
Adaptive mutation operator cycling

Aleksandar Prokopec, Marin Golub

Department of Electronics, Microelectronics, Computer and Intelligent Systems

Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, 10000 Zagreb, Croatia

{aleksandar.prokopec, marin.golub}@fer.hr

Abstract

Parameter tuning can be a lengthy and exhaustive

process. Furthermore, optimal parameter sets are

usually not only problem specific, but also problem

instance specific. Adaptive genetic algorithms

perform parameter control during the run, thus

increasing algorithm performance. These

mechanisms may also enable the algorithm to escape

local optima more efficiently.

In this paper, we describe the fitness landscape

for permutation based problems, and define local

and global optima, as well as the notion of

adjacency of solutions. Using these definitions we

show why it makes sense to combine multiple genetic

operators adaptively, give examples of this, and

show that an algorithm combining multiple mutation

operators has a greater chance of escaping local

optima. We then describe the adaptive tournament

genetic algorithm (ATGA) which uses multiple

mutation operators, describing a variety of used

adaptation mechanisms and conclude the paper by

showing experimental results.

1. Introduction

Genetic algorithms are applicable to a wide range

of problems. In designing a genetic algorithm, one

must choose the representation for the solution and

reproduction operators, but also tune the parameters

to increase the performance of the algorithm.

However, optimal parameter sets may take a

significant time to be found, and they are also

problem-instance specific. One parameter set may

work very well for one problem instance, but it may

prove inadequate for another. Finding optimal

parameter sets for each problem-instance is hardly a

task worth pursuing. A requirement is, thus,

established that an algorithm should change its

parameters based on the problem instance it solves

and also, to increase performance further, on the

current state of the search. To do this a feedback

between the algorithm and the search must exist.

Such algorithms are said to be adaptive.

The act of changing parameters during the run of

the algorithm is called parameter control. Eiben,

Hinterding and Michalewicz classify parameter

control into three categories: deterministic, adaptive

and self-adaptive [1]. In this paper, we restrict

ourselves to adaptive parameter control. In adaptive

parameter control, it has to be seen which parameters

of the algorithm actually change and what is the

evidence upon which the change is made. Our

adaptive mechanisms will focus on changing

mutation probability and mutation operators. The

basis for the change will be described later for each

adaptation mechanism.

We proposed mutation probability varying

scheme, adaptive operator cycling, and mutation

operator statistics mechanism, somewhat similar to

[2], but working on the individual level instead of

allele level.

Our adaptive mechanisms were applied to

permutation problems, so we start by introducing

certain terms related to permutations.

2. Fitness landscape for permutation-

based problems

In problems in which representation of solutions is

a real-valued (or an integer-valued) vector, the notion

of fitness landscape is straightforward and obvious.

Fitness landscape is a scalar field and may be

envisioned easily. In case of the two-dimensional

vectors, the fitness landscape is a surface with a

global optimum and possibly local optima.

In the case of the permutation-based problems, the

notion of a fitness landscape is no longer so intuitive.

The solutions do not form a scalar field, as the

elements of the permutation are integers instead of

real numbers, and not all integer combinations are

allowed (we exclude the random key encoding for

permutations from [5], that encodes permutations

with a real vector, from this analysis). We introduce

the following definition of permutation adjacency.

Definition 1. A permutation Q is adjacent to

permutation P if the application of the mutation

operator to the permutation P can generate

permutation Q.

Note that adjacency is conditioned by the

mutation operator. Different mutation operators

provide different adjacency relations. Note, also, that

this definition of adjacency is not inherently

symmetric – if the permutation Q is adjacent to

permutation P, then permutation P may not be

adjacent to permutation Q. However, for most

mutation operators, adjacency is symmetric. For

instance, inversion yields a symmetric adjacency

relation between permutations – inverting a

subsegment of a permutation may be discarded by

repeating this operation on the same subsegment.

However, a mutation operator that performs a local

search in concordance with some fitness function will

not yield a symmetric adjacency relation.

Definition 2. The fitness landscape for permutation-

based problems is a graph whose vertex set equals

the set of all possible permutations, and edge set

contains all vertex pairs whose respective

permutations are adjacent. Each vertex is

additionally assigned its fitness value.

Possible permutations are those permutations that

represent a solution in the search space – generally,

not all permutations may be feasible. Further, it

follows that the fitness landscape defined in this

manner also depends on the mutation operator, and

the fitness landscape may be a directed graph in some

cases. Figure 1 shows this for permutations of the

order 3, and for scramble and swap mutations [6] – it

can be observed that even for the case of low order

permutations, some of them are not necessarily

adjacent, thus forming a different fitness landscape.

Each permutation in the solution space has a certain

fitness, so each vertex is assigned its fitness value. In

visualization of the fitness landscape, each vertex

may be assigned a height proportionate to its fitness

value. This “landscape” may then resemble the one

that follows from the real-valued representation. The

graph, however, may not be and in most cases is not

planar, thus a vizualisation may not be particularly

helpful. However, it should be noted that

visualization of higher dimension real vector

functions is also vague. The notion of the fitness

landscape shall become important after we introduce

the following modified definition, borrowed from

[5].

Definition 3. A global optimum is a vertex in the

fitness landscape whose fitness value exceeds the

values of all other vertices (or is exceeded by all

other values if we are minimizing). A local optimum

is a vertex in fitness space that has the property that

no chain of mutations starting at that vertex can lead

to a vertex whose value is greater without first

leading to a vertex whose value is lower than the

starting vertex (or vice versa, if we are minimizing).

Figure 1. Adjacency of permutations of the

order 3 for the swap and scramble operators

In other words, a local optimum is a vertex in the

fitness landscape with the property that all of the

adjacent vertices have a lower fitness value. As was

deducted earlier, it follows that the distribution of

local optima depends on the mutation operator. What

is a local optimum in a specific problem instance for

one mutation operator, may not be a local optimum

for another. This may lead to the premature

assumption that a mutation operator having the least

number of local optima (or none) may be the best

mutation operator, but this is not so. The scramble

mutation is an example of an operator that yields a

totally connected fitness landscape, thus having no

local optima, because every solution is adjacent to

the global solution. However, we’ve found that

scramble mutation used for TSP is outperformed by

other standard mutation operators such as swap,

inversion and insert mutation, described in [6], and

this is confirmed by Syswerda, as mentioned in [4]. It

seems that another important trait of a mutation

operator is that the changes it introduces in terms of

fitness value are relatively small.

Figure 2. Illustration of two different fitness

landscapes

An important conclusion is that a permutation that

is a local optimum for one mutation operator, may

not be a local optimum for another. Figure 2

illustrates this – it can be observed that the vertex in

the upper-right part of the graph is a local optimum

in the left graph, but isn’t in the right graph, as it is

connected to a vertex with a greater height (fitness

value).

Furthermore, we may introduce the notion of

distance between solutions as the minimum number

3 1 2

3 2 1

2 3 1

2 1 3

1 3 2

1 2 3

3 1 2

3 2 1

2 3 1

2 1 3

1 3 2

1 2 3

of vertices in the fitness landscape that must be

traversed to reach a vertex Q starting from vertex P.

Adjacent vertices then have the distance 1. In this

context, escaping a local optimum may require

traversing a greater distance with one mutation

operator than it is the case with some other mutation

operator. This is important, because the probability

of performing the chain of mutations that leads to

escaping a local optimum falls rapidly with the length

of the mutation chain.

The simple conclusion is that it makes sense to

exchange mutation operators during the search. Once

an algorithm using some mutation operator gets stuck

in a local optimum, changing the mutation operator

may increase it’s odds of escaping it.

3. Combining multiple mutation

operators

During the search, a genetic algorithm may get

stuck in a local optimum. The population converges,

meaning that all of the individuals are close to the

local optimum and the probability of performing the

right chain of mutations to escape is low. As we have

shown in section 2, once this happens, it makes sense

to combine different mutation operators to increase

chances of escaping local optima. It remains to be

seen which mutation operators could this be – this is

probably problem specific, and possibly also problem

instance specific.

We will now describe the shift mutation. A very

similar operator called displacement mutation was

proposed by Michalewicz in [7]. One use of a similar

operator is also mentioned in [3], in the context of

closest substring problem.

The shift mutation starts by selecting a random

subsegment of the permutation and a target position.

It then shifts the elements of the selected subsegment

to the target position. Figure 3 shows how this

operator works on the permutation of order 8.

Figure 3. Example of the shift mutation

Testing the shift mutation within a tournament

genetic algorithm applied to the traveling salesman

problem showed that the performance of the

algorithm using the shift mutation is comparable to

that of one using insert mutation, better than the one

using swap mutation, but worse than the one using

inversion mutation.

While studying the behaviour of tournament

genetic algorithm, we have noticed that it often gets

stuck in local optima for greater number of cities.

Figure 4 shows an instance of the traveling salesman

problem which belongs to the class of problems we

called Multicircular problems. The points represent

the cities, and the left solution represents a global

optimum – the shortest path needed to traverse all the

cities. The right solution is a local optimum for the

inversion mutation – no inversion will yield an

individual with a higher fitness.

Figure 4. Global and local optimum for a

Multicircular problem instance

By studying this solution and the belonging

permutation, we have noticed that applying a shift

mutation may actually make it possible for inversion

mutation to generate an individual with a higher

fitness. Figure 5 shows another example of this in

more detail. Not all of the cities are shown – the

dotted line represents omitted cities to make the

figure more clear.

Figure 5. Applying a shift mutation

The left solution on Figure 5 represents a local

optimum. It makes sense to try to make the cities

belonging to the central circle adjacent, for instance,

to make city 41 adjacent to cities 37 through 40. It

can be observed from the belonging permutation that

this could be achieved by shifting the subsegment 37

through 40 all the way to city 41. We, thus, obtain

the right solution on the figure. It can be easily

observed that inverting subsegment 37 through 40

yields a solution with a higher fitness.

Such examples formed a basis for the conclusion

that inversion and shift mutation are a pair of

mutation operators that work well in tandem. It

1..5, 50..41, 6..15, 28..21, 52..80, 29..36, 81..100, 37..40, 101..51, 20..16

1..5, 50..41, 37..40, 6..15, 28..21, 52..80, 29..36, 81..100, 101..51, 20..16

7 6 5 4 3 8 2 1 5 4 8 3 2 7 6 1

remains to be seen whether or not this is the case for

other problem instances.

4. Adaptive tournament genetic

algorithm

We have so far decided what to change within our

adaptive mechanisms – we will be changing the

mutation operator and mutation probability.

According to the questions listed in [1], we have yet

to answer how the change is made, what is the scope

of the change, and what is the evidence upon which

the change is made. We will be making changes

adaptively and the scope of the change will be the

entire population. The evidence for the change will

depend on the used adaptive mechanism. We’ll now

describe the adaptive tournament genetic algorithm.

 ATGA is a tournament elimination genetic

algorithm, using a classic integer list permutation

encoding for solution representation. While solving a

TSP, this results in certain permutations to represent

the same solution. This is ignored, because wise

choice of operators can eliminate this problem. The

algorithm starts by randomly initializing the

population and evaluating all individuals. The

algorithm then repeats the following procedure until

a prespecifed number of iterations has elapsed or a

solution with a fitness value lower than the

prespecified cost is found. It selects a predefined

number of individuals (tournament size) and

eliminates a number of individuals with the lowest

fitness. It then randomly selects the remaining

individuals in the tournament and performs crossover

until it generates the number of individuals that were

eliminated. For these experiments, we have used the

order crossover, described in [6]. Each child is

mutated with a predefined probability. After a

prespecified number of iterations has elapsed

(adaptation period), an adaptation mechanism is

triggered.

4.1. Mutation probability varying

This method tracks the number of iterations that

have passed since the last improvement of the best

fitness value in the population. If this number is

greater than the adaptation period, mutation

probability is increased by prespecified value

(mutation probability increase), and the counter value

is set to zero. Once the best fitness value in the

population improves, the mutation probability is

decreased eight times the mutation probability

increase. The idea is to quickly return to the initial

mutation probability level. An additional rule is that

mutation probability cannot get greater than 1 or

smaller than the initial probability level. This way the

mutation probability increases if the search gets stuck

in a local optimum.

An excellent summary of work on dynamic

mutation rates by Fogarty, Hesser and Männer, Bäck

and Schütz, and others is given in [1].

4.2. Adaptive operator cycling

This method relies on a predefined list of mutation

operators. During its work it exchanges the used

mutation operators from that list stochastically.

Adaptive operator cycling (AOC) is triggered

once the value of a special iteration counter becomes

greater than the adaptation period, and at least one

mutation has occurred since the last adaptation. A

ratio of successful to all mutations rs is then

calculated, where a successful mutation occurs when

the fitness value of the individual increases. The

probability of operator exchange poc is then

calculated according to the equation (1).

soc rp −= 1 (1)

An analysis of this equation reveals that the

probability of operator exchange is equal to 1 when

no mutation is successful, and equal to 0 when all

mutations are successful. This makes sense, because

we want to exchange less successful operators with a

greater probability. However, for increased

sensitivity, we have used equation (2), which favours

extremes (success rates close to 1 will cause operator

change even less often, and vice versa).

()()π⋅+= soc rp cos1
2

1 (2)

There is an alternative to this method we called

AOC2, which works in a similar manner as does

AOC. The only difference is that the adaptation

mechanism is triggered only after no improvement in

the best fitness value occurred until the adaptation

period has elapsed – this is interpreted as being stuck

in a local optimum.

4.3. Mutation operator statistics

Mutation operator statistics is a method that tracks

the success rate of each operator on the mutation

operator list, deciding which operator to use before

applying the mutation to the individual. This decision

is biased by the success of the mutation operator

relative to others.

Initially, all operators are given equal probability

to be chosen. After the adaptation period has elapsed,

this method calculates the ratio of successful

mutations rsi and draws a random value bi according

to equation (3), where rand(0, 1) is a random value

from the interval [0, 1] drawn from a uniform

distribution. This random value bi serves as a small

positive or negative offset.

()() arandbi ⋅−= 5.01,0 (3)

It then assigns the probability to be chosen pchi to

each operator which is defined by equation (4). The

probability is proportionate to operator success rate.

()∑ +

+
=

j

jsj

isi
chi

br

br
p

,0max

),0max(
(4)

The reasoning behind the value bi is to avoid that

a certain operator gets assigned a zero probability to

be chosen, thus being unable to be used later during

the search, when it could prove useful. The value of

the coefficient a is experimentally chosen to be 0.02.

Lower values resulted in a slow change of pchi, while

higher values introduced an offset bi which favoured

wrong operators and thus interfered with this credit

assignment mechanism.

5. Experimental results

We have compared the performance of ATGA

with the version without adaptive mechanisms on a

number of instances of TSP. We will show test

results for five different problem instances. These are

kroA200, pr299
1
, Spiral250

2
, Multicircular250 and

Multicircular500. We’ve set the tournament size to

3, and the number of individuals to eliminate to 1.

Mutation probability was set to 0.5. Population size

was set to 50. We have experimentally shown that the

algorithm without adaptation mechanisms shows best

performance for these values. The adaptation period

was set to 25000 iterations. Mutation probability

increase was set to 0.025. Lower adaptation period

has been experimentally shown to exhibit unstable

performance (information used for parameter

adaptation became less exact), and higher has

influenced parameters too slowly. Vice versa is true

for mutation probability increase. The algorithm

started using the inversion operator, and the second

operator used was shift mutation.

Figure 6 shows the differences in performance

between various adaptation methods. When using no

adaptive mechanism, the search gets stuck in a local

optimum after 10
6
 iterations.

1
 TSP instances kroA200 and pr299 may be

downloaded from TSPLIB (http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/)
2 A set of 250 cities arranged in a spiral

Figure 6. Test results for pr299

Figure 7. Test results for pr299

AOC exchanges shift and inversion operators

before first local optimum is detected, thus

performing worse in the initial period of the search,

because shift mutation isn’t the best operator for this

type of problem. However, once a local optimum is

found (usually after 106 iterations), the operator

exchange mechanism yields better solutions. AOC2

doesn’t exchange operators before reaching a local

optimum, and is efficient even in the initial period.

Other adaptive methods are only shown for pr299,

but exhibit a similar behaviour as AOC.

Finally, for the Multicircular500 problem better

results were obtained after a greater number of

iterations. Adaptive operator cycling found better

solutions after approximately 4·106 iterations.

Figure 8. Test results for Multicircular250

Figure 9. Test results for Spiral250

Figure 10. Test results for kroA200

Table 1 shows test results for 25 test runs for each

problem instance and mechanism. Average best cost,

minimum and maximum best costs, standard

deviation and median are shown in the table. Each

cell contains 3 values – top value obtained for using

no adaptation, middle for AOC and the bottom value

for AOC2. In most cases AOC2 shows best

performance.

6. Conclusion

We have explained in section 2 that exchanging

mutation operators transforms the fitness landscape

in terms of distribution of local optima. Changing a

mutation operator once reaching a local optimum can

increase chances of escaping it. In section 3 we’ve

hypothesized that combining inversion and shift

mutation operators could increase performance of an

algorithm solving a TSP.

It can be concluded from experiments that altering

mutation operators during the search gives positive

results in terms of escaping local optima. We have,

thus, confirmed our hypothesis from section 2.

Table 1. Test results for no adaptation (top),
AOC (middle) and AOC2 (bottom)

Problem

instance
Avg Min Max

Standard

deviation
Median

kroA200

32268

31244

31250

31149

30560

30286

33241

32217

32633

610

410

458

32285

31171

31202

Spiral250

1956

1864

1820

1739

1739

1739

2485

2053

1924

212

88

70

1904

1841

1821

M.c.250

4119

3930

3855

3724

3723

3723

4914

4595

4576

444

298

268

3882

3728

3726

pr299

54107

52865

53249

52069

51771

51335

56000

54632

55322

977

781

895

54218

52860

53187

M.c.500

4082

4348

4070

3685

3702

3685

4921

5030

5061

532

412

492

3689

4384

3716

However, these observations raise further

questions. For instance, what are the good

combinations of mutation operators? Can this be

deducted from the problem instance? An interesting

research would be modifying existing mutation

operators to be adaptive in terms of length of the

subsegment on which they operate. These are all

topics that will be addressed in the future.

7. References

[1] A. E. Eiben, R. Hinterding, Z. Michalewicz,

“Parameter Control in Evolutionary Algorithms”,

Parameter Setting in Evolutionary Algorithms,

Studies in Computer Science, Springer, Berlin, 2007.,

pp. 19-46

[2] S. Yang, “Adaptive Crossover in Genetic Algorithms

Using Statistics Mechanism”, Proceedings of the 8.

International Conference on Artificial Life, MIT

Press, Cambridge, 2002., pp. 182-185

[3] H. Mauch, “Closest Substring Problem – Results from

an Evolutionary Algorithm”, Neural Information

Processing, LNCS, Springer, Berlin, 2004., pp. 205-

211

[4] K. De Jong, “The Handbook of Evolutionary

Mutation”, IOP Publishing Ltd and Oxford University

Press, 1997., pp. C3.2:2

[5] D. Ashlock, “Evolutionary Computation for Modeling

and Optimization”, Springer, Canada, 2005.

[6] A.E. Eiben, J.E. Smith, “Introduction to Evolutionary

Computing”, Natural Computing Series, Springer,

Berlin, 2003.

[7] Z. Michalewicz, “Genetic Algorithms + Data

Structures = Evolution Programs”, Springer, Berlin,

1992.

[8] M. Bhattacharyya, A. K. Bandyopadhyay,

“Comparative Study of Some Solution Methods for

Traveling Salesman Problem Using Genetic

Algorithms”, Cybernetics and Systems,

Taylor&Francis, Inc., Bristol, 2009., pp. 1-24

