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Abstract 
 

Parameter tuning can be a lengthy and exhaustive 

process. Furthermore, optimal parameter sets are 

usually not only problem specific, but also problem 

instance specific. Adaptive genetic algorithms 

perform parameter control during the run, thus 

increasing algorithm performance. These 

mechanisms may also enable the algorithm to escape 

local optima more efficiently. 

In this paper, we describe the fitness landscape 

for permutation based problems, and define local 

and global optima, as well as the notion of 

adjacency of solutions. Using these definitions we 

show why it makes sense to combine multiple genetic 

operators adaptively, give examples of this, and 

show that an algorithm combining multiple mutation 

operators has a greater chance of escaping local 

optima. We then describe the adaptive tournament 

genetic algorithm (ATGA) which uses multiple 

mutation operators, describing a variety of used 

adaptation mechanisms and conclude the paper by 

showing experimental results. 

 

1. Introduction 
 

Genetic algorithms are applicable to a wide range 

of problems. In designing a genetic algorithm, one 

must choose the representation for the solution and 

reproduction operators, but also tune the parameters 

to increase the performance of the algorithm. 

However, optimal parameter sets may take a 

significant time to be found, and they are also 

problem-instance specific. One parameter set may 

work very well for one problem instance, but it may 

prove inadequate for another. Finding optimal 

parameter sets for each problem-instance is hardly a 

task worth pursuing. A requirement is, thus, 

established that an algorithm should change its 

parameters based on the problem instance it solves 

and also, to increase performance further, on the 

current state of the search. To do this a feedback 

between the algorithm and the search must exist. 

Such algorithms are said to be adaptive. 

The act of changing parameters during the run of 

the algorithm is called parameter control. Eiben, 

Hinterding and Michalewicz classify parameter 

control into three categories: deterministic, adaptive 

and self-adaptive [1]. In this paper, we restrict 

ourselves to adaptive parameter control. In adaptive 

parameter control, it has to be seen which parameters 

of the algorithm actually change and what is the 

evidence upon which the change is made. Our 

adaptive mechanisms will focus on changing 

mutation probability and mutation operators. The 

basis for the change will be described later for each 

adaptation mechanism. 

We proposed mutation probability varying 

scheme, adaptive operator cycling, and mutation 

operator statistics mechanism, somewhat similar to 

[2], but working on the individual level instead of 

allele level. 

Our adaptive mechanisms were applied to 

permutation problems, so we start by introducing 

certain terms related to permutations. 

 

2. Fitness landscape for permutation-

based problems 
 

In problems in which representation of solutions is 

a real-valued (or an integer-valued) vector, the notion 

of fitness landscape is straightforward and obvious. 

Fitness landscape is a scalar field and may be 

envisioned easily. In case of the two-dimensional 

vectors, the fitness landscape is a surface with a 

global optimum and possibly local optima. 

In the case of the permutation-based problems, the 

notion of a fitness landscape is no longer so intuitive. 

The solutions do not form a scalar field, as the 

elements of the permutation are integers instead of 

real numbers, and not all integer combinations are 

allowed (we exclude the random key encoding for 

permutations from [5], that encodes permutations 

with a real vector, from this analysis). We introduce 

the following definition of permutation adjacency. 



Definition 1. A permutation Q is adjacent to 

permutation P if the application of the mutation 

operator to the permutation P can generate 

permutation Q. 

 

Note that adjacency is conditioned by the 

mutation operator. Different mutation operators 

provide different adjacency relations. Note, also, that 

this definition of adjacency is not inherently 

symmetric – if the permutation Q is adjacent to 

permutation P, then permutation P may not be 

adjacent to permutation Q. However, for most 

mutation operators, adjacency is symmetric. For 

instance, inversion yields a symmetric adjacency 

relation between permutations – inverting a 

subsegment of a permutation may be discarded by 

repeating this operation on the same subsegment. 

However, a mutation operator that performs a local 

search in concordance with some fitness function will 

not yield a symmetric adjacency relation. 

 

Definition 2. The fitness landscape for permutation-

based problems is a graph whose vertex set equals 

the set of all possible permutations, and edge set 

contains all vertex pairs whose respective 

permutations are adjacent. Each vertex is 

additionally assigned its fitness value. 

 

Possible permutations are those permutations that 

represent a solution in the search space – generally, 

not all permutations may be feasible. Further, it 

follows that the fitness landscape defined in this 

manner also depends on the mutation operator, and 

the fitness landscape may be a directed graph in some 

cases. Figure 1 shows this for permutations of the 

order 3, and for scramble and swap mutations [6] – it 

can be observed that even for the case of low order 

permutations, some of them are not necessarily 

adjacent, thus forming a different fitness landscape. 

Each permutation in the solution space has a certain 

fitness, so each vertex is assigned its fitness value. In 

visualization of the fitness landscape, each vertex 

may be assigned a height proportionate to its fitness 

value. This “landscape” may then resemble the one 

that follows from the real-valued representation. The 

graph, however, may not be and in most cases is not 

planar, thus a vizualisation may not be particularly 

helpful. However, it should be noted that 

visualization of higher dimension real vector 

functions is also vague. The notion of the fitness 

landscape shall become important after we introduce 

the following modified definition, borrowed from 

[5]. 

 

Definition 3. A global optimum is a vertex in the 

fitness landscape whose fitness value exceeds the 

values of all other vertices (or is exceeded by all 

other values if we are minimizing). A local optimum 

is a vertex in fitness space that has the property that 

no chain of mutations starting at that vertex can lead 

to a vertex whose value is greater without first 

leading to a vertex whose value is lower than the 

starting vertex (or vice versa, if we are minimizing).  

 

 
Figure 1. Adjacency of permutations of the 

order 3 for the swap and scramble operators 
 

In other words, a local optimum is a vertex in the 

fitness landscape with the property that all of the 

adjacent vertices have a lower fitness value. As was 

deducted earlier, it follows that the distribution of 

local optima depends on the mutation operator. What 

is a local optimum in a specific problem instance for 

one mutation operator, may not be a local optimum 

for another. This may lead to the premature 

assumption that a mutation operator having the least 

number of local optima (or none) may be the best 

mutation operator, but this is not so. The scramble 

mutation is an example of an operator that yields a 

totally connected fitness landscape, thus having no 

local optima, because every solution is adjacent to 

the global solution. However, we’ve found that 

scramble mutation used for TSP is outperformed by 

other standard mutation operators such as swap, 

inversion and insert mutation, described in [6], and 

this is confirmed by Syswerda, as mentioned in [4]. It 

seems that another important trait of a mutation 

operator is that the changes it introduces in terms of 

fitness value are relatively small. 

 

 
Figure 2. Illustration of two different fitness 

landscapes 
 

An important conclusion is that a permutation that 

is a local optimum for one mutation operator, may 

not be a local optimum for another. Figure 2 

illustrates this – it can be observed that the vertex in 

the upper-right part of the graph is a local optimum 

in the left graph, but isn’t in the right graph, as it is 

connected to a vertex with a greater height (fitness 

value). 

Furthermore, we may introduce the notion of 

distance between solutions as the minimum number 
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of vertices in the fitness landscape that must be 

traversed to reach a vertex Q starting from vertex P. 

Adjacent vertices then have the distance 1. In this 

context, escaping a local optimum may require 

traversing a greater distance with one mutation 

operator than it is the case with some other mutation 

operator. This is important, because the probability 

of performing the chain of mutations that leads to 

escaping a local optimum falls rapidly with the length 

of the mutation chain. 

The simple conclusion is that it makes sense to 

exchange mutation operators during the search. Once 

an algorithm using some mutation operator gets stuck 

in a local optimum, changing the mutation operator 

may increase it’s odds of escaping it. 

 

3. Combining multiple mutation 

operators 
 

During the search, a genetic algorithm may get 

stuck in a local optimum. The population converges, 

meaning that all of the individuals are close to the 

local optimum and the probability of performing the 

right chain of mutations to escape is low. As we have 

shown in section 2, once this happens, it makes sense 

to combine different mutation operators to increase 

chances of escaping local optima. It remains to be 

seen which mutation operators could this be – this is 

probably problem specific, and possibly also problem 

instance specific. 

We will now describe the shift mutation. A very 

similar operator called displacement mutation was 

proposed by Michalewicz in [7]. One use of a similar 

operator is also mentioned in [3], in the context of 

closest substring problem. 

The shift mutation starts by selecting a random 

subsegment of the permutation and a target position. 

It then shifts the elements of the selected subsegment 

to the target position. Figure 3 shows how this 

operator works on the permutation of order 8. 

 

 
Figure 3. Example of the shift mutation 

 

Testing the shift mutation within a tournament 

genetic algorithm applied to the traveling salesman 

problem showed that the performance of the 

algorithm using the shift mutation is comparable to 

that of one using insert mutation, better than the one 

using swap mutation, but worse than the one using 

inversion mutation. 

While studying the behaviour of tournament 

genetic algorithm, we have noticed that it often gets 

stuck in local optima for greater number of cities. 

Figure 4 shows an instance of the traveling salesman 

problem which belongs to the class of problems we 

called Multicircular problems. The points represent 

the cities, and the left solution represents a global 

optimum – the shortest path needed to traverse all the 

cities. The right solution is a local optimum for the 

inversion mutation – no inversion will yield an 

individual with a higher fitness. 

 

 
Figure 4. Global and local optimum for a 

Multicircular problem instance 
 

By studying this solution and the belonging 

permutation, we have noticed that applying a shift 

mutation may actually make it possible for inversion 

mutation to generate an individual with a higher 

fitness. Figure 5 shows another example of this in 

more detail. Not all of the cities are shown – the 

dotted line represents omitted cities to make the 

figure more clear. 

 

 
Figure 5. Applying a shift mutation 

 
The left solution on Figure 5 represents a local 

optimum. It makes sense to try to make the cities 

belonging to the central circle adjacent, for instance, 

to make city 41 adjacent to cities 37 through 40. It 

can be observed from the belonging permutation that 

this could be achieved by shifting the subsegment 37 

through 40 all the way to city 41. We, thus, obtain 

the right solution on the figure. It can be easily 

observed that inverting subsegment 37 through 40 

yields a solution with a higher fitness. 

Such examples formed a basis for the conclusion 

that inversion and shift mutation are a pair of 

mutation operators that work well in tandem. It 

1..5, 50..41, 6..15, 28..21, 52..80, 29..36, 81..100, 37..40, 101..51, 20..16 

1..5, 50..41, 37..40, 6..15, 28..21, 52..80, 29..36, 81..100, 101..51, 20..16 
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remains to be seen whether or not this is the case for 

other problem instances. 

 

4. Adaptive tournament genetic 

algorithm 
 

We have so far decided what to change within our 

adaptive mechanisms – we will be changing the 

mutation operator and mutation probability. 

According to the questions listed in [1], we have yet 

to answer how the change is made, what is the scope 

of the change, and what is the evidence upon which 

the change is made. We will be making changes 

adaptively and the scope of the change will be the 

entire population. The evidence for the change will 

depend on the used adaptive mechanism. We’ll now 

describe the adaptive tournament genetic algorithm. 

 ATGA is a tournament elimination genetic 

algorithm, using a classic integer list permutation 

encoding for solution representation. While solving a 

TSP, this results in certain permutations to represent 

the same solution. This is ignored, because wise 

choice of operators can eliminate this problem. The 

algorithm starts by randomly initializing the 

population and evaluating all individuals. The 

algorithm then repeats the following procedure until 

a prespecifed number of iterations has elapsed or a 

solution with a fitness value lower than the 

prespecified cost is found. It selects a predefined 

number of individuals (tournament size) and 

eliminates a number of individuals with the lowest 

fitness. It then randomly selects the remaining 

individuals in the tournament and performs crossover 

until it generates the number of individuals that were 

eliminated.  For these experiments, we have used the 

order crossover, described in [6]. Each child is 

mutated with a predefined probability. After a 

prespecified number of iterations has elapsed 

(adaptation period), an adaptation mechanism is 

triggered. 

 

4.1. Mutation probability varying 
 

This method tracks the number of iterations that 

have passed since the last improvement of the best 

fitness value in the population. If this number is 

greater than the adaptation period, mutation 

probability is increased by prespecified value 

(mutation probability increase), and the counter value 

is set to zero. Once the best fitness value in the 

population improves, the mutation probability is 

decreased eight times the mutation probability 

increase. The idea is to quickly return to the initial 

mutation probability level. An additional rule is that 

mutation probability cannot get greater than 1 or 

smaller than the initial probability level. This way the 

mutation probability increases if the search gets stuck 

in a local optimum. 

An excellent summary of work on dynamic 

mutation rates by Fogarty, Hesser and Männer, Bäck 

and Schütz, and others is given in [1]. 

 

4.2. Adaptive operator cycling 
 

This method relies on a predefined list of mutation 

operators. During its work it exchanges the used 

mutation operators from that list stochastically. 

Adaptive operator cycling (AOC) is triggered 

once the value of a special iteration counter becomes 

greater than the adaptation period, and at least one 

mutation has occurred since the last adaptation. A 

ratio of successful to all mutations rs is then 

calculated, where a successful mutation occurs when 

the fitness value of the individual increases. The 

probability of operator exchange poc is then 

calculated according to the equation (1). 

 

soc rp −= 1  (1) 

 

An analysis of this equation reveals that the 

probability of operator exchange is equal to 1 when 

no mutation is successful, and equal to 0 when all 

mutations are successful. This makes sense, because 

we want to exchange less successful operators with a 

greater probability. However, for increased 

sensitivity, we have used equation (2), which favours 

extremes (success rates close to 1 will cause operator 

change even less often, and vice versa). 

 

( )( )π⋅+= soc rp cos1
2

1  (2) 

 

There is an alternative to this method we called 

AOC2, which works in a similar manner as does 

AOC. The only difference is that the adaptation 

mechanism is triggered only after no improvement in 

the best fitness value occurred until the adaptation 

period has elapsed – this is interpreted as being stuck 

in a local optimum. 

 

4.3. Mutation operator statistics 
 

Mutation operator statistics is a method that tracks 

the success rate of each operator on the mutation 

operator list, deciding which operator to use before 

applying the mutation to the individual. This decision 

is biased by the success of the mutation operator 

relative to others. 

Initially, all operators are given equal probability 

to be chosen. After the adaptation period has elapsed, 

this method calculates the ratio of successful 

mutations rsi and draws a random value bi according 

to equation (3), where rand(0, 1) is a random value 



from the interval [0, 1] drawn from a uniform 

distribution. This random value bi serves as a small 

positive or negative offset. 

 

( )( ) arandbi ⋅−= 5.01,0  (3) 

 

It then assigns the probability to be chosen pchi to 

each operator which is defined by equation (4). The 

probability is proportionate to operator success rate. 
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The reasoning behind the value bi is to avoid that 

a certain operator gets assigned a zero probability to 

be chosen, thus being unable to be used later during 

the search, when it could prove useful. The value of 

the coefficient a is experimentally chosen to be 0.02. 

Lower values resulted in a slow change of pchi, while 

higher values introduced an offset bi which favoured 

wrong operators and thus interfered with this credit 

assignment mechanism. 

 

5. Experimental results 
 

We have compared the performance of ATGA 

with the version without adaptive mechanisms on a 

number of instances of TSP. We will show test 

results for five different problem instances. These are 

kroA200, pr299
1
, Spiral250

2
, Multicircular250 and 

Multicircular500. We’ve set the tournament size to 

3, and the number of individuals to eliminate to 1. 

Mutation probability was set to 0.5. Population size 

was set to 50. We have experimentally shown that the 

algorithm without adaptation mechanisms shows best 

performance for these values. The adaptation period 

was set to 25000 iterations. Mutation probability 

increase was set to 0.025. Lower adaptation period 

has been experimentally shown to exhibit unstable 

performance (information used for parameter 

adaptation became less exact), and higher has 

influenced parameters too slowly. Vice versa is true 

for mutation probability increase. The algorithm 

started using the inversion operator, and the second 

operator used was shift mutation. 

Figure 6 shows the differences in performance 

between various adaptation methods. When using no 

adaptive mechanism, the search gets stuck in a local 

optimum after 10
6
 iterations. 

 

                                                           
1
 TSP instances kroA200 and pr299 may be 

downloaded from TSPLIB (http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/) 
2 A set of 250 cities arranged in a spiral 

  
Figure 6. Test results for pr299 

 
Figure 7. Test results for pr299 

 

AOC exchanges shift and inversion operators 

before first local optimum is detected, thus 

performing worse in the initial period of the search, 

because shift mutation isn’t the best operator for this 

type of problem. However, once a local optimum is 

found (usually after 106 iterations), the operator 

exchange mechanism yields better solutions. AOC2 

doesn’t exchange operators before reaching a local 

optimum, and is efficient even in the initial period. 

Other adaptive methods are only shown for pr299, 

but exhibit a similar behaviour as AOC. 

Finally, for the Multicircular500 problem better 

results were obtained after a greater number of 

iterations. Adaptive operator cycling found better 

solutions after approximately 4·106 iterations. 

 
Figure 8. Test results for Multicircular250 



 

 
Figure 9. Test results for Spiral250 

 

 
Figure 10. Test results for kroA200 

 
Table 1 shows test results for 25 test runs for each 

problem instance and mechanism. Average best cost, 

minimum and maximum best costs, standard 

deviation and median are shown in the table. Each 

cell contains 3 values – top value obtained for using 

no adaptation, middle for AOC and the bottom value 

for AOC2. In most cases AOC2 shows best 

performance. 

 

6. Conclusion 
 

We have explained in section 2 that exchanging 

mutation operators transforms the fitness landscape 

in terms of distribution of local optima. Changing a 

mutation operator once reaching a local optimum can 

increase chances of escaping it. In section 3 we’ve 

hypothesized that combining inversion and shift 

mutation operators could increase performance of an 

algorithm solving a TSP. 

It can be concluded from experiments that altering 

mutation operators during the search gives positive 

results in terms of escaping local optima. We have, 

thus, confirmed our hypothesis from section 2. 

 

Table 1. Test results for no adaptation (top), 
AOC (middle) and AOC2 (bottom) 

 
Problem 

instance 
Avg Min Max 

Standard 

deviation 
Median 

kroA200 

32268 

31244 

31250 

31149 

30560 

30286 

33241 

32217 

32633 

610 

410 

458 

32285 

31171 

31202 

Spiral250 

1956 

1864 

1820 

1739 

1739 

1739 

2485 

2053 

1924 

212 

88 

70 

1904 

1841 

1821 

M.c.250 

4119 

3930 

3855 

3724 

3723 

3723 

4914 

4595 

4576 

444 

298 

268 

3882 

3728 

3726 

pr299 

54107 

52865 

53249 

52069 

51771 

51335 

56000 

54632 

55322 

977 

781 

895 

54218 

52860 

53187 

M.c.500 

4082 

4348 

4070 

3685 

3702 

3685 

4921 

5030 

5061 

532 

412 

492 

3689 

4384 

3716 

 

However, these observations raise further 

questions. For instance, what are the good 

combinations of mutation operators? Can this be 

deducted from the problem instance? An interesting 

research would be modifying existing mutation 

operators to be adaptive in terms of length of the 

subsegment on which they operate. These are all 

topics that will be addressed in the future. 
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