
Implicit State Machines

Fengyun Liu
Oracle Labs
Switzerland

fengyun.liu@oracle.com

Aleksandar Prokopec
Oracle Labs
Switzerland

aleksandar.prokopec@oracle.com

Abstract

Finite-state machines (FSM) are a simple yet powerful ab-
straction widely used for modeling, programming and ver-
ifying real-time and reactive systems that control modern
factories, power plants, transportation systems and medical
equipment.

However, traditionally finite-state machines are either en-
coded indirectly in an imperative language, such as C and
Verilog, or embedded as an imperative extension of a declar-
ative language, such as Lustre. Given the widely accepted
advantage of declarative programming, can we have a declar-
ative design of finite-state machines to facilitate design, con-
struction, and verification of embedded programs?

By sticking to the design principle of declarativeness, we
show that a novel abstraction emerges, implicit state ma-

chines, which is declarative in nature and at the same time
supports recursive composition. Given its simplicity and uni-
versality, we believe it may serve as a new foundation for
programming embedded systems.

CCS Concepts: · Hardware → Software tools for EDA; ·
Software and its engineering → Domain specific lan-

guages.

Keywords: Finite-state machines, hierarchical finite-state
machines, implicit state machines

ACM Reference Format:

Fengyun Liu and Aleksandar Prokopec. 2022. Implicit State Ma-
chines. In Proceedings of the 23rd ACM SIGPLAN/SIGBED Interna-

tional Conference on Languages, Compilers, and Tools for Embedded

Systems (LCTES ’22), June 14, 2022, San Diego, CA, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3519941.3535065

1 Introduction

Finite-state machines are a universal formalism for modeling,
programming and verifying real-time and reactive systems,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

LCTES ’22, June 14, 2022, San Diego, CA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9266-2/22/06. . . $15.00
https://doi.org/10.1145/3519941.3535065

and are widely used in industiral automation, public trans-
portation systems, medical equipment, as well as avionics.
While many imperative languages, such as C and Ver-

ilog, support finite-state machines via encoding, it is more
advantageous to have finite-state machines as a language
construct to facilitate design, construction, and verification
of embedded systems.
However, most such programming models of finite-state

machines are in an imperative style, instead of being declara-
tive [14, 27]. It is well known that declarative programming
bridges the gap of specification and implementation, facil-
itates program transformation and verification, and at the
same time less error-prone than imperative programming
[15, 18, 20, 22, 26, 33]. We therefore ask the following ques-
tion:

Can we have a declarative design of finite-

statemachines to facilitate design, construc-

tion, and verification of embedded systems?

The main idea of this paper is to show that by adhering to
the design principle of declarativeness, we discover a novel
abstraction, which we call implicit state machines, and which
answers the question above affirmatively.
At the high-level, implicit state machines is based on the

following observations about FSMs: (1) state transitions do
not have to be explicitly enumerated state by state; (2) state
transition is a function; and (3) the inputs of the state ma-
chines do not need to be declared explicitly (Section 2).
Our contributions are listed below:

• Following the design principle of declarativeness, we
discover a novel abstraction, implicit state machines,
which are simple, flexible, universal and recursively
composable.

• We formalize the concept of implicit state machines in
a core calculus specialized with the domain of Boolean
algebra. We show that it can serve as a simple and
elegant model for sequential digital circuits, which is
not known previously.

• We develop an embedded DSL in Scala for digital de-
sign based on implicit state machines, and we assess
its practicality by designing a micro-controller in the
DSL.

2 Deriving Implicit State Machines

Readers may skip this section and jump to the intuitive intro-
duction of implicit state machines on the first read (Section 3).

13

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3519941.3535065
https://doi.org/10.1145/3519941.3535065
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3519941.3535065&domain=pdf&date_stamp=2022-06-14

LCTES ’22, June 14, 2022, San Diego, CA, USA Fengyun Liu and Aleksandar Prokopec

Mathematically, a finite state machine is usually repre-
sented as a quintuple (𝐼 , 𝑆, 𝑠0, 𝜎,𝑂) 1:

• 𝐼 is the set of inputs;
• 𝑆 is the set of states;
• 𝑠0 ∈ 𝑆 is the initial state;
• 𝜎 : 𝐼 ×𝑆 → 𝑆 ×𝑂 maps the input and the current state
to the next state and the output;

• 𝑂 is the set of outputs.

FSM can also be represented graphically by state-transition
diagrams, as the following figure shows:

𝑞1start 𝑞2 𝑞3

0/1

1/0

1/1
0/0

0/1, 1/1

In the state machine above, 𝑞1 is the initial state, and each
edge denotes a state transition: the label 0/1 on the edge
means the transition happens when the input is 0, and it
outputs 1 when the transition occurs.
Implicit state machines are based on a reflection on the

essence of FSMs: a mapping from input and state to the next
state and output.
Insight 1. The first insight towards implicit state ma-

chines is that state transitions do not need to be explicitly

enumerated, as it is taken for granted in existing languages
for programming with FSMs [12, 14, 21, 27].

In a declarative language, the mapping can be represented
by any expression. This gives us a tentative representation
as follows:

𝜆𝑥 :𝐼 × 𝑆. (𝑡1, 𝑡2) : 𝐼 × 𝑆 → 𝑆 ×𝑂

The body (𝑡1, 𝑡2) enforces that the output and next state
are implemented as two functions. This imposes unnecessary
syntatic constraints. If we introduce tuples in the language,
we can replace (𝑡1, 𝑡2) just by 𝑡 :

𝜆𝑥 :𝐼 × 𝑆. 𝑡 : 𝐼 × 𝑆 → 𝑆 ×𝑂

Insight 2. The second insight is that the state is neither
an input to an FSM nor an output of an FSM, but an internal

value. It leads us to the following representation with the
state variable 𝑠:

𝜆𝑥 :𝐼 . fsm { 𝑠 ⇒ 𝑡 } : 𝐼 → 𝑂

In the above, the term 𝑡 still has the type 𝑆 ×𝑂 . But seen
from outside, a state machine just maps input to output,
which corresponds to our intuition.

Insight 3. The last insight is that the inputs do not need to
be declared explicitly, they can be captured from the lexical

1Technically, the quintuple described here is a Mealy machine, because it
has an output. In embedded systems, pristine FSMs without output are not
interesting.

D Q

(a) Circuit Symbol

S D S’ Q
0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

(b) Truth table

Figure 1. D flip-flops and its semantics

D Q

1

D Q

2

D Q

3

D Q

4

Figure 2. A 4-bit serial-in serial-out shift register

scope, similar to capture in lambda calculus [3]:

fsm { 𝑠 ⇒ 𝑡 } : 𝑂

We still miss the initial state, so we use the value 𝑣 to
denote the initial state of the FSM:

fsm { 𝑣 | 𝑠 ⇒ 𝑡 } : 𝑂

After all these steps, finally we arrived at a declarative
representation of finite-state machines.

3 Implicit State Machines, Informally

Suppose we are working in the domain of digital circuits.
One of the most common state elements in digital circuits
are D flip-flops, whose symbol and truth-table semantics are
presented in Figure 1.
Intuitively, D flip-flops delay the input 𝐷 by one clock.

It can be seen from the truth table that the next state 𝑆 ′ is
always equal to the input 𝐷 , and the output 𝑄 is always
equal to the current state 𝑆 .
Using implicit state machines, a one-bit D flip-flop with

an input signal 𝑑 can be represented as follows:

fsm { 0 | 𝑠 ⇒ (𝑑, 𝑠) }

In the above, 0 represents the initial state of the D flip-flop;
𝑠 represents the current state; 𝑑 represents the input. The
body is a pair (𝑑, 𝑠), which means that the next state of the
implicit state machine is the input 𝑑 and the output is the
current state 𝑠 .

Note that in the above, the state variable 𝑠 is bound, while
the input 𝑑 is not bound. This is a characteristic of implicit
state machines, where the inputs are implicit, i.e., they are
captured from the lexical environment, similar to capture in
lambda calculus [3].
D flip-flops can be use to implement shift registers. In

Figure 2, we implement a 4-bit serial-in serial-out shift regis-
ter by chaining 4 D flip-flops. As a single D flip-flop delays

14

Implicit State Machines LCTES ’22, June 14, 2022, San Diego, CA, USA

D Q

1

D Q

2

D Q

3

D Q

4

Q1 Q2 Q3 Q4

Figure 3. A 4-bit serial-in parallel-out shift register

the input signal by one clock, intuitively the 4-bit serial-in
serial-out shift register delays the input signal by 4 clocks.
We implement the 4-bit serial-in serial-out shift register

for a given input 𝑑 with implicit state machine as follows:

let q1 = fsm { 0 | s => (d, s) } in

let q2 = fsm { 0 | s => (q1, s) } in

let q3 = fsm { 0 | s => (q2, s) } in

let q4 = fsm { 0 | s => (q3, s) } in

q4

In the code above, we use the standard linguistic construct
let/in to introduce local bindings.
Implicit state machines are just expressions, thus they

may appear in any place where an expression is allowed.
In particular, we may nest them to get another equivalent
implementation of the 4-bit serial-in serial-out shift register:

fsm { 0 | s =>

let q1 = fsm { 0 | s => (d, s) } in

let q2 = fsm { 0 | s => (q1, s) } in

let q3 = fsm { 0 | s => (q2, s) } in

(q3, s)

}

An equivalent and simpler implementation of the 4-bit
serial-in serial-out shift register is shown below:

fsm { (0, 0, 0, 0) | s => ((d, s.1, s.2, s.3), s.4) }

In the above, we use the syntax (𝑡, . . . , 𝑡) to represent a
tuple, and 𝑡 .𝑖 to represent the 𝑖-th component of the tuple 𝑡 .
In fact, we will show in the next section, there is a mechanic
transformation from all other equivalent representation to
this succinct form (Section 4.4).

There are also serial-in parallel-out shift registers, as shown
in Figure 3. They can be implemented with implicit state ma-
chines as follows:

let q1 = fsm { 0 | s => (d, s) } in

let q2 = fsm { 0 | s => (q1, s) } in

let q3 = fsm { 0 | s => (q2, s) } in

let q4 = fsm { 0 | s => (q3, s) } in

(q1, q2, q3, q4)

An equivalent and simpler implementation of the 4-bit
serial-in parallel-out shift register is shown below:

fsm { (0, 0, 0, 0) | s => ((d, s.1, s.2, s.3), s) }

We draw the readers’ attention to the following properties
of implicit state machines.

Declarativeness. In contrast to existing imperative pro-
gramming models with finite-state machines [14, 27], im-
plicit state machines are declarative. As we will see in the
next section, the declarative nature of implicit state machines
facilitate transformation of programs, thanks to referential

transparency, which enables substitute equals for equals [33].
Simplicity. As we have seen in the example of D flip-flops,

compared to the textbook presentation of D flip-flops in the
form of truth tables, the representation based on implicit
state machines is much simpler and more intuitive. While
simple concepts can be explained in a complex way, we do
not see how implicit state machines could be reduced to a
simpler model.
Flexibility. Most existing programming models with fi-

nite state machines demand explicit enumeration of state
transitions [12, 14, 21, 27]. In contrast, implicit state ma-
chines just do not mandate explicit enumeration of state
transitions in the program. However, they do not forbid that.
This means that programmers can continue to program with
explicit states when necessary. This is can be done by intro-
ducing a𝑚𝑎𝑡𝑐ℎ-expression:

fsm { 0 | s =>

match (s, d) with

case (0, 0) => (0, 0)

case (0, 1) => (1, 0)

case (1, 0) => (0, 1)

case (1, 1) => (1, 1)

}

In the above, the match expression defines the semantics
of D flip-flops in the form of truth tables (Figure 1).
Recursive Composability. Implicit state machines are

recursively composable, which is a yardstick of proper lan-
guage design. Recursive composability corresponds to the
need for hierarchical decomposition in designing real-world
systems.

Universality. The universality of implicit state machines
are inherited from the universality of finite-state machines,
as the latter can be represented by the former.

4 Implicit State Machines, Formally

In this section, we formalize implicit state machines in a
small calculus with Boolean algebra as the domain intended
for digital design.

4.1 Syntax

The syntax of the calculus is presented below:

15

LCTES ’22, June 14, 2022, San Diego, CA, USA Fengyun Liu and Aleksandar Prokopec

𝑡 ::= terms

𝑎, 𝑏, 𝑐 external input

𝑥,𝑦, 𝑧, 𝑠 variables

𝑙𝑒𝑡 𝑥 = 𝑡 𝑖𝑛 𝑡 let binding

𝛽 Boolean value

𝑡 ∗ 𝑡 1 bit and

𝑡 + 𝑡 1 bit or

!𝑡 1 bit not

(𝑡, . . . , 𝑡) tuple

𝑡 .𝑖 projection

fsm { 𝑣 | 𝑠 ⇒ 𝑡 } implicit state machine

𝛽 ::= 0 | 1 Boolean values

𝑣 ::= 𝛽 | (𝑣, . . . , 𝑣) values

𝑖 ::= 0, 1, 2, . . . indexes

Beyond the basic elements of Boolean algebra, we also
introduce 𝑙𝑒𝑡-bindings, which is a basic abstraction and reuse
mechanism. Tuples and projections are introduced for paral-
lel composition and decomposition. In a projection 𝑡 .𝑖 , the
index 𝑖 must be a statically known number. For implicit state
machines, we require that the initial state is a value.
A circuit usually has external inputs, which are repre-

sented by variables 𝑎, 𝑏, 𝑐 . By convention, we use 𝑥,𝑦, 𝑧 for
𝑙𝑒𝑡-bindings, and 𝑠 for the binding in implicit state machines.

We choose Boolean algebra as the domain theory, but
it can also be other mathematical structures, for example
natural numbers or tensors. Our transform does not assume
properties of mathematical structures as long as we may
substitute equals for equals [33].

To avoid technical details of same names in bindings, we
assume the uniqueness of bound variables, which can be
easily achieved via renaming.

4.2 Semantics

The semantics follows the synchronous hypothesis [4], which
assumes that the computation of the response to an input
takes no time. For synchronous digital circuits, it means that
the whole system produces an output at each clock tick.
The semantics of the language is defined with the help

of a state 𝜎 and an environment 𝜌 . The state 𝜎 maps a state
variable to a state value, the environment variable 𝜌 maps an
external input to a value. The big-step operational semantics
is defined with the following reduction relation:

𝑡
𝜎,𝜌
−→ 𝑣 | 𝜎 ′

It means that given the current state 𝜎 and environment
𝜌 , the term 𝑡 evaluates to the value 𝑣 with the next state 𝜎 ′.
The reduction rules are defined in Figure 4. We explain the
rules below:

• E-Value. If the term is already a value, do nothing.
There are no nested state machines, thus the mapping
for the next state is the empty set.

• E-Input. Look up the external variable 𝑎 from the
environment 𝜌 .

• E-Let. First evaluate 𝑡1 to the value 𝑣1, then evaluate
𝑡2 with 𝑥 replaced by 𝑣1.

• E-Tuple. Evaluate each component in parallel to a
value, and accumulate the mapping for the next state.

• E-Project. First evaluate the term to a tuple value,
then return the corresponding component.

• E-And. Evaluate the two components in parallel to
Boolean values, then call the helper method 𝑎𝑛𝑑 to
compute the resulting Boolean value 𝛽 . As each compo-
nent may contain implicit state machines, accumulate
the mapping for the next state.

• E-Or. Similar as above, but use the helper function 𝑜𝑟
to compute the resulting value.

• E-Not. Similar as above, but use the helper function
𝑛𝑜𝑡 to compute the resulting value.

• E-Fsm. First look up the value for the current state
from the state map 𝜎 . Then evaluate the body of the
state machine to a pair value (𝑣1, 𝑣2). The output is 𝑣2,
and the next state of the FSM is 𝑣1.

The reduction relation only defines one-tick semantics.
The semantics of a system is defined by the trace of a given
input series 𝜌0, 𝜌1, · · · . We define it formally below:

Definition 4.1 (Trace). The trace of a system 𝑡 with respect
to an input sequence 𝜌0, 𝜌1, · · · is the sequence 𝑜0, 𝑜1, · · ·

such that

• 𝑡
𝜎0,𝜌0
−→ 𝑜0 | 𝜎1

• . . .

• 𝑡
𝜎𝑖 ,𝜌𝑖
−→ 𝑜𝑖 | 𝜎𝑖+1

• . . .

In the above, 𝜎0 is the initial state of the implicit state
machines as specified in 𝑡 .

4.3 Type System

To check well-formedness of programs, we introduce a sim-
ple type system to ensure that a well-typed program never
gets stuck. The type system is presented in Figure 5.

In the system, there are two types: 𝐵𝑜𝑜𝑙 for Boolean values
and (𝑇1, . . . ,𝑇𝑛) for tuples. We explain the typing rules below:

• T-Bool. The type for Boolean values is always 𝐵𝑜𝑜𝑙 .

• T-Input. For inputs, their types are predefined in the
environment.

• T-Var. For variables, their types also appear in the
environment.

16

Implicit State Machines LCTES ’22, June 14, 2022, San Diego, CA, USA

𝑣
𝜎,𝜌
−→ 𝑣 | ∅ (E-Value) 𝑎

𝜎,𝜌
−→ 𝜌 (𝑎) | ∅ (E-Input)

𝑡1
𝜎,𝜌
−→ 𝑣1 | 𝜎

′ [𝑥 ↦→ 𝑣1]𝑡2
𝜎,𝜌
−→ 𝑣2 | 𝜎

′′

𝑙𝑒𝑡 𝑥 = 𝑡1 𝑖𝑛 𝑡2
𝜎,𝜌
−→ 𝑣 | 𝜎 ′ ∪ 𝜎 ′′

(E-Let)

𝑡1
𝜎,𝜌
−→ 𝑣1 | 𝜎1 . . . 𝑡𝑛

𝜎,𝜌
−→ 𝑣𝑛 | 𝜎𝑛

(𝑡1, . . . , 𝑡𝑛)
𝜎,𝜌
−→ (𝑣1, . . . , 𝑣𝑛) | 𝜎1 ∪ · · · ∪ 𝜎𝑛

(E-Tuple)

𝑡
𝜎,𝜌
−→ (𝑣1, . . . , 𝑣𝑖 , . . . , 𝑣𝑛) | 𝜎

′

𝑡 .𝑖
𝜎,𝜌
−→ 𝑣𝑖 | 𝜎

′
(E-Project)

𝑡1
𝜎,𝜌
−→ 𝛽1 | 𝜎

′ 𝑡2
𝜎,𝜌
−→ 𝛽2 | 𝜎

′′ 𝛽 = 𝑎𝑛𝑑 (𝛽1, 𝛽2)

𝑡1 ∗ 𝑡2
𝜎,𝜌
−→ 𝛽 | 𝜎 ′ ∪ 𝜎 ′′

(E-And)

𝑡1
𝜎,𝜌
−→ 𝛽1 | 𝜎

′ 𝑡2
𝜎,𝜌
−→ 𝛽2 | 𝜎

′′ 𝛽 = 𝑜𝑟 (𝛽1, 𝛽2)

𝑡1 + 𝑡2
𝜎,𝜌
−→ 𝛽 | 𝜎 ′ ∪ 𝜎 ′′

(E-Or)

𝑡
𝜎,𝜌
−→ 𝛽 | 𝜎 ′ 𝛽 ′ = 𝑛𝑜𝑡 (𝛽)

!𝑡
𝜎,𝜌
−→ 𝛽 ′ | 𝜎 ′

(E-Not)

𝑣 = 𝜎 (𝑠) [𝑠 ↦→ 𝑣]𝑡 |
𝜎,𝜌
−→ (𝑣1, 𝑣2) | 𝜎

′

fsm { 𝑣0 | 𝑠 ⇒ 𝑡 }
𝜎,𝜌
−→ 𝑣2 | { 𝑠 ↦→ 𝑣1 } ∪ 𝜎 ′

(E-Fsm)

Figure 4. Big-step operational semantics

𝑇 ::= 𝐵𝑜𝑜𝑙 | (𝑇, . . . ,𝑇)

Γ ⊢ 𝛽 : 𝐵𝑜𝑜𝑙 (T-Bool)

𝑎 : 𝑇 ∈ Γ

Γ ⊢ 𝑎 : 𝑇
(T-Input)

𝑥 : 𝑇 ∈ Γ

Γ ⊢ 𝑥 : 𝑇
(T-Var)

Γ ⊢ 𝑡 : 𝐵𝑜𝑜𝑙

Γ ⊢!𝑡 : 𝐵𝑜𝑜𝑙
(T-Not)

Γ ⊢ 𝑡1 : 𝑇1 . . . Γ ⊢ 𝑡𝑛 : 𝑇𝑛

Γ ⊢ (𝑡1, . . . , 𝑡𝑛) : (𝑇1, . . . ,𝑇𝑛)
(T-Tuple)

Γ ⊢ 𝑡 : (𝑇1, . . . ,𝑇𝑖 , . . . ,𝑇𝑛)

Γ ⊢ 𝑡 .𝑖 : 𝑇𝑖
(T-Project)

Γ ⊢ 𝑡1 : 𝐵𝑜𝑜𝑙 Γ ⊢ 𝑡2 : 𝐵𝑜𝑜𝑙

Γ ⊢ 𝑡1 ∗ 𝑡2 : 𝐵𝑜𝑜𝑙
(T-And)

Γ ⊢ 𝑡1 : 𝐵𝑜𝑜𝑙 Γ ⊢ 𝑡2 : 𝐵𝑜𝑜𝑙

Γ ⊢ 𝑡1 + 𝑡2 : 𝐵𝑜𝑜𝑙
(T-Or)

Γ ⊢ 𝑡1 : 𝑇1 Γ, 𝑥 :𝑇1 ⊢ 𝑡2 : 𝑇2

Γ ⊢ 𝑙𝑒𝑡 𝑥 = 𝑡1 𝑖𝑛 𝑡2 : 𝑇2
(T-Let)

Γ ⊢ 𝑣 : 𝑇1 Γ, 𝑠:𝑇1 ⊢ 𝑡 : (𝑇1,𝑇2)

Γ ⊢ fsm { 𝑣 | 𝑠 ⇒ 𝑡 } : 𝑇2
(T-Fsm)

Figure 5. Type System

17

LCTES ’22, June 14, 2022, San Diego, CA, USA Fengyun Liu and Aleksandar Prokopec

• T-Not. The term 𝑡 must be of the type 𝐵𝑜𝑜𝑙 .

• T-Tuple. If each component has a type, and then the
type of the tuple has a corresponding tuple type.

• T-Project. If the term 𝑡 has a tuple type, then the pro-
jection has the type of the corresponding component.

• T-And. If each component has the type 𝐵𝑜𝑜𝑙 , the result
also has the type 𝐵𝑜𝑜𝑙 .

• T-Or. The same as above.

• T-Let. If the bound term has the type of 𝑇1, and the
body of the let-binding has the type 𝑇2 under the en-
vironment Γ extended with the binding 𝑥 :𝑇1, then the
let-binding has the type 𝑇2. Note that this rule forbids
the usage of 𝑥 in 𝑡1, which prevents undesired circles.

• T-Fsm. If the initial value has the type𝑇1, and the body
has the type (𝑇1,𝑇2) under the environment Γ extended
with the binding 𝑠:𝑇1, then the implicit state machine
has the type 𝑇2.

For the meta-theory of the type system, we need to define
well-formedness of the input map and state map. We write
Γ ⊢ 𝜉 to mean that the input map or state map 𝜉 is well-typed
under Γ, which is defined as follows:

Γ ⊢ ∅ Γ ⊢ 𝜉 ∅ ⊢ 𝑣 : 𝑇

Γ, 𝛼 : 𝑇 ⊢ 𝜉 ∪ { 𝛼 ↦→ 𝑣 }

In the above, 𝛼 ranges over input and state variables, and
𝜉 ranges over input map and state map.

Theorem 4.2 (Soundness). If Γ ⊢ 𝑡 : 𝑇 , and if for each 𝜌𝑖 in

the input sequence 𝜌0, 𝜌1, . . . we have Γ ⊢ 𝜌𝑖 , then there exists

a trace for the system 𝑡 corresponding to the input sequence.

The proof follows from the following lemma by induction
on the length of the input sequence:

Lemma 4.3. If 𝑡 is well-typed under the environment Γ, and

the input map 𝜌 is compatible with Γ, and the state map 𝜎 is

type-compatible with the initial state map 𝜎0 as specified in 𝑡 ,

then 𝑡 evaluates to a value 𝑣 with updated state map 𝜎 ′.

More formally, if Γ ⊢ 𝑡 : 𝑇 , and Γ ⊢ 𝜌 , and there exists Γ′

such that Γ′ ⊢ 𝜎 and Γ
′ ⊢ 𝜎0, then there exists 𝑣 and 𝜎 ′ such

that 𝑡
𝜎,𝜌
−→ 𝑣 | 𝜎 ′, Γ ⊢ 𝑣 : 𝑇 and Γ

′ ⊢ 𝜎 ′.

Sketch. By induction on the typing judgment Γ ⊢ 𝑡 : 𝑇 . □

4.4 Flattening

In this section, we show that any system of implicit state
machines is equivalent to a single flat implicit state machine.
This can be achieved by a mechanic transformation.

For the purpose of the transformation, we first define the
combinational fragment of the language devoid of implicit
state machines, which is represented by 𝑒:

𝑒 ::= 𝛽 | 𝑒 ∗ 𝑒 | 𝑒 + 𝑒 | !𝑒 | (𝑒, . . . , 𝑒) | 𝑒.𝑖 |

𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝑒 | 𝑥 | 𝑠 | 𝑎

The combinational fragment corresponds to combinational
circuits, i.e., circuits without state elements, in contrast to
sequential circuits.
The transformation consists of two major steps:

• Lifting: lifts FSMs to top-level (Figure 6).
• Merging: merges FSMs to a single FSM (Figure 7).

Lifting (Figure 6) results in lifted normal form (u) where
all FSMs are nested at the top-level of the program, with a
combinational fragment in the middle:

𝑢 ::= 𝑒 | fsm { 𝑣 | 𝑠 ⇒ 𝑢 }

The relation 𝑡1 ;𝐿 𝑡2 says that the term 𝑡1 takes a lifting
step to 𝑡2. Lifting is defined with the help of the lifting con-
text 𝐿. The lifting context specifies that the transformation
follows the order left-right and top-down. The actual lifting
happens with the function J·K, which transforms the source
program to the expected form.We explain the concrete trans-
formation rules below:

• fsm { 𝑣 | 𝑠 ⇒ 𝑒1 } ∗ 𝑡2. The FSM absorbs 𝑡2 into its
body. The symmetric case, and the cases for AND and
OR are similar.

• 𝑙𝑒𝑡 𝑥 = fsm { 𝑣 | 𝑠 ⇒ 𝑒1 } 𝑖𝑛 𝑡2. It pulls the let-
binding into the body. The case in which FSM is in the
body of let-binding is similar.

• fsm { 𝑣 | 𝑠 ⇒ 𝑒 }.𝑖 . It pulls the projection into the
body of FSM.

• (𝑒, fsm { 𝑣 | 𝑠 ⇒ 𝑒 }, 𝑡). It pulls the tuple into the
body of FSM.

Note that to simplify the presentation, in the transforma-
tion rules we write 𝑙𝑒𝑡 𝑥,𝑦 = 𝑡1 𝑖𝑛 𝑡2 as a syntactic sugar for
𝑙𝑒𝑡 𝑧 = 𝑡1 𝑖𝑛 𝑙𝑒𝑡 𝑥 = 𝑧.1 𝑖𝑛 𝑙𝑒𝑡 𝑦 = 𝑧.2 𝑖𝑛 𝑡2.

Once all FSMs are nested at the top-level after lifting, merg-
ing (Figure 7) takes place. The relation 𝑢1 ;𝑀 𝑢2 says that
the term 𝑢1 takes a merging step to 𝑢2. Merging is defined
with the help of the merging context𝑀 . The merging con-
text specifies that the merging happens from inside towards
outside. The actual merging step is quite straightforward: it
just combines the initial states 𝑣1 and 𝑣2, as well as merges
𝑠1 and 𝑠2 into 𝑠 .

4.5 Discussion

Flattening makes it immediately obvious that a digital cir-
cuit with state elements (such as registers and flip-flops) are
equivalent to a combinational circuit with all state elements
at the boundary.

18

Implicit State Machines LCTES ’22, June 14, 2022, San Diego, CA, USA

𝐿 ::= [·] | 𝐿 ∗ 𝑡 | 𝑒 ∗ 𝐿 | 𝐿 + 𝑡 | 𝑒 + 𝐿 | !𝐿 | 𝐿.𝑖 | (𝑒1, . . . , 𝐿, . . . , 𝑡𝑛) |

fsm { 𝑣 | 𝑠 ⇒ 𝐿 } | 𝑙𝑒𝑡 𝑥 = 𝐿 𝑖𝑛 𝑡 | 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 𝐿

J𝑡K = fsm { 𝑣 | 𝑠 ⇒ 𝑡 ′ }

𝐿[𝑡] ;𝐿 𝐿[fsm { 𝑣 | 𝑠 ⇒ 𝑡 ′ }]

Jfsm { 𝑣 | 𝑠 ⇒ 𝑒1 } ∗ 𝑡2K = fsm { 𝑣 | 𝑠 ⇒ 𝑙𝑒𝑡 𝑥 = 𝑒1 𝑖𝑛 (𝑥 .1, 𝑥 .2 ∗ 𝑡2) }

J𝑒2 ∗ fsm { 𝑣 | 𝑠 ⇒ 𝑒1 }K = fsm { 𝑣 | 𝑠 ⇒ 𝑙𝑒𝑡 𝑥 = 𝑒1 𝑖𝑛 (𝑥 .1, 𝑒2 ∗ 𝑥 .2) }

Jfsm { 𝑣 | 𝑠 ⇒ 𝑒1 } + 𝑡2K = fsm { 𝑣 | 𝑠 ⇒ 𝑙𝑒𝑡 𝑥 = 𝑒1 𝑖𝑛 (𝑥 .1, 𝑥 .2 + 𝑡2) }

J𝑒2 + fsm { 𝑣 | 𝑠 ⇒ 𝑒1 }K = fsm { 𝑣 | 𝑠 ⇒ 𝑙𝑒𝑡 𝑥 = 𝑒1 𝑖𝑛 (𝑥 .1, 𝑒2 + 𝑥 .2) }

J! fsm { 𝑣 | 𝑠 ⇒ 𝑒 }K = fsm { 𝑣 | 𝑠 ⇒ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 (𝑥 .1, !𝑥 .2) }

J𝑙𝑒𝑡 𝑥 = fsm { 𝑣 | 𝑠 ⇒ 𝑒1 } 𝑖𝑛 𝑡2K = fsm { 𝑣 | 𝑠 ⇒ 𝑙𝑒𝑡 𝑠1, 𝑥 = 𝑒1 𝑖𝑛 (𝑠1, 𝑡2) }

J𝑙𝑒𝑡 𝑥 = 𝑒1 𝑖𝑛 fsm { 𝑣 | 𝑠 ⇒ 𝑒2 }K = fsm { 𝑣 | 𝑠 ⇒ 𝑙𝑒𝑡 𝑥 = 𝑒1 𝑖𝑛 𝑒2 }

Jfsm { 𝑣 | 𝑠 ⇒ 𝑒 }.𝑖K = fsm { 𝑣 | 𝑠 ⇒ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 (𝑥 .1, 𝑥 .2.𝑖) }

J(𝑒, fsm { 𝑣 | 𝑠 ⇒ 𝑒 }, 𝑡)K = fsm { 𝑣 | 𝑠 ⇒ 𝑙𝑒𝑡 𝑥 = 𝑒 𝑖𝑛 (𝑥 .1, (𝑒, 𝑥 .2, 𝑡)) }

Figure 6. Lifting of nested FSMs.

𝑀 ::= [·] | fsm { 𝑣 | 𝑠 ⇒ 𝑀 }

J𝑢K = fsm { 𝑣 | 𝑠 ⇒ 𝑒 }

𝑀 [𝑢] ;𝑀 𝑀 [fsm { 𝑣 | 𝑠 ⇒ 𝑒 }]

Jfsm { 𝑣1 | 𝑠1 ⇒ fsm { 𝑣2 | 𝑠2 ⇒ 𝑒2 } }K = fsm { (𝑣1, 𝑣2) | 𝑠 ⇒ 𝑙𝑒𝑡 𝑠1, 𝑠2 = 𝑠 𝑖𝑛 𝑙𝑒𝑡 𝑥 = 𝑒2 𝑖𝑛 ((𝑥 .2.1, 𝑥 .1), 𝑥 .2.2) }

Figure 7. Merging of nested FSMs.

We believe the insight itself is not new, however, implicit
state machines make it obvious. In contrast, it is obscured
in the network-based model of digital circuits, e.g., it is not
obvious how to push a D flip-flop in the middle of a circuit
network to its boundary.

The declarative nature of implicit state machines enables
the reasoning principle of substituting equals for equals [33].
It facilitates many common program optimizations, such as
dead-code elimination, common-subexpression elimination,
constant folding, etc.
[35] hold the view that it is a golden age for applying

programming language techniques for improving hardware
design. We believe implicit state machines may contribute
to that initiative.

5 Implicit State Machines in Scala

To assess the feasibility of implicit state machines as a pro-
gramming construct, we implemented an embedded DSL in
Scala for digital design. We experimented usability of the
embedded DSL by creating circuits of varying complexity,
from half adders to a micro-controller.

5.1 Embedded DSL

For readers not familiar with DSLs, there are generally two
approaches to implement a DSL:

• External DSL, in which the DSL is implemented with
a standalone compiler (Figure 8)

• Embedded DSL, in which the DSL is defined as a library
within a host language (Figure 9)

In the external approach, the language designer defines
syntax of the DSL, users write DSL programs and then feed
the source code into the DSL compiler. For practicality, there
is the need to provide IDE support for the DSL to improve
programming experience.
In the embedded approach, the language designer only

needs to define the abstract syntax tree (AST) data format
and provide core compiler phases as a library in an imple-
mentation language, e.g., Scala. Users write DSL programs
in Scala to directly construct the ASTs, and then feed them
into the compilation pipeline. As programmers write code in
an existing language, e.g., Scala, there is no need to provide
additional IDE support.
Given that the embedded approach avoids the overhead

of defining concrete syntax of the DSL and providing IDE
suport, we follow the approach in our work.

Our DSL is based on implicit state machines extended with
pairs and bit vectors. Implicit state machines are the only
state elements in the DSL. An excerpt of the abstract syntax
tree definitions is presented in Figure 10.

19

LCTES ’22, June 14, 2022, San Diego, CA, USA Fengyun Liu and Aleksandar Prokopec

Check Optimization CodeGen Verilog
ASTAST

Parser
AST

source

Compiler

Figure 8. Architecture of External DSLs

Check Optimization CodeGen Verilog
ASTAST

DSLProgram
AST

Library

Application

Figure 9. Architecture of Embedded DSLs

1 sealed abstract class Sig[T <: Type] // base class of AST

2 case class Fsm[S <: Type, T <: Type](sym: Symbol, init: Value, body: Sig[S ~ T]) extends Sig[T]

3 case class Let[S <: Type, T <: Type](sym: Symbol, sig: Sig[S], body: Sig[T]) extends Sig[T]

4 case class Var[T <: Type](sym: Symbol, tpe: Type) extends Sig[T] // variable for inputs and bindings

5 case class And[T <: Num](lhs: Sig[Vec[T]], rhs: Sig[Vec[T]]) extends Sig[Vec[T]]

6 case class Mux[T <: Type](cond: Sig[Bit], thenp: Sig[T], elsep: Sig[T]) extends Sig[T]

7

8 sealed abstract class Type // base class of types

9 case class PairT[S <: Type, T <: Type](lhs: S, rhs: T) extends Type

10 case class VecT[T <: Num](width: T) extends Type

Figure 10. An excerpt of abstract syntax trees of the DSL

The class Sig is the base class of abstract syntax trees, and
the class Type is the base class of the types of signals. The
DSL also defines the following aliases for types:

1 type ~[S <: Type, T <: Type] = PairT[S, T]

2 type Vec[T <: Num] = VecT[T]

3 type Bit = VecT[1]

4 type Num = Int

The type Sig[Bit] denotes signals of 1-bit vector, which
is an alias of Sig[Vec[1]]. The type Sig[Vec[2]] denotes
signals of 2-bit vector. Here we take advantage of literal
types in Scala [30], which supports the usage of literal values
as types.
The DSL supports common bit-wise operations such as

XOR, AND, OR, ADD, SUB, SHIFT and MUX. All these op-
erations are supported in Verilog [23], and they follow the
same semantics as in Verilog.
The design intentionall makes the class Sig take an addi-

tional type parameter, which signifies the type of the signal.
This way, we can profit the Scala type system to automat-
ically check signal mismatch errors, e.g., perform OR op-
eration on a 4-bit and an 8-bit signal. The additional type
parameter does not play any role at run-time.

5.2 A Quick Glance

The following code shows how we may implement a half
adder in our DSL:

1 def halfAdder(a: Sig[Bit], b: Sig[Bit]) =

2 val s = a ^ b

3 val c = a & b

4 c ++ s

The operator ++ concatenates two bit vectors to form a
bigger bit vector Ð Sig[Vec[2]] in the example above.
We may compose two half adders to create a full adder,

which takes a carry cin as input:

1 def full(a: Sig[Bit], b: Sig[Bit], cin: Sig[Bit]) =

2 val ab = halfAdder(a, b)

3 val s = halfAdder(ab(0), cin)

4 val cout = ab(1) | s(1)

5 cout ++ s(0)

In the above, we make two calls to halfAdder. Each call
will create a copy of the half adder circuit to be composed in
the fuller adder. It returns the carry and the sum. We may
compose them further to create a 2-bit adder:

1 def adder2(a: Sig[Vec[2]], b: Sig[Vec[2]]) =

2 val cs0 = full(a(0), b(0), 0)

3 val cs1 = full(a(1), b(1), cs0(1))

4 cs1(1) ++ cs1(0) ++ cs0(0)

20

Implicit State Machines LCTES ’22, June 14, 2022, San Diego, CA, USA

To actually generate a representation of the circuit, we
need to specify the input signals:

1 val a = variable[Vec[2]]("a")

2 val b = variable[Vec[2]]("b")

3 val circuit = adder2(a, b)

Then we can create a simulator of the circuit:

1 val add2 = circuit.eval(a, b)

Finally, we can test the simulator:

1 add2(List(Value(1, 0), Value(0, 1))) match

2 case Value(0, 1, 1) => println("success")

5.3 Sequential Circuits

We show how to create sequential circuits with the example
of moving average filter. The moving average filter we are
going to implement is specified below:

𝑌𝑖 = (𝑋𝑖 + 2 ∗ 𝑋𝑖−1 + 𝑋𝑖−2)/4

For the input𝑋𝑖 , the output𝑌𝑖 also depends on the previous
values 𝑋𝑖−1 and 𝑋𝑖−2. We can define an operator delay based
on implicit state machines:

1 def delay[T <: Type](sig: Sig[T], init: Value) =

2 fsm("delay", init) { (last: Sig[T]) =>

3 sig ~ last

4 }

In the code above, we declare an implicit state machine
with the specified initial state init. The body of the FSM is a
pair sig ~ last, where the first part becomes the next state,
and the second part becomes the output.
Now we may create the circuit for the moving average:

1 def movingAverage(in: Sig[Vec[8]]) =

2 val z1 = delay(in, 0.toValue(8))

3 val z2 = delay(z1, 0.toValue(8))

4 (in + (z1 << 1) + z2) >> 2

In the code above, we first create an instance of the delay
circuit and bind it to the variable z1. Then we delay the
signal z1 to get z2. Finally, the equation is encoded straight-
forwardly.
Note that in the above, the end user is programming in

dataflow style à la Lustre [11]. There is no need for the
programmer to think in terms of state machines in such use
cases. We discuss this in a broader context in Section 5.6.

5.4 Verilog Generation

We can generate Verilog code for the moving average filter
as follows:

1 val a = variable[Vec[8]]("a")

2 val circuit = movingAverage(a)

3 circuit.toVerilog("Filter", a)

The generated Verilog code is presented in Figure 11. In
the Verilog code, lines 9-14 deal with sequential logic, the
other code deal with combinational logic.

1 module Filter (CLK, a, out);

2 input CLK;

3 input [7:0] a;

4 output [7:0] out;

5 reg [15:0] s;

6

7 assign out = (s[7:0] + (s[15:8] << 1'b1) + a)

>> 2'b10;

8

9 initial begin

10 s = 16'b0000000000000000;

11 end

12

13 always @ (posedge CLK)

14 s <= { a, s[15:8] };

15 endmodule

Figure 11. Generated Verilog code for the moving average
filter (redundant parenthesese at line 8 manually removed
for the sake of readability)

Instr.
Memory

MODE

IO

ACCM
U

X

Exec
(Pending)

PC Exec
(Normal)

Figure 12. Architecture of the micro-controller

This is the typical code generated by our DSL compiler,
as it performs flattening of the circuit (Section 4.4), which
results in a single finite-state machine with a combinational
core.
The Verilog code generation takes a flattened AST rep-

resentation of the circuit as input. It goes through the AST
representation and translate the DSL primitive with corre-
sponding Verilog code. As the translation process is standard,
we omit the details here.

5.5 Case Study: Micro-controller

We implemented an accumulator-based micro-controller in
the DSL inspired by Leros [31].
The architecture of the micro-controller is shown in Fig-

ure 12. At the high-level, the micro-controller contains three
architectural states: the program counter (PC), the accumu-
lator register (ACC) and the pending status (MODE). The
micro-controller interfaces with a memory bus, which con-
tains a simple protocol consisting of read address, control
(read / write) and data. The micro-controller contains an

21

LCTES ’22, June 14, 2022, San Diego, CA, USA Fengyun Liu and Aleksandar Prokopec

on-chip read-only instruction memory, which is different
from the external data memory interfaced by the bus.

The micro-controller is implemented with an implicit state
machine:

1 fsm("processor", pc0 ~ acc0 ~ mode0) { state =>

2 val pc ~ acc ~ mode = state

3 // ...

4 }

The variable pc refers to the program counter, acc is the
accumulator register, mode indicates whether the controller
is waiting for data from the external memory.
The skeleton of the implementation is as follows:

1 let("pcNext", pc + 1) { pcNext =>

2 let("instr", readInstr(pc)) { instr =>

3 /* ... */

4 when (opcode === ADDI.toSig(8)) {

5 val acc2 = acc + operand

6 next(acc = acc2)

7 }

8 /* ... */

9 }

10 }

It first increments the program counter pc and bind the
result to pcNext. Then it binds the current instruction to
instr. At the circuit-level, the operations are executed in
parallel. Finally, the instruction is decoded and executed in
a series of when constructs, depending on the mode of the
micro-controller.

The when construct is a syntactic sugar created from multi-
plexers that supports selecting one of two n-bit inputs based
a 1-bit control signal.
Eventually, each branch calls the local method next with

appropriate arguments:

1 def next(pc: Sig[PC] = pcNext,

2 acc: Sig[ACC] = acc,

3 mode: Sig[Bit] = 0,

4 out: Sig[BusOut] = 0)

5 = (pc ~ acc ~ mode) ~ out

As can be seen from above, the method next defines de-
fault values for all arguments, such that each branch may
only specify parameters that are different. For example, the
following code handles the unconditional jump instruction
BR:

1 when (opcode === BR.toSig(8)) {

2 next(pc = pc + jmpOffset)

3 }

The indirect ADD instruction needs to load data from ex-
ternal memory, thus putting the controller in the pending
mode, as the following code shows:

1 when (opcode === ADD.toSig(8)) {

2 next(pc = pc, mode = 1, out = readReq(instr))

3 }

The logic for the pending mode is as follows:

1 when (mode) {

2 /* pending mode */

3 when (opcode === ADD.toSig(8)) {

4 next(acc = acc + busIn)

5 }

6 /* ... */

7 } otherwise {

8 /* normal mode */

9 }

The code above depends on the protocol which requires
that the I/O devices make the requested data available on
the bus in the cycle following the request.
The programming experience is largely positive, thanks

to the declarative nature of the DSL. Compared to VHDL or
Verilog, there are no łwiresž to connect in the DSL and there
are no combinational cyles by construction.

We test the implementation with small assembly programs
and verify the result with a circuit simulator in Scala. We
are aware that the micro-controller is still too simple and it
may not match quality standards. For example, we do not
implement pipelining [25] nor do we separate out a reusable
arithmetic-logic unit (ALU) for the two execution modes.

However, we conjecture that implicit state machines make
it possible to automate some of such optimizations using com-
pilation techniques. We leave it for future work to capitalize
on such insights to implement RISC-V cores and compare
with the state-of-the-art open source implementations.

5.6 Discussion: State Machine VS. Dataflow

It has long been observed that embedded systems fall into
two categories: (1) control-dominated applications and (2)
data-oriented applications [14]. For control-dominated ap-
plications, programming based on finite-state machines is a
good fit. For data-oriented applications, declarative dataflow
programming is a good fit. However, real systems are usu-
ally a mix of both styles, which motivates the extension of
the declarative dataflow language Lustre [11] with state ma-
chines [12, 14]. The extension is in imperative style with ex-
plicit state representation, and it desugars to a core dataflow
calculus.
Our work can be seen as taken an opposite approach to

[14]: Instead of desugaring finite-state machines into a core
dataflow calculus, wemake implicit statemachines as the fun-
damental building block, and desugar dataflow programming
constructs to implicit state machines (Section 5.3). Given that
the dataflow calculus of Lustre eventually compiles to finite-
state machines for execution, we believe the introduction of
implicit state machines as a primitive will be an interesting
addition to the programming methodologies of real-time and
embedded systems.

22

Implicit State Machines LCTES ’22, June 14, 2022, San Diego, CA, USA

5.7 Limitations

There are several limitations of the current DSL:

• It does not support multi-clock design.
• It only supports binary state, no analog nor tri-state.
• It does not perform logic optimizations on the circuit.

While the DSL is useful to assess the practicality of implicit
state machines as a programing model, it is not a production-
ready artifact. Meanwhile, none of the limitations above
is an inherent drawback of implicit state machines as an
abstraction.

6 Related Work

We have discussed related work in Section 4.5 and Section 5.6.
Here we would like to acknowledge more work that inspired
our research.
Our work is influenced by the french synchronous lan-

guages, Esterel [7], Signal [6] and Lustre [11]. In particular,
the semantics of implicit state machines follow the synchrony
hypothesis [5]. There are ongoing efforts in formalizing and
mechanizing the semantics of these languages [10, 16] as
well as verifying programs in these languages [34], which
could be a direction for our future work.
There exists plenty of intermediate representations (IR)

for hardware design, such as Calyx [28], FIRRTL [24], LLHD
[32]. We believe implicit state machines will be a useful
abstraction in the design of IRs due to its declarativeness,
simplicity and universality.

Implicit state machines bear some similarity to state mon-
ads in functional programming [36]. From the programmer’s
perspective, there are three main differences: (1) state mon-
ads require programmers to thread-through the state ex-
plicitly in the program, while there is no such requirement
for implicit state machines; (2) state monads do not allow
programmers to specify the initial state in a decentralized
way; (3) composing two state monads incurs overhead, while
compositionability is a feature of implicit state machines.
From the perspective of compiler writers, state monads are
just design patterns in functional programming, they are
categorically different from IRs that compiler phases can
work on.

There are many DSLs for digital design. The Lava fam-
ily DSLs [8, 17] use delay as a primitive to represent state,
which can be thought as a restricted version of Lustre [11]
embedded in Haskell, i.e., they are in a dataflow style as Lus-
tre. Chisel [2] uses registers as a state primitive and follows
an imperative programming style. Bluespec [29], Kami [13]
and Koika [9] are based on guarded atomic actions. Our DSL
is different in the sense that it is based on the novel state
primitive Ð implicit state machines.

Graphical representation of programs seems to be favored
over text-based programs in some application domains. There
are several visual languages for programming with finite-
state machines, such as Statecharts [21], SyncCharts [1],

Simulink/Stateflow [19]. We are investigating how to com-
bine the benefits of visualizal languages and text-based lan-
guages in programming embedded systems.

7 Conclusion

In this paper, we showed that by sticking to the design prin-
ciple of declarativeness, we arrive at a novel abstraction:
implicit state machines. Implicit state machines are recur-
sively composable and universal, which makes them promis-
ing both as a programming model as well as intermediate
representation.
We formalized the concept of implicit state machines in

a calculus with Boolean algebra as the domain and showed
that it serves as an elegant model of digital circuits.

We implemented an embedded DSL in Scala based on im-
plicit state machines, which supports both dataflow style
programming and state-machine style programming. We im-
plemented a micro-controller in the DSL and the experience
of programming with implicit state machines is positive.

Future Work. We are considering designing a standalone
domain-specific language based on implicit state machines
for the application domains of Internet of Things (IoT) and
industrial automation.

Acknowledgments

Fengyun Liu thanks the Programming Methods Laboratory
(LAMP) at École polytechnique fédérale de Lausanne (EPFL)
for hosting the research as part of his PhD studies. We also
thank Prof. Paolo Ienne, Prof. Viktor Kunčak, Prof. Martin
Odersky and Dr. Aggelos Biboudis for helpful discussions.

References
[1] Charles André and Marie-Agnès Peraldi-Frati. 2000. Behavioral Speci-

fication of a Circuit Using SyncCharts: A Case Study. In 26th EUROMI-

CRO 2000 Conference, Informatics: Inventing the Future, 5-7 Septem-

ber 2000, Maastricht, The Netherlands. IEEE Computer Society, 1091.
https://doi.org/10.1109/EURMIC.2000.874620

[2] Jonathan Bachrach, Huy Vo, Brian C. Richards, Yunsup Lee, Andrew
Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.
2012. Chisel: Constructing hardware in a Scala embedded language.
DAC Design Automation Conference 2012 (2012), 1212ś1221.

[3] Hendrik Pieter Barendregt. 1985. The lambda calculus - its syntax

and semantics. Studies in logic and the foundations of mathematics,
Vol. 103. North-Holland.

[4] A. Benveniste and G. Berry. 1991. The synchronous approach to
reactive and real-time systems. Proc. IEEE 79, 9 (Sept. 1991). https:

//doi.org/10.1109/5.97297

[5] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halb-
wachs, Paul Le Guernic, and Robert de Simone. 2003. The syn-
chronous languages 12 years later. Proc. IEEE 91, 1 (2003), 64ś83.
https://doi.org/10.1109/JPROC.2002.805826

[6] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. 1991.
Synchronous programming with events and relations: the SIGNAL
language and its semantics. Science of Computer Programming 16, 2
(Sept. 1991). https://doi.org/10.1016/0167-6423(91)90001-E

[7] Gérard Berry and Georges Gonthier. 1992. The Esterel Synchronous
Programming Language: Design, Semantics, Implementation. Sci.

23

https://doi.org/10.1109/EURMIC.2000.874620
https://doi.org/10.1109/5.97297
https://doi.org/10.1109/5.97297
https://doi.org/10.1109/JPROC.2002.805826
https://doi.org/10.1016/0167-6423(91)90001-E

LCTES ’22, June 14, 2022, San Diego, CA, USA Fengyun Liu and Aleksandar Prokopec

Comput. Program. 19, 2 (1992), 87ś152. https://doi.org/10.1016/0167-

6423(92)90005-V

[8] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. 1998.
Lava: Hardware Design in Haskell. In Proceedings of the third ACM SIG-

PLAN International Conference on Functional Programming (ICFP ’98),

Baltimore, Maryland, USA, September 27-29, 1998, Matthias Felleisen,
Paul Hudak, and Christian Queinnec (Eds.). ACM, 174ś184. https:

//doi.org/10.1145/289423.289440

[9] Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind.
2020. The essence of Bluespec: a core language for rule-based hardware
design. In Proceedings of the 41st ACM SIGPLAN International Confer-

ence on Programming Language Design and Implementation, PLDI 2020,

London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak
(Eds.). ACM, 243ś257. https://doi.org/10.1145/3385412.3385965

[10] Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy,
Marc Pouzet, and Lionel Rieg. 2017. A Formally Verified Compiler for
Lustre. (2017).

[11] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. 1987. LUSTRE: A
Declarative Language for Real-time Programming. In Proceedings of the
14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages (POPL ’87). ACM, New York, NY, USA. https://doi.org/10.

1145/41625.41641 event-place: Munich, West Germany.
[12] Paul Caspi and Marc Pouzet. 2008. Synchronous Functional Program-

ming : The Lucid Synchrone Experiment.
[13] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,

Adam Chlipala, and Arvind. 2017. Kami: a platform for high-level
parametric hardware specification and its modular verification. Proc.
ACM Program. Lang. 1, ICFP (2017), 24:1ś24:30. https://doi.org/10.

1145/3110268

[14] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. 2005. A con-
servative extension of synchronous data-flow with state machines.
In Proceedings of the 5th ACM international conference on Embedded

software - EMSOFT ’05. ACM Press, Jersey City, NJ, USA. https:

//doi.org/10.1145/1086228.1086261

[15] Mary F. Fernández, Daniela Florescu, Alon Y. Halevy, and Dan Suciu.
2000. Declarative specification of Web sites with Strudel. The VLDB
Journal 9 (2000), 38ś55.

[16] Spencer P. Florence, Shu-Hung You, Jesse A. Tov, and Robert Bruce
Findler. 2019. A calculus for Esterel: if can, can. if no can, no can.
Proceedings of the ACM on Programming Languages 3, POPL (Jan. 2019).
https://doi.org/10.1145/3290374

[17] Andy Gill, Tristan Bull, Garrin Kimmell, Erik Perrins, Ed Komp, and
Brett Werling. 2009. Introducing Kansas Lava. In Implementation and

Application of Functional Languages - 21st International Symposium,

IFL 2009, South Orange, NJ, USA, September 23-25, 2009, Revised Selected

Papers (Lecture Notes in Computer Science, Vol. 6041), Marco T. Morazán
and Sven-Bodo Scholz (Eds.). Springer, 18ś35. https://doi.org/10.1007/

978-3-642-16478-1_2

[18] Nicolas Halbwachs, Daniel Pilaud, Farid Ouabdesselam, and Anne-
Cecile Glory. 1989. Specifying, Programming and Verifying Real-
Time Systems Using a Synchronous Declarative Language. In Auto-

matic Verification Methods for Finite State Systems, International Work-

shop, Grenoble, France, June 12-14, 1989, Proceedings (Lecture Notes in

Computer Science, Vol. 407), Joseph Sifakis (Ed.). Springer, 213ś231.
https://doi.org/10.1007/3-540-52148-8_18

[19] Grégoire Hamon and John M. Rushby. 2007. An operational semantics
for Stateflow. Int. J. Softw. Tools Technol. Transf. 9, 5-6 (2007), 447ś456.
https://doi.org/10.1007/s10009-007-0049-7

[20] Michael Hanus and Christof Kluß. 2009. Declarative Programming of
User Interfaces. In PADL.

[21] David Harel. 1987. Statecharts: a visual formalism for complex systems.
Science of Computer Programming 8, 3 (June 1987). https://doi.org/10.

1016/0167-6423(87)90035-9
[22] Timothy L. Hinrichs. 2011. Plato: A Compiler for Interactive Web

Forms. In PADL.

[23] IEEE. 2005. IEEE Standard for Verilog Hardware Description Language.
IEEE.

[24] AdamM. Izraelevitz, Jack Koenig, Patrick Li, Richard Lin, Angie Wang,
Albert Magyar, Donggyu Kim, Colin Schmidt, Chick Markley, Jim
Lawson, and Jonathan Bachrach. 2017. Reusability is FIRRTL ground:
Hardware construction languages, compiler frameworks, and trans-
formations. In 2017 IEEE/ACM International Conference on Computer-

Aided Design, ICCAD 2017, Irvine, CA, USA, November 13-16, 2017, Sri
Parameswaran (Ed.). IEEE, 209ś216. https://doi.org/10.1109/ICCAD.

2017.8203780

[25] Daniel Kroening and Wolfgang J. Paul. 2001. Automated Pipeline
Design. In Proceedings of the 38th Design Automation Conference, DAC

2001, Las Vegas, NV, USA, June 18-22, 2001. ACM, 810ś815. https:

//doi.org/10.1145/378239.379071

[26] Michael Leuschel. 2008. Declarative programming for verification:
lessons and outlook. In PPDP ’08.

[27] Xun Li, Mohit Tiwari, Jason Oberg, Vineeth Kashyap, Frederic T.
Chong, Timothy Sherwood, and Ben Hardekopf. 2011. Caisson: a
hardware description language for secure information flow. In Pro-

ceedings of the 32nd ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI 2011, San Jose, CA, USA, June

4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 109ś120.
https://doi.org/10.1145/1993498.1993512

[28] Rachit Nigam, Samuel Thomas, Zhijing Li, and Adrian Sampson. 2021.
A compiler infrastructure for accelerator generators. In ASPLOS ’21:

26th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Virtual Event, USA, April

19-23, 2021, Tim Sherwood, Emery D. Berger, and Christos Kozyrakis
(Eds.). ACM, 804ś817. https://doi.org/10.1145/3445814.3446712

[29] Rishiyur S. Nikhil. 2004. Bluespec System Verilog: efficient, correct
RTL from high level specifications. In 2nd ACM & IEEE International

Conference on Formal Methods and Models for Co-Design (MEMOCODE

2004), 23-25 June 2004, San Diego, California, USA, Proceedings. IEEE
Computer Society, 69ś70. https://doi.org/10.1109/MEMCOD.2004.

1459818

[30] Martin Odersky. 2019. Scala Language Specification. https://scala-
lang.org/files/archive/spec/2.13/.

[31] Martin Schoeberl. 2011. Leros: A Tiny Microcontroller for FPGAs. In
International Conference on Field Programmable Logic and Applications,

FPL 2011, September 5-7, Chania, Crete, Greece. IEEE Computer Society,
10ś14. https://doi.org/10.1109/FPL.2011.13

[32] Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca Benini. 2020.
LLHD: a multi-level intermediate representation for hardware descrip-
tion languages. In Proceedings of the 41st ACM SIGPLAN International

Conference on Programming Language Design and Implementation, PLDI

2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina
Torlak (Eds.). ACM, 258ś271. https://doi.org/10.1145/3385412.3386024

[33] Harald Sùndergaard and Peter Sestoft. 1990. Referential transparency,
definiteness and unfoldability. Acta Informatica 27 (1990), 505ś517.

[34] Yahui Song andWei-Ngan Chin. 2021. A Synchronous Effects Logic for
Temporal Verification of Pure Esterel. In Verification, Model Checking,

and Abstract Interpretation - 22nd International Conference, VMCAI

2021, Copenhagen, Denmark, January 17-19, 2021, Proceedings (Lecture

Notes in Computer Science, Vol. 12597), Fritz Henglein, Sharon Shoham,
and Yakir Vizel (Eds.). Springer, 417ś440. https://doi.org/10.1007/978-

3-030-67067-2_19

[35] Lenny Truong and Pat Hanrahan. 2019. A Golden Age of Hardware
Description Languages: Applying Programming Language Techniques
to Improve Design Productivity. In 3rd Summit on Advances in Pro-

gramming Languages, SNAPL 2019, May 16-17, 2019, Providence, RI,

USA (LIPIcs, Vol. 136), Benjamin S. Lerner, Rastislav Bodík, and Shri-
ram Krishnamurthi (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 7:1ś7:21. https://doi.org/10.4230/LIPIcs.SNAPL.2019.7

24

https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1145/289423.289440
https://doi.org/10.1145/289423.289440
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/41625.41641
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3110268
https://doi.org/10.1145/1086228.1086261
https://doi.org/10.1145/1086228.1086261
https://doi.org/10.1145/3290374
https://doi.org/10.1007/978-3-642-16478-1_2
https://doi.org/10.1007/978-3-642-16478-1_2
https://doi.org/10.1007/3-540-52148-8_18
https://doi.org/10.1007/s10009-007-0049-7
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1109/ICCAD.2017.8203780
https://doi.org/10.1145/378239.379071
https://doi.org/10.1145/378239.379071
https://doi.org/10.1145/1993498.1993512
https://doi.org/10.1145/3445814.3446712
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1109/MEMCOD.2004.1459818
https://scala-lang.org/files/archive/spec/2.13/
https://scala-lang.org/files/archive/spec/2.13/
https://doi.org/10.1109/FPL.2011.13
https://doi.org/10.1145/3385412.3386024
https://doi.org/10.1007/978-3-030-67067-2_19
https://doi.org/10.1007/978-3-030-67067-2_19
https://doi.org/10.4230/LIPIcs.SNAPL.2019.7

Implicit State Machines LCTES ’22, June 14, 2022, San Diego, CA, USA

[36] Philip Wadler. 1992. Monads for functional programming. In Program

Design Calculi, Proceedings of the NATO Advanced Study Institute on

Program Design Calculi, Marktoberdorf, Germany, July 28 - August 9,

1992 (NATO ASI Series, Vol. 118), Manfred Broy (Ed.). Springer, 233ś264.
https://doi.org/10.1007/978-3-662-02880-3_8

25

https://doi.org/10.1007/978-3-662-02880-3_8

	Abstract
	1 Introduction
	2 Deriving Implicit State Machines
	3 Implicit State Machines, Informally
	4 Implicit State Machines, Formally
	4.1 Syntax
	4.2 Semantics
	4.3 Type System
	4.4 Flattening
	4.5 Discussion

	5 Implicit State Machines in Scala
	5.1 Embedded DSL
	5.2 A Quick Glance
	5.3 Sequential Circuits
	5.4 Verilog Generation
	5.5 Case Study: Micro-controller
	5.6 Discussion: State Machine VS. Dataflow
	5.7 Limitations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

