ LASTELEMPOS
condition evaluates to true, we enter Case 1, which we just showed will suc-
cessfully complete in a finite number of steps.

ut

Lemma A.35 [Foreach] After invoking foreach(fun), a consistency changing
instruction will be completed after a finite number of steps.

We omit the proof for foreach since it proceeds in the exactly the same way
as does the proof for seal in Lemma A.34.

Lemma A.36 Assume some concurrent operation is started. If some thread
completes a consistency changing CAS instruction, then some concurrent oper-
ation is guaranteed to be completed.

Proof. By trival inspection of the pseudocode, if CASappend−inn successfully
completes on some thread, then that thread is guaranteed to complete the cor-
responding invocation of append in a finite number of steps.

Likewise by trivial inspection, if CASseal successfully completes on some
thread, then by Lemma A.30, tryWriteSeal is guaranteed to complete in a
finite number of steps, and therefore, that thread is guaranteed to complete the
corresponding invocation of seal in a finite number of steps.

The case for CASforeach is omitted since it follows the same steps as for the
case of CASseal
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B Proof of Determinism

B.1 Reduction rules

t = create p ; t′ p = (∅,−1, ∅)
t, T | P −→ t′, T | p, P

(Create)

t = p << v ; t′ p = (vs,−1, cbs) p′ = ({v} ∪ vs,−1, cbs)

t, T | p, P −→ t′, T | p′, P
(Append1)

t = p << v ; t′ p = (vs, n, cbs) |{v} ∪ vs| ≤ n
p′ = ({v} ∪ vs, n, cbs) T ′ = {f(v) | f ∈ cbs}

t, T | p, P −→ t′, T, T ′ | p′, P
(Append2)

t = p foreach f ; t′ p = (vs,−1, cbs) p′ = (vs,−1, {f} ∪ cbs)
t, T | p, P −→ t′, T | p′, P

(Foreach1)

t = p foreach f ; t′ p = (vs, n, cbs)
T ′ = {g(v) | g ∈ {f} ∪ cbs, v ∈ vs} p′ = (vs, n, {f} ∪ cbs)

t, T | p, P −→ t′, T, T ′ | p′, P
(Foreach2)

t = p seal n ; t′ p = (vs,−1, cbs)
T ′ = {g(v) | g ∈ cbs, v ∈ vs} p′ = (vs, n, cbs)

t, T | p, P −→ t′, T, T ′ | p′, P
(Seal1)

t = p seal n ; t′ p = (vs, n, cbs)

t, T | p, P −→ t′, T | p, P
(Seal2)

B.2 Definitions

Definition B.1 [Termination] A term t terminates with result P if its reduction
ends in execution state {t : t = {ε}} | P .

Definition B.2 [Interleaving] Consider the reduction of a term t: T1 | P1 −→
T2 | P2 −→ . . . −→ {t : t = {ε}} | Pn. An interleaving is a reduction of
t starting in execution state T1 | P1 in which reduction rules are applied in a
different order.

Definition B.3 [Valid Interleaving] An interleaving S′, c, S′′ of a reduction se-
quence S is valid iff for any reduction step c using rule (Create), if c creates
pool p, p is not used in any reduction step in S′.

Definition B.4 [Determinism] The reduction of a term t is deterministic iff ei-
ther (a) t does not terminate for any valid interleaving, or (b) t always terminates
with the same result for all valid interleavings.
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B.3 Theorems and Lemmas

Theorem B.5 [Determinism] The reduction of terms t is deterministic.

To prove this, we show that the reduction steps of every valid interleaving
can be reordered in a way that does not change the termination, nor the result.
The proof is based on the commutativity of transitions in the reduction.

Lemma B.6 [Commutativity] Consider the reduction R of a term t and the
two subsequent reduction steps based on reduction rules R1 and R2:

. . . −→ Tn | Pn
R1−→ Tn+1 | Pn+1

R2−→ Tn+2 | Pn+2 −→ . . .

We list the reduction rules for which it is true that switching these two
reduction steps yields the following reduction R′:

. . . −→ Tn | Pn
R′2−→ T ′n+1 | P ′n+1

R′1−→ Tn+2 | Pn+2 −→ . . .

where the prefix and suffix of the reduction R′ are the same as in R.

Any pair of rules R1 and R2 applies above if the reduction steps operate
on different pools. If they operate on the same pool, then for any two (not
necessarily different) threads executing these reduction steps, the following table
of rules applies.

R1 R2 R′1 R′2
Append1 Append1 Append1 Append1
Append1 Foreach1 Foreach1 Append1
Append1 Seal1 Seal1 Append2
Append2 Foreach2 Foreach2 Append2
Append2 Seal2 Seal2 Append2
Foreach1 Append1 Append1 Foreach1
Foreach1 Foreach1 Foreach1 Foreach1
Foreach1 Seal1 Seal1 Foreach2
Foreach2 Append2 Append2 Foreach2
Foreach2 Seal2 Seal2 Foreach2
Seal1 Append2 Append1 Seal1
Seal1 Foreach2 Foreach1 Seal1
Seal1 Seal2 Seal1 Seal2
Seal2 Append2 Append2 Seal2
Seal2 Foreach2 Foreach2 Seal2

Proof. By straightforward inspection of each pair of rules.

As an example, we pick the third row from the table. Consider the following
execution schedule fragment:
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p << v ; t′, p seal n ; t′′, Tk | p = (vs,−1, cbs), Pk

Append1−→ t′, p seal n ; t′′, Tk | p = ({v} ∪ vs,−1, cbs), Pk

Seal1−→ {cbs(w) : w ∈ {v} ∪ vs}, t′, t′′, Tk | p = ({v} ∪ vs, n, cbs), Pk

If we reorder these two reduction steps, we get:

p << v ; t′, p seal n ; t′′, Tk | p = (vs,−1, cbs), Pk

Seal1−→ {cbs(w) : w ∈ vs}, p << v ; t′, t′′, Tk | p = (vs, n, cbs), Pk

Append2−→ cbs(v), {cbs(w) : w ∈ vs}, t′, t′′, Tk, | p = ({v} ∪ vs, n, cbs), Pk

The final execution states in these two execution fragments are the same,
hence the rest of the interleaving stays the same.

Definition B.7 [Canonical interleaving] Assume, without the loss of generality,
that each Create rule assigns a unique identifier to each created pool. Assume
any ordering on this set of identifiers.

We define the following ordering comes-before between threads as follows.
There exists one main thread defined by the term t being reduced. The main
thread comes before any other thread. For all other threads Tp and Tq let p
and q be the terms with which the threads first appear in some execution state.
Thread Tp comes before Tq iff p comes before q in the lexicographic ordering.

Note that in any interleaving we can identify the first reduction step in which
an arbitrary thread Tp appears. We can recursively find the rest of its reduction
steps. This means that we can assign the index p to every thread in the set of
threads in every execution state later3, and thus uniquely identify every thread
in any execution state.

We define the canonical order of the reduction steps of a thread as
follows:

1. First apply all the Create steps in the order of the pool identifiers.

2. Then apply all the Append steps in the order of the pool identifiers and
some ordering of the elements being appended4.

3. Then apply all the Foreach steps in the order of the pool identifiers and
the lexicographic ordering on the callback term.

4. Finally, apply all the Seal steps in the order of the pool identifiers and the
sizes of the seal.

3 We claim that in our programming model this choice is unique, but even if this was
not the case, we could pick either thread in the case of an ambiguity and do so
without the loss of generality.

4 Any countable set has some total ordering.
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Or, more formally:

T0 | P0
Create−→ T0 | pi1 , P0

Create−→ . . .
Create−→ T0 | pin , pin−1 , . . . , pi1 , P0

Append−→ T1 | ({vj1} ∪ vs1, n1, cbs1)j1 , Pj1
Append−→ . . .

Append−→ Tm | ({vjm} ∪ vsm, nm, cbsm)jn , Pjn

Foreach−→ Tm+1 | (vsm+1, nm+1, {tk1
} ∪ cbsm+1)k1

, Pk1

Foreach−→ . . .
Foreach−→ Tm+f | (vsm+f , nm+f , {tkf

} ∪ cbsm+f )kf
, Pkf

Seal−→ Tm+f+1 | (vsm+f+1, nm+f+1, cbsm+f+1)l1 , Pl1
Seal−→ . . .

Seal−→ Tm+f+s | (vsm+f+s, nm+f+s, cbsm+f+s)ls , Pls

where (with
a
< being the lexicographic ordering and

·
< being some ordering

on the set of elements):

i1 < i2 < . . . < in

x < y ⇒ vjx
·
< vjy ∨ (vjx = vjy ∧ jx < jy)

x < y ⇒ tkx

a
< tky ∨ (tkx = tky ∧ kx < ky)

x < y ⇒ nx < ny ∨ (nx = ny ∧ lx < ly)

We define the canonical order of the reduction steps as follows:

1. First apply all the reduction steps of the main thread t in the canonical
order.

2. Identify all the threads created in the previous step. Take each of these
threads in the above defined comes-before ordering and apply all their re-
duction steps in the canonical order.

3. Repeat the last step until there are no more applicable reduction steps.

Or, more formally:

{t} | ∅ SC(t)−→ {ε, T1, T2, . . . , Tn} | P (t)

SC(T1)−→ {ε, ε, T2, . . . , Tn, T1,1, . . . , T1,n1
} | P (T1), P (t)

SC(T2)−→ . . .
SC(Tn)−→

SC(Tn)−→ {ε, . . . , ε, T1,1, . . . , T1,n1
, T2,1, . . . , Tn−1,nn−1

, Tn,1, . . . , Tn,nn
}

| P (T1), . . . , P (Tn), P (t)

SC(T1,1)−→ . . .
SC(T1,n)−→ . . .

SC(T2,1)−→ . . .
SC(Tn−1,nn−1

)
−→ . . .

SC(Tn,1)−→ . . .
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where SC(T ) is the sequence of reduction steps of thread T in the canonical
order and t is the term being reduced, i.e. the main thread. For each Tp and Tq

if p
a
< q, then Tp

cb
< Tq, where

cb
< is the comes-before ordering.

A canonical interleaving Sc is an interleaving of the reduction of a term
t, such that the reduction steps are applied in the canonical order.

Proposition 2. Every canonical interleaving Sc is a valid interleaving.

Lemma B.8 [Canonicity] Every valid interleaving of the reduction of a term t
can have its execution steps reordered to the canonical interleaving Sc so that
neither the termination nor the result is changed.

Proof. Consider an arbitrary valid interleaving S. We know that the starting
execution state is {t} | ∅, where t is the term being reduced. Here, t is the main
thread. As argued before, we can recursively identify all the reduction steps in
the interleaving S in which the main thread executes.

We start by identifying all the Create steps of the main thread. Relying on
the results from Lemma B.6 we create a new interleaving in which the Create
steps appear at the beginning in the canonical order. We know that the state after
the last Create step in the original interleaving does not change by reordering
the steps. Therefore, neither the termination nor the result are changed in the
new interleaving. The new interleaving is trivially valid.

We then identify all the Append steps of the main thread. We know from our
programming model that each of these steps can only refer to FlowPools from the
Create steps we have already moved to the beginning of the interleaving – we
cannot append to a pool created by some other subsequently created thread, due
to scoping rules. For this reason we can reorder the Append steps of the main
thread so that they appear after the Create steps and maintain a valid inter-
leaving. Again, from Lemma B.6 the new interleaving has the same termination
and the result. We repeat the same for the Foreach and Seal steps.

At this point the new interleaving is the prefix of a canonical interleaving.
From the commutativity rules we know that the main thread still creates the
same set of threads as in the original interleaving. We order the newly created
threads according to the comes-before ordering introduced earlier and identify
each of these threads in the original interleaving. We recursively apply the same
reordering of steps for the newly created threads, traversing them in the comes-
before ordering.

We claim that every reduction in our programming model has a finite number
of steps, so this procedure will be completed eventually, yielding a canonical
interleaving.

More generally, if our programming model supported recursion, we could
have infinite reductions. In that case, every time we produce a new interleav-
ing in the process above, we extend the prefix of the interleaving which is the
same as in the canonical interleaving. Furthermore, every time we produce a
new interleaving in the process above, there is an execution state after the last
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reordered reduction step which is the same in both the new and the old inter-
leaving, meaning that all the subsequent execution states are the same in both
interleavings (by Lemma B.6). This means that for any reduction of a term t we
can produce a new interleaving with a prefix of an arbitrary length which corre-
sponds to the prefix of the canonical interleaving, in the same time not changing
the non-termination. Hence, every reduction of a term t does not terminate.

Proof (Determinism). Directly from the definition of determinism and Lemma B.8.
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C Syntax and examples

This section the used syntax in more detail and presents a range of programming
examples. The syntax is based on languages such as Groovy, Scala and Ruby. For
conciseness and reasons of space, we omit the block braces and use indentation
to denote block boundaries.

Methods. We use the def keyword to declare methods. After declaring the
method name, the parameter list follows. Each parameter is given a name and a
type behind a colon. Here is an example of declaring a max method which returns
the greater of the two integers:

def max(a: Int, b: Int)
if a > b a else b

Each method may either be standalone or defined within some object, in our
case a FlowPool. If the method is defined within the object, it can refer to the
object instance using the this keyword. It can additionally call the methods of
the this object without prefixing their names with a this and a dot. Otherwise,
invoking methods belonging to object instances must be prefixed with the object
instance name and a dot, as in most object-oriented languages. Methods can be
generic in their types and this is expressed with a list of type parameters in
square brackets behind the method name. The following generic method just
returns its parameter.

def id[T](x: T)
x

id[Int](0)
id(0)
id(true)
id("Ok!")

Notice that above we did not have to put a type parameter value T when
invoking the method – we assume that type parameters are infered from the
types of regular method parameters.

Methods can also nest, as in the following example of a method which com-
putes the sum of first n numbers:

def sum(n: Int)
def subsum(i: Int)

if i == n n
else i + sum(i + 1)

subsum(0)

Finally, methods can have multiple parameter lists, which provides a nice
syntax for methods such as aggregate.

Values. Values are declared using the val keyword. Once declared, the value
does not change. The following method creates an empty FlowPool:

def empty[T]
val fp = new FlowPool[T]
fp.builder.seal(0)
fp
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First-class functions. First-class functions can be simulated with anony-
mous classes in most object-oriented languages, but we provide special syntax for
reasons of conciseness. The type of the function which takes parameters of type
T1 to TN and returns a value of type R is denoted as (T1, T2, ..., TN) => R.
The function values are expressed by writing the name of the parameter, followed
by a => keyword and the method body.

Here is an example of a generic method which takes a value of type T and
applies a custom function on it twice:

def twice[T](x: T)(f: T => T)
f(f(x))

Since twice has multiple parameter lists, we can invoke with either of the
following two notations:

twice(0)(x => x + 1)
twice(0) {

x => x + 1
}

Additionally, we can omit the x => prefix when defining the function value
to make notation even more concise:

twice(0) {
_ + 1
}

We can do this only if the parameter occurs in the method body only once.
Each subsequent occurrence of a _ keyword denotes a different parameter.

For-comprehensions. We define syntactic sugar for element traversal, best
described through a couple of examples. The following for-loop which is supposed
to print numbers from 0 until 10:

for (i <- 0 until 10) {
println(i)
}

is desugared into the following expression:

(0.until(10)).foreach {
i => println(i)
}

Above, the expression following the <- keyword must be an object containing
the foreach method. This method must take a single parameter function value
– in this case the block that prints a given number. We assume that the object
produced by the expression 0.until(10) is predefined for integer values.

This mechanism allows us to use the same for-loop notation both for travers-
ing numbers, installing callback handlers on future value or asynchronously
traversing FlowPool elements.

In some cases, given a set of values being traversed, we want to produce a
new set of values. The syntax for this involves the yield keyword, as in the
following example:
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val fp = new FlowPool[Int]()
fp.builder << 1
fp.builder << 2
fp.builder << 3

for (i <- fp) yield {
i * i
}

The for-loop above is translated into a call to the map method on FlowPools:

fp.map {
i => i * i
}

The map method must take a single argument function. The map method on
FlowPools will return a new FlowPool with every element mapped.

A similar method called flatMap takes a single argument function which
returns another traversable object. It can be used to compose traversals over
several objects within one for-loop. The following for-loop which traverses two
flow pools to produce a Cartesian product of their elements:

for (x <- fp1; y <- fp2) yield (x, y)

is translated into the following calls:

fp1.flatMap {
x => fp2.map {

y => (x, y)
}
}

Futures. Futures are values which will become available at some point in
the future. We distinguish between a value of type Future[T], where T is the
type of the value which becomes available (for example, an integer – Int) and an
asynchronous computation which completes a future value. This asynchronous
computation may be started using the future construct:

val p = new FlowPool[Int]
val f = future {

p << 1
}
p.seal(1)

Above, the last line may be executed before or after appending the element
1 at runtime. Also, the future construct returns a future completed with the
value its associated block computes.

Futures can be used in for-comprehensions, i.e. they define foreach, map and
flatMap methods. A foreach loop on a future is an asynchronous computation
which executes once the value of the future becomes available – it is a for-loop
which traverses only a single value, and only once it becomes available. More
complex patterns can also arise. Given two futures f and g, we can produce a
third future which whose value becomes available only after values of f and g

are available:
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val f = future {
sum(10)
}
val p = new FlowPool[Int]
val g = p.aggregate(0)(_ + _)(_ + _)
for (i <- 0 until 10) p.builder << i * i
p.seal(10)

val h: Future[Double] = for (x <- f; y <- g) yield {
sqrt(y / 10 - x * x / 100)
}

Above, the real-valued future h contains the standard deviation of the first
ten integers. The for-comprehension on futures is desugared into:

f.flatMap {
x => g.map {

y => sqrt(y / 10 - x * x / 100)
}
}

Examples. We start off with a couple of methods that create new FlowPools.
The iterate method iteratively applies a function to the starting value and puts
it into a FlowPool. The range method creates a fixed size FlowPool from a range
of numbers. The fill method creates a fixed size FlowPool filled with exactly
the same element. Given the syntax primer above, it should be straightforward
to grasp their contents.

def iterate[T]
(s: T, f: T => T)
val p = new FlowPool[T]
val b = p.builder
def recurse(x: T) {

b << x
recurse(f(x))
}
future { recurse(s) }
p

def range
(from: Int, end: Int)
val p = new FlowPool[T]
val b = p.builder
future {

for (i <- start to end)
b << i

b.seal(n)
}
p

def fill[T]
(n: Int, elem: =>T)
val p = new FlowPool[T]
val b = p.builder
future {

for (i <- 1 to n)
b << elem

b.seal(n)
}
p

We now show that aggregate can be used to implement a range of other
methods based on reducing the values. Notice that the fold we define is less
general than the aggregate, since it places a type bound on the type parameter,
meaning it can only operate on supertypes of the values in the pool5.

def exists
(pred: T => Boolean)
aggregate(false)(_ ∨ _) {

(acc, x) =>
acc ∨ pred(x)
}

def forall
(pred: T => Boolean)
aggregate(true)(_ ∧ _) {

(acc, x) =>
acc ∧ pred(x)
}

def min()
def min(a: Int, b: Int)

if a < b a else b
aggregate(0)(min) {

min
}

5 We have not precisely defined what type bounds and inheritance are, but it suffices
to say that in a language with subtyping an unrestricted fold cannot be expressed
in terms of aggregate we have defined.
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def sum()
aggregate(0)(_ + _) {

_ + _
}

def product()
aggregate(1)(_ * _) {

_ * _
}

def count
(pred: T => Boolean)
aggregate(0)(_ + _) {

(acc, x) =>
if pred(x) 1 else 0
}

def fold[U >: T]
(zero: U, op: (U, U) => U)
aggregate(zero)(op)(op)

def flatten[S]
(q: FlowPool[FlowPool[S]])
val p = new FlowPool[S]
val b = p.builder
aggregate(future(0))(add) {

(af, r) =>
val sf = for (x <- q) b << x
add(af, sf)
} map { sz => b.seal(sz) }
p

The flatten method turns a FlowPool whose elements are FlowPools them-
selves into a FlowPool containing all the elements of the nested FlowPools. It
could also have been expressed in terms of the flatMap method described earlier.

Sometimes there is a need to convert between futures and FlowPools. Lets
assume we have a list of futures and we wish to have a FlowPool of their values
instead. The method toFlowPool does this by calling a foreach on every future.
We assume the existence of a traversable List datatype.

The converse is not so easy, since we do not know how many elements will
there be available in the FlowPool. This means we cannot create a list of futures,
because we do not know how many future there will be. We can instead create a
future which holds the final list of values. This is what the method toList does.
Notice that the aggregate invocation does not form a commutative monoid, so
the results will be nondeterministic, which is reflected in the order of elements
in the resulting list. We could still maintain determinism given that we use a
Set datatype instead of a List.

def toFlowPool[T]
(fs: List[Future[T]])
val p = new FlowPool[T]
val b = p.builder
for (f <- fs; x <- f)

b << x
p

def toList[T]
(p: FlowPool[T])
p.aggregate(∅)(_ ::: _) {

(acc, x) => x :: acc
}

def toList2[T]
(p: FlowPool[T], n: Int)
type LFT = List[Future[T]]
val fs = List.fill(n)

(new Future[T]())
def complete(l: LFT, x: T)

if ¬l.head.tryComplete(x)
complete(l.tail, x)

else l
p.builder.seal(n)
p.aggregate(fs) {

(gs, hs) => gs
} {

(acc, x) =>
complete(acc, x)
}
fs

def intersect
(that: FlowPool[T])
val p = new FlowPool[T]
val b = p.builder
for (x <- this) {

that.aggregate(false)(_ ∨ _) {
(acc, y) =>
if (!acc) {

b << x
true
} else false
}
}
p

However, given that we assume the number of elements in the FlowPool, we
can do better than that. The method toList2 starts by sealing the pool to the
expected number of elements. If successful, the predefined futures are completed
as the elements arrive into the FlowPool. We have to use the tryComplete

method on futures, which completes the future only given that it has not already
been completed. This potentially yields nondeterministic computations, but we
cannot avoid this without more expressive abstractions, such as pools for which
we know that all of the elements they hold are the same and some sort of a
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forany construct which invokes a callback on any element of the pool, roughly
speaking.

The intersect method above produces a new FlowPool with elements that
appear both in the current FlowPool this and another FlowPool that. It is not
very efficient, however – a more efficient implementation would require a more
expressive single-assignment abstraction such as a single-assignment map.
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Architecture Elements FlowPool t[ms] P Queue t[ms] P decr.

4-core i7 2M 17 8 35 1 51%
4-core i7 5M 44 8 87 1 49%
4-core i7 15M 118 8 258 1 54%

UltraSPARC T2 1M 23 32 111 4 79%
UltraSPARC T2 2M 34 64 224 4 84%
UltraSPARC T2 5M 62 64 556 4 88%
UltraSPARC T2 15M 129 64 1661 4 92%

32-core Xeon 2M 30 8 50 1 40%
32-core Xeon 5M 46 64 120 1 61%
32-core Xeon 15M 126 64 347 1 63%

Table 1. Execution times for insert benchmark for multi-lane FlowPool and concurrent
linked queues, including execution time decrease percentage.

D Additional Evaluation

In this section, some additional evaluation results are presented.
Map and Reduce The Reduce benchmark starts P threads which concur-

rently insert a total of N elements. The aggregate operation is used to reduce
the set of values inserted into the pool. Note that in the FlowPool implemen-
tation there may be as many threads computing the aggregation as there are
different lanes – elements from different lanes are batched together once the pool
is sealed.

The Map benchmark is similar to the Reduce benchmark, but instead of
reducing a value, each element is mapped into a new one and added to a second
pool.

Scaling in Input Size In figure 6 we can see that the Input, Map, Re-
duce and Histrogram benchmark all scale linearly in the input size with any
parallelism level. The Comm benchmark has not been tested for different sizes.

Multi-Lane Scaling By default, the number of lanes is set to the paral-
lelism level P , corresponding to the number of used CPUs. However, since the
implementation has to use hashing on the thread IDs instead of the real CPU
index, we tested whether varying the number of lanes to 1.5P , 2P , 3P and 4P
results in performance gain due to fewer collisions. Benchmarks have shown (see
fig 7) that this yields no observable gain – in fact, this sometimes even decreased
performance slightly.

Performance Gain As stated in the abstract, FlowPools – or more pre-
cisely multi-lane FlowPools – may reduce execution time by 49− 54% on 4-core
i7. These figures have been obtained by comparing medians of execution times
for insertions between multi-lane FlowPools and concurrent linked queues (which
were always faster than linked transfer queues), where each structure was evalu-
ated on its optimal parallelization level. The resulting data is shown in table 1.

Methodology All the presented configurations have been measured 20 times,
where the 5 first values have been discarded to let the JIT stabilize. Aggre-
gated values are always medians. The benchmarks have been written using
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scala.testing.Benchmark and executed through SBT6 using the following flags
for the JavaVM: -Xmx2048m -Xms2048m -XX:+UseCondCardMark -verbose:gc

-XX:+PrintGCDetails -server.

6 Simple Build Tool
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Fig. 6. Execution time vs benchmark size (P = 1, 8). ♦ single-lane FlowPool, × multi-
lane FlowPool, 4 linked transfer queue, ◦ concurrent linked queue
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