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Abstract. Parallel algorithms can be expressed more concisely in a
functional programming style. This task is made easier through the use of
proper sequence data structures, which allow splitting the data structure
between the processors as easily as concatenating several data structures
together. E�cient update, split and concatenation operations are essen-
tial for declarative-style parallel programs.
This paper shows a functional data structure that can improve the e�-
ciency of parallel programs. The paper introduces two Conc-Tree vari-
ants: the Conc-Tree list, which provides worst-case O(logn) time lookup,
update, split and concatenation operations, and the Conc-Tree rope,
which additionally provides amortized O(1) time append and prepend
operations. The paper demonstrates how Conc-Trees implement e�cient
mutable sequences, evaluates them against similar persistent and mu-
table data structures, and shows up to 3× performance improvements
when applying Conc-Trees to data-parallel operations.

1 Introduction

Balanced trees are good for data-parallelism. They can be easily split between
CPUs, so that their subsets are processed independently. Providing e�cient con-
catenation and retaining these properties is challenging, but essential for e�cient
declarative data-parallel operations. The following data-parallel program maps
numbers in the given range by incrementing them:

(0 until 1000000).toPar.map(x => x + 1)

When the per-element workload is minimal, as is the case with addition, the
overwhelming factor of the data-parallel computation is copying the data. Tree
data structures can avoid the need for copying results from di�erent processors
by providing e�cient concatentation. Another use case for trees is e�cient par-
allelization of task-parallel functional programs. In the following we compare a
cons-list-based functional implemenation of the sum method against the conc-

list-based parallel implementation [16]:

def sum(xs: List[Int]) =1

xs match {2

case head :: tail =>3

head + sum(tail)4

case Nil => 0 }5

def sum(xs: Conc[Int]) =6

xs match {7

case ls <> rs =>8

sum(ls) + sum(rs)9

case Single(x) => x }10



The �rst sum implementation decomposes the data structure xs into the �rst
element head and the remaining elements tail. Sum is computed by recursively
adding head to the sum of tail. This implementation cannot be e�ciently par-
allelized. The second sum implementation splits xs into two subtrees ls and rs,
and recursively computes their partial sums before adding them together. If xs
is a balanced tree, the second sum implementation can be e�ciently parallelized.

In this paper, we describe several variants of the binary tree data-structure
called Conc-Tree, used to store sequences of elements. The basic variant is per-
sistent [11], but we use Conc-Trees to design e�cient mutable data structures.
Traditionally, persistent data structures are perceived as slower and less e�cient
than imperative data structures. This paper shows that Conc-Trees are the ba-
sis for e�cient mutable data structures for parallel computing. Data-parallel
combiners [12] [13] based on Conc-Trees improve performance of data-parallel
operations. Functional task-parallel programming abstractions, such as Fortress
Conc-lists [2], can be implemented using Conc-Trees directly. Concretely, the
paper describes:
� Conc-Tree lists, with worst-case O(log n) time persistent insert, remove and
lookup, and worst-case O(log n) persistent split and concatenation.

� Conc-Tree ropes, which additionally introduce amortized O(1) time ephemeral

append and prepend operations, and have optimal memory usage.
� Mutable bu�ers based on Conc-Trees, used to improve data-parallel opera-
tion performance by up to 3× compared to previous approaches.
In Section 2, we introduce Conc-Tree lists. We discuss Conc-Tree ropes in

Section 3. In Section 4, we apply Conc-Trees to mutable data structures, and
in Section 5, we experimentally validate our Conc-Tree implementation. Finally,
we give an overview of related work in Section 6.

2 Conc-Tree List

Trees with relaxed invariants are typically more e�cient to maintain in terms of
asymptotic running time. Although they provide less guarantees on their balance,
the impact is small in practice � most trees break the perfect balance by at most
a constant factor. Conc-Trees use a classic relaxed invariant seen in red-black
and AVL trees [1] � the longest path from the root to a leaf is never more than
twice as long than the shortest path from the root to a leaf.

The Conc-Tree data structure consists of several node types. We refer to
Conc-Tree nodes with the Conc type. This abstract data type has several con-
crete data types, similar to how the functional List data type is either an empty
list Nil or a :: (pronounced cons) � element and another list. The Conc may
either be an Empty, denoting an empty tree, a Single, denoting a tree with a
single element, or a <> (pronounced conc), denoting two separate subtrees.

We show these basic data types in Figure 1. Any Conc has an associated
level, which denotes the longest path from the root to some leaf in that tree.
The level is de�ned to be 0 for the Empty and Single tree, and 1 plus the
level of the deeper subtree for the <> tree. The size of a Conc denotes the



abstract class Conc[+T] {11

def level: Int12

def size: Int13

def left: Conc[T]14

def right: Conc[T]15

def normalized = this }16

17

abstract class Leaf[T]18

extends Conc[T] {19

def left = error()20

def right = error() }21

22

case object Empty23

extends Leaf[Nothing] {24

def level = 025

def size = 0 }26

case class Single[T](x: T)27

extends Leaf[T] {28

def level = 029

def size = 130

}31

32

case class <>[T](33

left: Conc[T], right: Conc[T]34

) extends Conc[T] {35

val level =36

1 + max(left.level,37

right.level)38

val size =39

left.size + right.size40

}41

42

Fig. 1. Basic Conc-Tree Data Types

total number of elements contained in the Conc-Tree. The size and level are
cached as �elds in the <> type to prevent traversing the tree to compute them
each time they are requested. Conc trees are persistent like cons-lists � they are
never modi�ed after construction. We defer the explanation of the normalized
method until Section 3 � for now normalized just returns the tree.

It is easy to see that the data types described so far can yield imbalanced
trees. We can construct arbitrarily large empty trees by combining the Empty
tree instances with <>. We thus enforce the following invariant � the Empty
tree can never be a part of <>. However, this restriction is still not su�cient �
imbalanced trees can be constructed by iteratively adding elements to the right:

(0 until n).foldLeft(Empty: Conc[Int]) {
(tree, x) => new <>(tree, new Single(x))

}

To ensure that the Conc-Trees are balanced, we require that the di�erence
in levels of the left subtree and the right subtree is less than or equal to 1.
This relaxed invariant imposes bounds on the number of elements. If the tree
is completely balanced, i.e. every <> node has two children with equal levels,
then the subtree size is S(level) = 2level. If we denote the number of elements
as n = S(level), it follows that the level of this tree is level = log2 n.

Next, if the tree is sparse and every <> node at a speci�c level has two
subtrees such that |left.level − right.level| = 1, the size of a node at level is:

S(level) = S(level − 1) + S(level − 2), S(0) = 1 (1)

This is the familiar Fibonacci recurrence with the solution:

S(level) =
1√
5
(
1 +
√
5

2
)level − 1√

5
(
1−
√
5

2
)level (2)



The second addend in the previous equation quickly becomes insigni�cant,
and the level of such a tree is level = log 1+

√
5

2

n+ log 1+
√

5
2

√
5.

From the monotonicity of these recurrences, it follows that O(log n) is both
an upper and a lower bound for the Conc-Tree depth. The bounds also ensure
that Conc-Trees have O(log n) lookup and update operations.

def apply(xs: Conc[T], i: Int) = xs match {43

case Single(x) => x44

case left <> right =>45

if (i < left.size) apply(left, i)46

else apply(right, i - left.size) }47

def update(xs: Conc[T], i: Int, y: T) =48

xs match {49

case Single(x) => Single(y)50

case left <> right if i < left.size =>51

new <>(update(left, i, y), right)52

case left <> right =>53

val ni = i - left.size54

new <>(left, update(right, ni, y)) }55

The update operation produces a new Conc-Tree such that the element at
index i is replaced with a new element y. This operation only allows replacing
existing elements, and we want to insert elements as well. Before showing an
O(log n) insert operation, we show how to concatenate two Conc-Trees.

Conc-Tree concatenation is shown in Figure 2. The <> method allows nicer
concatenation syntax � the expression xs <> ys concatenates two trees to-
gether. Note that this is di�erent than the expression new <>(xs, ys) that
simply links two trees together with one <> node � invoking the constructor di-
rectly can violate the balance invariant. We refer to composing two trees together
with a <> node as linking. Creating a Conc-Tree that respects the invariants and
that is the concatenated sequence of the two input trees we call concatenation.

The bulk of the concatenation logic is in the concat method in Figure 2.
This method assumes that the trees are normalized, i.e. composed from the basic
data types from Figure 1. In explaining the code in Figure 2 we will make an
assumption that concatenating two Conc-Trees can yield a tree whose level is
either equal to the larger input Conc-Tree or greater by exactly 1. In other words,
concatenation never increases the Conc-Tree level by more than 1. We call this
the height-increase assumption. We will inductively show that the height-increase
assumption is correct while explaining the recursive concat method in Figure
2. We skip the trivial base case of merging Single trees.

The trees xs and ys may be in several di�erent relationships with respect to
their levels. First of all, the absolute di�erence between the levels of xs and
ys could di�er by one or less. This is an ideal case � the two trees can be linked
directly by creating a <> node that connects them. Otherwise, one tree has a
greater level than the other one. Without the loss of generality we assume that
the left Conc-Tree xs is higher than the right Conc-Tree ys. To concatenate xs
and ys we need to break xs into parts.



def <>[T](xs: Conc[T], ys: Conc[T]) = {56

if (xs == Empty) ys57

else if (ys == Empty) xs58

else concat(xs.normalized, ys.normalized) }59

def concat[T](xs: Conc[T], ys: Conc[T]) = {60

val diff = ys.level - xs.level61

if (abs(diff) <= 1) new <>(xs, ys)62

else if (diff < -1) {63

if (xs.left.level >= xs.right.level) {64

val nr = concat(xs.right, ys)65

new <>(xs.left, nr)66

} else {67

val nrr = concat(xs.right.right, ys)68

if (nrr.level == xs.level - 3) {69

val nr = new <>(xs.right.left, nrr)70

new <>(xs.left, nr)71

} else {72

val nl = new <>(xs.left, xs.right.left)73

new <>(nl, nrr)74

} }75

} else {76

if (ys.right.level >= ys.left.level) {77

val nl = concat(xs, ys.left)78

new <>(nl, ys.right)79

} else {80

val nll = concat(xs, ys.left.left)81

if (nll.level == ys.level - 3) {82

val nl = new <>(nll, ys.left.right)83

new <>(nl, ys.right)84

} else {85

val nr = new <>(ys.left.right, ys.right)86

new <>(nll, nr)87

} } } }88

Fig. 2. Conc-Tree Concatenation Operation

Assume that xs.left.level >= xs.right.level, in other words, that
xs is left-leaning. The concatenation xs.right <> ys in line 65 increases the
height of the right subtree by at most 1. This means that the di�erence in
levels between xs.left and xs.right <> ys is 1 or less, so we can link
them directly in line 66. Under the height-increase assumption, the resulting tree
increases its height by at most 1, which inductively proves the assumption for
left-leaning trees.

We next assume that xs.left.level < xs.right.level. The subtree
xs.right.right is recursively concatenated with ys in line 68. Its level may
be equal to either xs.level - 2 or xs.level - 3. After concatenation we
obtain a new tree nrr with the level anywhere between xs.level - 3 and
xs.level - 1. Note that, if the nrr.level is equal to xs.level - 3, then



the tree xs.right.left level is xs.level - 2, by the balance invariant.
Depending on the level of nrr we either link it with xs.right.left, or we
link xs.left with xs.right.left, and link the resulting trees once more.
Again, the resulting tree does not increase its height by more than 1. This turns
the height-increase assumption into the following theorem.

Theorem 1 (Height Increase). Concatenating two Conc-Tree lists of heights

h1 and h2 yields a tree with height h such that |h−max(h1, h2)| ≤ 1.

The bound on the concatenation running time follows directly from the pre-
vious theorem and the implementation in Figure 2:

Theorem 2 (Concatenation Time). Concatenation of two Conc-Tree lists

with heights h1 and h2 is an O(|h1 − h2|) asymptotic running time operation.

Proof. Direct linking in the concatenation operation is always an O(1) opera-
tion. Recursively invoking concat occurs at most once on any control path in
concat. Each time concat is called recursively, the height of the higher Conc-
Tree is decreased by 1, 2 or 3. Method concat will not be called recursively
if the absolute di�erence in Conc-Tree heights is less than or equal to 1. Thus,
concat can only be called at most O(|xslevel − yslevel|) times. ut

These theorems will be important in proving the running times of the data
structures shown later. We now turn to the insert operation to show the im-
portance of concatenation on a simple example. The concatenation operation
makes expressing the insert operation straightforward:

def insert[T](xs: Conc[T], i: Int, y: T) =89

xs match {90

case Single(x) =>91

if (i == 0) new <>(Single(y), xs)92

else new <>(xs, Single(y))93

case left <> right if i < left.size =>94

insert(left, i, y) <> right95

case left <> right =>96

left <> insert(right, i - left.size, y) }97

Insert unzips the tree along a certain path by dividing it into two subtrees
and inserting the element into one of the subtrees. That subtree will increase its
height by at most one by Theorem 1, making the height di�erence with its sibling
at most two. Merging the two new siblings is thus O(1) by Theorem 2. Since
the length of the path from the root to any leaf is O(log n), the total amount of
work done becomes O(log n). The split operation is similar to insert, and
has O(log n) complexity by the same argument.

Appending to a Conc-Tree list amounts to merging it with a Single tree:

def <>[T](xs: Conc[T], x: T) = xs <> Single(x)

The downside of appending elements this way is that it takes O(log n) time.
If most of the computation involves appending or prepending elements, this is
not satisfactory. We see how to improve this bound in the next section.



3 Conc-Tree Rope

In this section, we modify the Conc-Tree to support an amortized O(1) time
ephemeral append operation. The reason that append from the last section
takes O(log n) time is that it has to traverse a path from the root to a leaf. Note
that the append position is always the same � the rightmost leaf. Even if we
could expose that rightmost position by de�ning the Conc-Tree as a pair of the
root and the rightmost leaf, updating the path from the leaf to the root would
take O(log n) time. We instead relax the Conc-Tree invariants.

We introduce a new Conc-Tree node called Append, which has a structure
isomorphic to the <> node. The di�erence is that the Append node does not
have the balance invariant � the heights of its left and right subtrees are
not constrained. Instead, we impose the append invariant on Append nodes: the
right subtree of an Append node is never another Append node. Furthermore,
the Append tree cannot contain Empty nodes. Finally, only an Append node
may point to another Append node. The Append tree is thus isomorphic to a
cons-list with the di�erence that the last node is not Nil, but another Conc-Tree.

This data type is transparent to clients and can alternatively be encoded as
a special bit in <> nodes � clients never observe nor can construct Append nodes.

case class Append[T](left: Conc[T], right: Conc[T])98

extends Conc[T] {99

val level = 1 + left.level.max(right.level)100

val size = left.size + right.size101

override def normalized = wrap(left, right)102

}103

def wrap[T](xs: Conc[T], ys: Conc[T]) =104

xs match {105

case Append(ws, zs) => wrap(ws, zs <> ys)106

case xs => xs <> ys107

}108

We implement normalized so that it returns the Conc-Tree that contains
the same sequence of elements as the original Conc-Tree, but is composed only of
the basic Conc-Tree data types in Figure 1. We call this process normalization.
The method normalized in Append calls the recursive method wrap, which
folds the trees in the linked list induced by Append.

We postpone claims about the normalization running time, but note that the
previously de�ned concat method invokes normalized twice and is expected
to run in O(log n) time � normalized should not be worse than O(log n).

We turn to the append operation, which adds a single element at the end of
the Conc-Tree. Recall that by using concat directly this operation has O(log n)
running time. We now implement a more e�cient append operation. The invari-
ant for the Append nodes allows appending as follows:

def append[T](xs: Conc[T], ys: Single[T]) = new Append(xs, ys)
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Fig. 3. Correspondence Between the Binary Number System and Append-Lists

De�ned like this, append is a worst-case constant-time operation, but it
has a negative impact on the normalized method. Appending n elements
results in a long list-like Conc-Tree on which normalized takes O(n log n) time.
This append implementation illustrates that the more time append spends
organizing the relaxed Conc-Tree, the less time a concat spends later.

Before attempting a di�erent append implementation, note the correspon-
dence between a linked list of trees of di�erent levels and the digits of di�erent
weights in a standard binary number representation. This correspondence is in-
duced by linking two Conc-Tree nodes of the same level with a new <> node,
and adding two binary digits of the same weight. With binary numbers, counting
up to n takes O(n) computation steps, where one computation step is rewriting a
single digit in the binary representation. Adding 1 is usually an O(1) operation,
but the carries chain-react and occasionally require up to O(log n) rewrites. It
follows that adding n Single trees in the same way requires O(n) computa-
tion steps, where a computation step is linking two trees with the same level
together � by Theorem 2, an O(1) operation.

We augment the append invariant � if an Append node a has another
Append node b as the left child, then a.right.level < b.right.level.
If we now interpret the Conc-Trees under Append nodes as binary digits with
the weight 2level, we end up with the sparse binary number representation [11].
In this representation, zero digits (missing Conc-Tree levels) are not a part of
the physical structure in memory. This correspondence is illustrated in Figure 3,
where the binary digits are shown above the corresponding Conc-Trees and the
dashed line represents the linked list formed by the Append nodes.

Figure 4 shows the append operation that executes in O(1) amortized time.
The link operation in line 118, which corresponds to adding binary digits, occurs
only for adjacent trees that happen to have the same level. The trees in the
append list are in a form that is friendly to normalization. This list of trees of
increasing size is such that the height of the largest tree is O(log n), and no
two trees have the same height. It follows that there are no more than O(log n)
such trees. Furthermore, the sum of the height di�erences between adjacent trees
is O(log n). By Theorem 1 concatenating any two adjacent trees y and z in the
strictly decreasing sequence t∗xyzs∗ yields a tree with a height no larger than the
height of x. By Theorem 2, the total amount of work required to merge O(log n)
such trees is O(log n). Thus, appending in a way analogous to incrementing
binary numbers ensures O(log n) normalization.



def append[T](xs: Conc[T], ys: Leaf[T]) =109

xs match {110

case Empty => ys111

case xs: Leaf[T] => new <>(xs, ys)112

case _ <> _ => new Append(xs, ys)113

case xs: Append[T] => append(xs, ys) }114

private def append[T](xs: Append[T], ys: Conc[T]) =115

if (xs.right.level > ys.level) new Append(xs, ys)116

else {117

val zs = new <>(xs.right, ys)118

xs.left match {119

case ws @ Append(_, _) =>120

append(ws, zs)121

case ws =>122

if (ws.level <= xs.level) ws <> zs123

else new Append(ws, zs) } }124

Fig. 4. Append Operation

Note that the public appendmethod takes a Leaf node instead of a Single
node. The conc-lists from Section 2 and their variant from this section have a
high memory footprint. Using a separate leaf to represent each element is in-
e�cient. Traversing the elements in such a data structure is also suboptimal.
Conc-Tree travesal (i.e. a foreach) must have the same running time as array
traversal, and memory consumption should correspond to the memory footprint
of an array. We therefore introduce a new type of a Leaf node, called a Chunk,
that packs the elements more tightly together. As we will see in Section 4, this
also ensures an e�cient imperative += operation.

case class Chunk[T](xs: Array[T], size: Int, k: Int)125

extends Leaf[T] { def level = 0 }126

The Chunk node contains an array xs with size elements. The additional
argument k denotes the maximum size that a Chunk can have. The insert
operation from Section 2 must copy the target Chunk when updating the Conc-
Tree, and divides the Chunk into two if size exceeds k. Similarly, a remove
operation fuses two adjacent Chunks if their total size is below a threshold.

The Conc-Tree rope has one limitation. When used persistently, it is possible
that we obtain an instance of the Conc-Tree whose next append triggers a chain
of linking operations. If we repetitively use that instance of the tree for append-
ing, we lose the amortized O(1) running time. Thus, when used persistently, the
Conc-Tree rope has O(log n) appends. This limitation is overcome by another
Conc-Tree variant called a conqueue, described in related work [12]. Conc-Tree
ropes are nonetheless useful, since their simplicity ensures good constant fac-
tors and O(1) ephemeral use. In fact, many applications, such as data-parallel
combiners [13], always use the most recent version of the data structure.



class ConcBuffer[T](val k: Int) {127

private var conc: Conc[T] = Empty128

private var ch: Array[T] = new Array(k)129

private var lastSize: Int = 0130

def +=(elem: T) {131

if (lastSize >= k) expand()132

ch(lastSize) = elem133

lastSize += 1 }134

private def expand() {135

conc = append(conc, new Chunk(ch, lastSize, k))136

ch = new Array(k)137

lastSize = 0 } }138

Fig. 5. Conc-Bu�er Implementation

4 Mutable Conc-Trees

Most of the data structures shown so far were persistent. This persistence comes
at a cost � while adding a single node has an O(1) running time, the constant
factors involved with allocating objects are still large. In Figure 5, we show
the ConcBuffer data structure, which uses Conc-Tree ropes as basic building
blocks. This mutable data structure maintains an array segment to which it
writes appended elements. Once the array segment becomes full, it is pushed
into the Conc-Tree as a Chunk node, and a new array segment is allocated.

Although combiners based on growing arrays have O(1) appends [13], resiz-
ing requires writing an element to memory twice on average. Conc-ropes with
Chunk leaves ensure that every element is written only once. The larger the
maximum chunk size k is, the less often is a Conc operation invoked in the
method expand � this amortizes Conc-rope append cost, while retaining fast
traversal. The ConcBuffer shown above is much faster than Java ArrayList
or C++ vector when appending elements, and at the same time supports ef-
�cient concatenation. The underlying persistent Conc-rope allows an e�cient
copy-on-write snapshot operation.

5 Evaluation

In this section, we compare Conc-Trees against fundamental sequences in the
Scala standard library � functional cons-lists, array bu�ers and Scala Vectors.
In a cons-list, prepending an element is highly e�cient, but indexing, updating
or appending an elements are O(n) time operations. Scala ArrayBuffer is a
resizeable array known as the ArrayList in Java and as vector in C++.
Array bu�ers are mutable random access sequences that can index or update
elements with a simple memory read or write. Appending is amortized O(1),
as it occasionally resizes the array, and rewrites all the elements. An important
limitation is that append takes up to 2 memory writes on average. Scala (and
Clojure) Vectors are e�cient trees that can implement mutable and persistent



sequences. Their de�ning features are low memory consumption and e�cient
prepending and appending. Current implementations do not have concatenation.

We compare di�erent Conc-Tree variants: lists, ropes, mutable Conc-Bu�ers,
as well as conqueues, described in related work [12].

We execute the benchmarks on an Intel i7 3.4 GHz quad-core processor.
We start with traversal � we evaluate the foreach on persistent Conc-Tree
lists from Section 2 and compare it to the foreach on the functional cons-
list in Figure 6A. Traversing the cons-list is tail recursive and does not use the
call stack. Furthermore, Conc-Tree list traversal visits more nodes compared to
cons-lists. Therefore, traversing the basic Conc-Tree list is slower than traversing
a cons-list. On the other hand, the Chunk nodes ensure e�cient traversal, as
shown in Figure 6B. For k = 128, Conc-Tree traversal running time is 2× faster
than that of Scala Vector. In subsequent benchmarks we set k to 128.

Appending is important for data-parallel transformations. While higher con-
stant factors result in 2× slower conqueue appends compared to persistent Vec-
tors, persistent Conc-Tree rope append is faster (Figure 6C). For comparison,
inserting into a red-black tree is approximately 4× slower than appending to a
conqueue. In Figure 6D, we compare Conc-Tree bu�ers against mutable Scala
Vectors. Resizeable array appends are outperformed by all other data structures.

When it comes to prepending elements, cons-lists are very fast � prepending
amounts to creating a single node. Cons-list have the same performance as mu-

table conqueue bu�ers, even though cons-lists are persistent. Both Scala Vectors
and persistent conqueues are an order of magnitude slower.

Concatenation has the same performance for both persistent and mutable
Conc-Tree variants. Concatenating mutable variants requires taking a snapshot,
which can be done lazily in constant-time [14]. We show concatenation perfor-
mance in Figure 6F, where we repeat concatenation 104 times. Concatenating
Conc-ropes is slightly more expensive than conc-list concatenation because of
the normalization, and it varies with size because the number of trees (that is,
non-zeros) in the append list �uctuates. Conqueue concatenation is slower (note
the log axis) due to the longer normalization process. Concatenating lists, array
bu�ers and Scala Vectors is not shown here, as it is a linear time operation, and
thousands of times slower for the same number of elements.

Random access is an operation where Scala Vectors have a clear upper hand
over the other persistent sequences. Although indexing a Scala Vector is faster
than indexing Conc-Trees, both are orders of magnitudes slower than array ran-
dom access. We note that applications that really need random-access perfor-
mance must use arrays for indexing operations, and avoid Vector altogether.

We show memory consumption in Figure 6H. While a Conc-Tree list occupies
twice as much memory as a functional cons-list, using Chunk nodes has a clear
impact on the memory footprint � arrays, Scala Vectors and Conc-Trees with
Chunk nodes occupy an almost optimal amount of memory, where optimal is
the number of elements in the data structure multiplied by the pointer size.
Resizeable arrays waste up to 50% of space due to their resizing policy.
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Fig. 6. Conc-Tree Benchmarks (smaller is better)



Data-parallel operations are the main use-case for Conc-Trees. Scala collec-
tion framework de�nes high-level collection combinators, such as �ltering, group-
ing, mapping and scanning. This API is similar to high-level data-processing
APIs such as FlumeJava and Apache Spark. The example from Section 1 shows
how to map numbers from a parallel range of numbers using the map operation.
This map operation works by parts of the parallel range across di�erent pro-
cessors, and producing parts of the resulting collection in parallel. The lambda
function x => x + 1 is used on each input element to produce an output element.
After independent processors produce intermediate collections, their results must
be merged into a new collection. When the resulting collection is an array, inter-
mediate array chunks cannot be simply linked together � instead, a new array
must be allocated, and intermediate results must be copied into it. The array
cannot be preallocated, because in general the number of output elements is not
known in advance � in most data-parallel operations, a single input element can
map into any number of output elements, determined after the lambda is run.

In the ScalaBlitz parallel collection framework [13] [15], the unifying ab-
straction that allows expressing di�erent parallel operations on Scala collections
generically, is called a combiner. The combiner de�nes three generic operations:
adding a new element to the combiner (invoked every time a new output element
is created), merging two combiners (invoked when combiners from two di�erent
processors are merged), and producing the �nal collection (which is invoked once
at the end of the operation). The arrays created from the parallel ranges in the
map operation use a special array-based combiner, as described above.

We replaced the standard array-based combiner implementation in ScalaBlitz
with Conc-Tree-based combiners, and compared data-parallel map operation per-
formance with and without Conc-Trees in Figure 6I, and data-parallel �lter op-

eration performance in Figure 6J.
With Conc-Trees, performance of the data-parallel mapping is improved by

2− 3×. The reason for this improvement is two-fold. First, array chunks stored
inside Conc-Trees do not need bulk resizes, which array-based combiners periodi-
cally do. This is visible in Figure 6I,J, where the array-based combiner has spikes
at certain input collection sizes. Second, Conc-Tree-based combiners avoid copy-
ing each element twice, since intermediate Conc-Trees from di�erent processors
can be e�ciently merged without copying.

6 Related Work

Standard programming language libraries come with resizeable array implemen-
tations, e.g. the ArrayList in the JDK or the vector in C++ standard tem-
plate library. These are mutable data structures that provide O(1) worst case
time indexing and update operations, with O(1) amortized time append opera-
tion. Although appending is amortized O(1), each append on average requires
two writes to memory, and each memory location is allocated twice. Concatena-
tion is an O(n) operation. Cons-lists have an e�cient push-head and pop-head,
but other operations are O(n).



Ropes are heavily relied upon in the Xerox Cedar environment [5], where bulk
rebalancing is done after the rope becomes particularly skewed. These ropes have
an amortized O(log n) operation complexity. VList [3] is a functional sequence,
with logarithmic time lookup operations. Scala Vector [4] is a persistent sequence
implementation. Its dequeue operation has low constant factors, but requires
O(log n) time. Scala Vector does not support concatentation, since concatenation
support slows down other operations.

The idea of Conc lists was proposed in the Fortress language [2], where par-
allel programs are expressed as recursion and pattern matching on three types
of nodes � empty, single element or conc nodes [16]. All Conc-Tree variants from
this paper provide the same programming model as conc-lists from Fortress.

Relaxing the balancing requirements to allow e�cient updates was �rst pro-
posed by Adelson-Velsky and Landis, in the AVL tree data structure [1]. Okasaki
was one of the �rst to bridge the gap between amortization and persistence
through the use of lazy evaluation [9]. While persistent random access lists rely
on binary number representations to achieve e�cient append operations, they
are composed from complete trees of di�erent heights, and do not support con-
catenation as a consequence [11].

The recursive slowdown techniques were worked on by Kaplan and Tarjan
[7]. Previously, persistent sequence data structures were proposed that achieve
constant time prepend and append operations, and asymptotic constant time
concatenation [8]. Although asymptotic bounds of these data structures are bet-
ter than that of Conc-Trees, their operations have higher constant factors, and
increased implementation complexity. The catenable real-time queues due to
Okasaki allow e�cient concatenation but do not have the balanced tree struc-
ture required for parallelization, nor support logarithmic random access [10].
Hinze and Paterson describe a lazy �nger tree data structure [6] with amortized

constant time deque and concatenation operations.

7 Conclusion

This paper introduces Conc-Tree data structures for functional parallel program-
ming with worst-case O(log n) time splitting and concatenation. The Conc-Tree
list comes with a worst-case O(log n1

n2
) time concatenation with low constant fac-

tors. The Conc-Tree rope provides an amortized O(1) time append and prepend
operations. In terms of absolute performance, persistent Conc-Trees outperform
existing persistent data structures such as AVL trees and red-black trees by a
factor of 3 − 4×, and mutable Conc-Trees outperform mutable sequence data
structures such as mutable Vectors and resizeable arrays by 20− 50%, addition-
ally providing e�cient concatenation. Data-parallel operation running time can
be improved by up to 3×, depending on the workload characteristic.

When choosing between di�erent Conc-Tree variants, we advise the use of
ropes for most applications. Although Conc-Tree ropes achieve amortized bounds,
ephemeral use is typically su�cient.



Besides serving as a catenable data-type for functional task-parallel pro-
grams, and improving the e�ciency of data-parallel operations, the immutable
nature of Conc-Trees makes them amenable to linearizable concurrent snapshot
operations [12]. Ine�ciencies associated with persistent data can be amortized
to a near-optimal degree, so we expect Conc-Trees to �nd their applications in
future concurrent data structures.
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