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Abstract
Functional collection combinators are a neat and widely ac-
cepted data processing abstraction. However, their generic
nature results in high abstraction overheads � Scala collec-
tions are known to be notoriously slow for typical tasks. We
show that proper optimizations in a JIT compiler can widely
eliminate overheads imposed by these abstractions. Using
the open-source Graal JIT compiler, we achieve speedups of
up to 20� on collection workloads compared to the standard
HotSpot C2 compiler. Consequently, a su�ciently aggressive
JIT compiler allows the language compiler, such as Scalac,
to focus on other concerns.

In this paper, we show how optimizations, such as inlin-
ing, polymorphic inlining, and partial escape analysis, are
combined in Graal to produce collections code that is optimal
with respect to manually written code, or close to optimal.
We argue why some of these optimizations are more e�ec-
tively done by a JIT compiler. We then identify speci�c use-
cases that most current JIT compilers do not optimize well,
warranting special treatment from the language compiler.

CCS Concepts ˆ Software and its engineering � Just-
in-time compilers ;

Keywords collections, data-parallelism, program optimiza-
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analysis, iterators, inlining, scalar replacement

ACM Reference Format:
Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, Thomas
Würthinger 2017. Making Collection Operations Optimal with
Aggressive JIT Compilation . InProceedings of 8th ACM SIGPLAN
International Scala Symposium (SCALA'17).ACM, New York, NY,
USA, 12 pages.h�ps://doi.org/10.1145/3136000.3136002

SCALA'17, October 22�23, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
This is the author's version of the work. It is posted here for your personal
use. Not for redistribution. The de�nitive Version of Record was published in
Proceedings of 8th ACM SIGPLAN International Scala Symposium (SCALA'17),
h�ps://doi.org/10.1145/3136000.3136002.

1 Introduction
Compilers for most high-level languages, such as Scala, trans-
form the source program into an intermediate representa-
tion. This intermediate program representation is executed
by the runtime system. Typically, the runtime contains a
just-in-time (JIT) compiler, which compiles the intermediate
representation into machine code. Although JIT compilers
focus on optimizations, there are generally no guarantees
about the program patterns that result in fast machine code
� most optimizations emerge organically, as a response to
a particular programming paradigm in the high-level lan-
guage. Scala's functional-style collection combinators are a
paradigm that the JVM runtime was unprepared for.

Historically, Scala collections [Odersky and Moors 2009;
Prokopec et al. 2011] have been somewhat of a mixed bless-
ing. On one hand, they helped Scala gain popularity im-
mensely � code written using collection combinators is more
concise and easier to write compared to Java-styleforeach
loops. High-level declarative combinators are exactly the
kind of paradigm that Scala advocates. And yet, Scala was
often criticized for having suboptimal performance because
of its collection framework, with reported performance over-
heads of up to 33� [Biboudis et al. 2014]. Despite several
attempts at making them more e�cient [Dragos and Odersky
2009; Prokopec and Petrashko 2013; Prokopec et al. 2015],
Scala collections currently have suboptimal performance
compare to their Java pendants.

In this paper, we show that, despite the conventional wis-
dom about the HotSpot C2 compiler,most overheads in-
troduced by the Scala standard library collections can
be removed and optimal code can be generated with
a su�ciently aggressive JIT compiler . We validate this
claim using the open-source Graal compiler [Duboscq et al.
2013], and we explain how. Concretely:

� We identify and explain the abstraction overheads
present in the Scala collections library (Section 2).

� We summarize relevant optimizations used by Graal
to eliminate those abstractions (Section 3).

https://doi.org/10.1145/3136000.3136002
https://doi.org/10.1145/3136000.3136002
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� We present three case studies, showing how Graal's
optimizations interact to produce optimal collections
code (Section 4).

� We show a detailed performance comparison between
the Graal compiler and the HotSpot C2 compiler on
Scala collections and on several Spark data-processing
workloads. We focus both on microbenchmarks and
application benchmarks (Section 5).

� We postulate that pro�ling information enables a JIT
compiler to better optimize collection operations com-
pared to a static compiler. We then identify the opti-
mizations that current JIT compilers are unlikely to
do, and conclude thatlanguage compilers should fo-
cus on optimizing data structures more than on code
optimization(Section 7).

Note that the purpose of this paper is not to explain each
of the optimizations used in Graal in detail � this was either
done elsewhere, or will be done in the future. Rather, the goal
is to explain how we made Graal's optimizations interact
in order to produce optimal collections code. To reiterate,
we do not claim novelty for any speci�c optimization that
we describe. Instead, we show how the correct set of opti-
mizations is combined to produce optimal collections code.
As such, we hope that our �ndings will guide the language
implementors, and drive future design decisions in Scala (as
well as other languages that run on the JVM).

2 Overheads in Scala Collection
Operations

On a high-level, we categorize the abstraction overheads
present in Scala collections into several groups [Prokopec
et al. 2014]. First, most Scala collections are generic in their
parameter type. At the same time, Scala relies on type erasure
to eliminate generic type parameters in the intermediate
code (similar to Java [Bracha et al. 2003]). At the bytecode
level, collection methods such asfoldLeft , indexOf or += take
arguments of the typeObject (in Scala terms,AnyRef). When a
collection is instantiated with a value type, such asInt , most
method invocations implicitly allocate heap objects to wrap
values, which is calledboxing.

Second, collections form a class hierarchy, with their oper-
ations de�ned in base traits. Collection method calls are often
polymorphic. A compiler that does not know the concrete
callee type, cannot easily optimize this call. For example,
two apply calls onArrayBuffer share the same array bounds
check, but if the static receiver type is the base traitSeq, the
compiler cannot factor out the common bounds check.

Third, most of the collection combinators are parametric
� they take a lambda that fully speci�es the combinator's
behavior. Since the implementation site does not know the
implementation of the lambda, it cannot be optimized with
respect to the lambda. For example, in the expressionxs.

foreach(this.buffer += _) , unless the compiler specializes the

callsite (e.g. by inlining), the read of thebuffer �eld cannot be
factored out of the loop, but instead occurs for every element.

Finally, most collection operations (in particular, subclasses
of the Iterable trait) createIterator objects, which store it-
eration state. Avoiding the allocation of theIterator and
inlining the logic of itshasNextandnext methods generally
results in more e�cient code, but without knowing the con-
crete implementation of the iterator, replacing iterators with
something more e�cient is not possible.

3 Overview of the Optimizations in Graal
Graal [Duboscq et al. 2013] is a dynamic optimizing com-
piler for the HotSpot VM. Graal is not the default top-tier
compiler in HotSpot, but it can optionally replace the C2 de-
fault compiler. Just like the standard C2 compiler, Graal uses
feedback-driven optimizations and generates code that spec-
ulates on the method receiver types and the taken control
�ow paths. The feedback is based on receiver type pro�les
and branch probabilities, and is gathered while the program
executes in interpreter mode. When a speculation proves
incorrect, Graal deoptimizes the a�ected part of the code,
and compiles it again later [Duboscq et al. 2014].

An important design aspect in Graal, shared among many
current JIT compilers, is the focus on intraprocedural analy-
sis. When HotSpot detects that a particular method is called
many times, it schedules the method for compilation. The JIT
compiler (C2 or Graal) analyzes the particular method, and
attempts to trigger optimizations within its scope. Instead of
doing inter-procedural analysis, additional optimizations are
enabled by inlining the callsites inside the current method.

Graal's intermediate representation (IR) is partly based
on the sea-of-nodes approach [Click and Paleczny 1995]. A
program is represented as a directed graph in static single
assignment form. Each node produces at most one value.
Control �ow is represented with �xed nodes for which suc-
cessor edges point downwards in the graph. Data �ow is
represented with �oating nodes whose input edges point
upwards. The details of Graal IR are presented in related
work [Duboscq et al. 2013]. In section 4, we summarize the
basic IR nodes that are required for understanding this paper.

In the rest of this section, we describe the most important
high-level optimizations in Graal that are relevant for the rest
of the discussion. To make the presentation more accessible
to the audience, we show the optimizations at the Scala
source level, while in fact they work on the Graal IR level.
We avoid the details, and aim to give an intuition � where
necessary, we point to related work.



Making Collection Operations Optimal with an Aggressive JIT SCALA'17, October 22�23, 2017, Vancouver, Canada

3.1 Inlining

The inlining transformation identi�es a callsite, and replaces
it with the body of the callee. For example, thesq method:

1 def sq(x:Double ) = x * x
2 def tss (xs :List [Double ]) :Double =
3 if (xs . isEmpty ) 0
4 else sq(xs .head)+ tss (xs . tail )

can be inlined into thetss method:

1 def tss (xs :List [ Int ]) :Double =
2 if (xs . isEmpty ) 0 else {
3 val h = xs.head
4 h*h+ tss (xs . tail )
5 }

While the transformation itself is straightforward, the de-
cision of when and what to inline is anything but simple.
Inlining decisions are often based on hand-tuned heuris-
tics and various rules of the thumb, which is why some
researchers called itblack artin the past [Peyton Jones and
Marlow 2002].

On a high-level, Graal inlining works by constructing a
call tree starting from the currently compiled method. The
complete call tree may be in�nite, so at some point Graal
stops exploring and inlines the methods considered worthy.

3.2 Polymorphic Inlining

Inlining is only possible if the concrete implementation of
the method that needs to be called is statically known. In
Java or in Scala, this means having a precise static type for
the receiver. In typical Scala collections code, that is rarely
the case, since the convention is to use generic collection
traits, such asSet, Seqor Map. The JVM usesinline cachesat
its polymorphic callsites, which store pairs of the possible
receiver types and the method entry addresses. This design is
similar to the one used in Smalltalk [Deutsch and Schi�man
1984].

Aside from relying on inline caches of the VM, a JIT com-
piler can emit type switches� a sequence of if-then-else
type checks that dispatch to the concrete implementation. In
Graal, such a type switch usually does not have more than
3-4 checks, and the types used in it are based on the callsite's
receiver type pro�le. Consider thetss method:

1 def tss (xs :Seq [ Int ]) : Int = xs . fold (0) (_+sq(_))

To avoid the indirect call, a JIT compiler with access to
the type pro�le of xs can emit the following code:

1 def tss (xs :Seq [ Int ]) : Int = xs match {
2 case xs:List [ Int ] => xs. fold (0) (_+sq(_))
3 case xs:ArrayOps [ Int ] => xs. fold (0) (_+sq(_))
4 case _ => xs. fold (0) (_+sq(_))
5 }

Note that in the previous snippet, thefold calls in lines 2
and 3 are direct. The bene�t of type switches, as we show in
Section 4.2, is that they allow additional inlining.

3.3 Canonicalization

In Graal,canonicalizationrefers to a compiler pass that ap-
plies di�erent optimizations that simplify code, make it more
e�cient or bring it into a canonical form. This includes clas-
sical optimizations, such as strength reduction (x*2 becomes
x<<1), global value numbering [Click 1995] (two occurrences
of the same value are shared in the IR), constant folding (3*2

becomes6), branch or dead-code elimination, as well as JVM-
speci�c optimizations such as replacing a type-check with
a constant (when both the receiver type and the checked
type are known). Canonicalization is applied incrementally
throughout the IR until the compiler decides that there are
no more canonicalization opportunities. Graal applies canon-
icalization repeatedly throughout the compilation process.
Its de�ning feature is that it is alocal optimization� it can be
applied to a particular IR node by inspecting its immediate
neighbourhood. It is therefore relatively cheap, and can be
used as a subphase inside other optimizations.

3.4 Partial Escape Analysis and Scalar Replacement

Partial escape analysis (PEA) [Stadler et al. 2014], a control
�ow sensitive variant of escape analysis [Kotzmann and
Mössenböck 2005], is an analysis that allows a compiler to
determine if an object escapes the current compilation unit.
This information can be used to perform optimizations such
as scalar replacement that eliminates an object allocation
and replaces it with the scalar values of the object.

Consider the example in Listing 1, in which the iteration
state is kept in anArrayIterator object. Theit object is not
stored into another object, passed to other functions or re-
turned. Consequently, theit object is just an extra allocation
in this code, and can be completely removed. Every read
of it.array can be replaced witha, since that is the value
in the preceding write to thearray �eld in line 4. Similarly,
every read and write toit.current can be replaced with a
local variable.

Listing 1. Sum of squares using iterators
1 def tss (a:Array [Double ]) :Double = {
2 val it = new ArrayIterator
3 it . current = 0
4 it . array = a
5 var sum = 0.0
6 while ( it . current < it . array . length ) {
7 sum += sq( it . array ( it . current ))
8 it . current + = 1
9 }

10 sum
11 }

3.5 Interaction between Optimizations

Each of the previously described optimizations usually im-
proves program performance. However, improvements are
higher when these optimizations are used together � one
optimization often enables another. For example, inlining
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typically introduces constants and simpli�able code patterns
into the IR, thus introducing opportunities for constant fold-
ing, branch elimination, and other canonicalizations. Canon-
icalization, on the other hand, typically eliminates calls or
makes polymorphic calls direct, enabling additional inlining.
Partial escape analysis eliminates read-write dependencies,
enabling additional constant-folding.

For each method that gets compiled, Graal expands the call
tree, and inlines the callsites considered worthwhile. Graal
then alternates between these optimizations until deciding
that the code was su�ciently optimized, or that there are no
more optimization opportunities. At this point, the optimized
IR is passed to the remaining compilation phases.

We deliberately keep some concepts vague and high-level.
Deciding when to stop expanding the call tree, which callsites
are worthwhile, or when to stop applying the optimizations,
requires careful tuning and is outside the scope of this paper.
In Graal, we rely heavily on carefully chosen heuristics � we
found that, when done correctly, this process usually results
in optimal code.

4 Case Studies
4.1 Case Study:foldLeft

In this section, we consider a typical usage of thefoldLeft

function, and show how a JIT compiler, in our case Graal, can
optimize it. Listing 2 shows the implementation offoldLeft

from the Scala standard library.
Listing 2. The foldLeft implementation

1 @tailrec
2 def foldl [B ](s: Int ,e: Int ,z:B,op :(B,A) =>B):B =
3 if (s ==e) z
4 else foldl (s+1,e ,op(z , this (s)) ,op)
5 def foldLeft [B ](z:B)(op :(B,A) =>B):B =
6 foldl (0 , length ,z ,op)

The foldLeft method [Bird and Wadler 1988] (on indexed
sequence collections) forwards to thefoldl method, which
either returns the accumulatorz, or calls itself recursively at
the next index. The@tailrec annotation instructs the Scala
compiler to convert this method into awhile loop equivalent.

Listing 3. ThecomputeSumuser method
1 def computeSum (xs: Array [ Int ]) : Long =
2 xs. foldLeft (0L)(_ + _)

ThecomputeSummethod invokes thefoldLeft . However, there
is more to its translation than what meets the eye. The Scala
compiler implicitly wraps the JVM array into anArrayOps

object, so that it can callfoldLeft . Furthermore,foldLeft has
a generic return type, which erases toObject . The compiler
must insert anunboxToLongcall to return a primitive value.
The transformed code resembles the one in Listing 4.

Listing 4. The expansion of thecomputeSummethod
1 def computeSum (xs: Array [ Int ]) : Long =
2 BoxesRunTime . unboxToLong (
3 new ArrayOps$ofInt (xs). foldLeft (0L)(_ + _))

Figure 1. IR of computeSumafter bytecode parsing

After Scalac transforms this code to JVM bytecode, and
the JVM schedules thecomputeSummethod for compilation, a
JIT compiler, in our case Graal, produces theintermediate
representation shown in Fig. 1. The yellow nodes denote
control �ow � for example, Start denotes the entry point into
the method,Newrepresents an object allocation,Invoke is a
call to a method,Boxdenotes boxing of a primitive value, and
Return represents the method's exit point. The purple nodes
represent data�ow, and are called�oating nodes� they hang
from the control �ow nodes, serving as their input or output.
Their �nal position in the resulting machine code depends
only on their inputs. TheCnode represents a constant, aP(n)

node represents then-th parameter, and aMethodCallTarget

node wraps parameters for anInvoke. Finally, node12is a
Function2 allocation for the lambda_ + _.

As we will see soon, expression nodes are also encoded as
�oating nodes. For example,+ encodes addition,SignExtend

encodes a conversion fromInt to Long, ==represents equality,
InstanceOf represents a type check, andAllocatedObject rep-
resents a reference to an allocated object. The list of all node
types is outside the scope of this paper, so we only mention
the relevant ones [Duboscq et al. 2013].

As most other modern JIT compilers, Graal relies on in-
traprocedural analysis � to trigger optimizations, it must
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�rst inline the Invoke nodes in the IR ofcomputeSum. To do this,
Graal creates acall tree based on the body ofcomputeSum.

Fig. 2(a) shows the initial call graph � thecomputeSumroot
node, represented with the expanded subgraph node (Sg),
and the threeCutoff nodes: theArrayOpsconstructor (1), the
foldLeft (2) andunboxToLong(3). The inliner then inspects the
call graph nodes, and explores the call graph, without actu-
ally inlining the calls yet. This subphase is calledexpansion.
During the expansion, the inliner must parse the IR of the
callees to �nd the nested callsites � for example, Fig. 3 shows
the IR offoldLeft .

In Fig. 2(b), the inliner decides that it su�ciently expanded
the call graph in the current round. Note that direct calls,
such asfoldLeft in node 4, are denoted with subgraph nodes
(Sg). Indirect calls (whose receiver is statically unknown) are
represented with type switch nodes (TS) � depending on the
callsite type pro�le, the compiler may decide to embed a type
switch for such nodes, as explained in Section 3.2. Note that
the call tolength (node 5) is indirect, since its caller (foldLeft

from Listing 2) does not know the receiver type.
The inliner then forwards the callsite argument type infor-

mation top-down through the call graph � in each method,
it replaces the parameter nodesP(n) with the values from
its callsite, and then triggers the canonicalization transfor-
mation from Section 3.3. The receiver types forlength (node
5),apply (node 11) of the base sequence typeGenSeqLike, and
apply (node 12) of theFunction type, thus become known, and
these calls become direct � they are replaced withCutoff

nodes, to be re-examined, as shown in Fig. 2(c)).
The inliner must now decide what to actually inline into

computeSum. TheunboxToLongcall (node 8) is a "no-brainer" � its
IR is small, without nested calls, so it is immediately inlined.
Note that, at this point, the body of thefoldLeft method
(node 4), is not yet fully explored. Therefore, the inliner does
not yet believe that inlining thefoldLeft method can trigger
other optimizations, so it decides to leave it for the next
round.

Fig. 4 shows a part of thecomputeSumafter the 1st round �
inlining unboxToLogintroduced threeguard nodes(FixedGuard).
Roughly speaking, with guard 22, the compiler speculates
that the true branch in Listing 5 will never be executed
(if this speculation is incorrect, the code is deoptimized,
and recompiled later without this speculation). Similarly,
guards 24 and 26 speculate the absence ofClassCastException

and NullPointerException , respectively. These speculations
are generally more e�cient than the variant with the branch
and the exception code, but this code is not optimal � ide-
ally, we would like to get rid of these guards altogether. This
is currently not possible, since the guard conditionsIsNull

(node 21) andInstanceOf (node 23) are not constants. These
conditions may become constant after more inlining.

Listing 5. TheunboxToLongstandard library method
1 public static long unboxToLong (Object x) {
2 return x==null ? 0 : (( Long) l ) . longValue () ; }

The compiler then proceeds to the second inlining round,
starting with expansion. In Fig. 5(a), the inliner completely ex-
plores the call tree beneath thefoldLeft method, and inlines
it in Fig. 5(b). The only remaining callsite in thecomputeSum

method is now theArrayOpsconstructor (Cutoff node 1). Inlin-
ing the other methods makes the guard conditions constant,
as shown in Fig. 6(a) � the compiler now knows that null
pointers and class cast exceptions are not possible, so canon-
icalization eliminates the guards, as seen in Fig. 6(b).

This code is now almost optimal. The only remaining
performance overhead in the loop is the read (node 74) of the
repr �eld in the ArrayOpswrapper (which wraps the native
JVM array). The entries of the JVM array are read in node
75 (LoadIndexed). The inliner still has su�cient budget, so it
inlines theArrayOpsconstructor in the 3rd round, allowing
other optimizations to reason about the �elds ofArrayOps.

The ArrayOpswrapper object is represented by the node
110 (AllocatedObject ) in Fig. 7. TheArrayOpsconstructor (node
7) writes the native JVM array (P(1)) into the repr �eld of
the wrapper object. After that, therepr �eld is read again to
determine the array length (and then again later in the loop,
as was shown in Fig. 6(b)). This write-read dependency is de-
tected during partial escape analysis and scalar replacement
optimization, and all therepr reads are replaced with the
�oating node used in the corresponding write. Fig. 8 shows
that, after PEA, the array length is computed directly from
the parameterP(1) of computeSum. Consequently, the alloca-
tion of the ArrayOpsobject becomes dead code, and can be
eliminated. PEA also eliminates pairs ofBoxandUnboxnodes
from the apply method ofFunction2 (not shown).

4.2 Case Study: Polymorphic foldLeft Callsite

One mitigating circumstance in the case study from Sec-
tion 4.1 was that the receiver type offoldLeft was statically
known. Data�ow analysis during inlining then determined
the receiver type of theGenSeqLike.length, GenSeqLike.apply

andFunction2.apply . However, with a de�nition ofcomputeSum

in Listing 6, whereglobal has a sequence super-typeSeq[Int] ,
pure data�ow analysis is no longer fruitful.

Listing 6. ThecomputeSumwith a global �eld
1 // This is set somewhere else in the program.
2 var global :Seq [ Int ] = null
3 def computeSum :Long= global . foldLeft (0L)(_+_)

Without a whole-program analysis, which a JIT compiler
generally cannot do, the exact type ofglobal is unknown.
However, a JIT compiler has receiver type pro�les � a list of
possible receiver types associated with probabilities, gath-
ered during the program execution. Graal knows the re-
ceivers of thefoldLeft call in line 3, and their probabilities.
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(a) Before expansion.

(c) After inlining.

(b) After expansion.

Figure 2. Inlining call graph during the 1st inlining round

Figure 3. IR of foldLeft after bytecode parsing

Fig. 9(a) shows the call graph for Listing 6, with the pro�le in-
dicating thatglobal is either a ScalaList or aWrappedArray. The
type switch node 1 is replaced with if-then-elseInstanceOf

checks of the receiver (nodes 27 and 36), shown in Fig. 9(b)
� in each branch, the implementation offoldLeft for that
speci�c collection is inlined.

We emphasize that the receiver type pro�le is hardly ever
available to a static compiler. Pro�le-based receiver type spec-
ulation, needed for optimality in use-cases such as Listing 6,
is therefore much more amenable to a JIT compiler.

Figure 4. IR of computeSumafter the 1st inlining round

4.3 Case Study:map

The previous case studies show how Graal optimizations
interact when processing accessor operations. However, for
operations that materialize a collection, Graal (and as we
argue later, most current JIT compilers) is unlikely to produce
optimal code. In this section, we study themapoperation on
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(a) After expansion.

(b) After inlining.

Figure 5. Inlining call graph during the 2nd inlining round

(a) Before canonicalization (b) After canonicalization

Figure 6. IR of computeSumafter the 2nd inlining round

ArrayBuffer . In Listing 7, numbers from anArrayBuffer are
incremented by one and stored into a newArrayBuffer .

Listing 7. ThemapPlusOneuser method
1 def mapPlusOne ( input : ArrayBuffer [ Int ]) =
2 input .map(_+1)

Note that themapoperation is strict and it materializes a
new collection � it must allocate a new bu�er data struc-
ture to store the resulting elements. Next, theArrayBuffer is

generic in its type parameterT, and not specialized [Dragos
and Odersky 2009]. TheArrayBuffer implementation inter-
nally keeps an array of objects, typedArray[AnyRef] . When
adding a primitive value, such asInt , to anArrayBuffer col-
lection, the Scala compiler inserts aboxToInt call.

We only show the �nal IR of themapPlusOnemethod after
applying all the optimizations as explained earlier. Fig. 10
shows the initial part of themaploop, which reads a number
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Figure 7. ArrayOpsinitialization before PEA

Figure 8. ArrayOpsinitialization after PEA

from the source array. Since the source array contains objects,
Graal cannot guarantee that these objects are non-null or
that they have proper types, so it needs to insert guards. An
array read (LoadIndexed) is therefore followed by three guard
nodes and an unboxing operation. Similarly, in Fig. 11, before
storing the incremented primitive value back into the target
array (StoreIndexed node 179), ajava.lang.Integer object must
be allocated (Boxnode 412). Partial escape analysis cannot
eliminate this allocation, since the object escapes.

5 Performance Evaluation
In this section, we show the performance comparison of the
snippets from Section 4, as well as additional Scala collection
operation microbenchmarks, and several larger programs.
We also include several Spark data-processing workloads,
since Spark RDDs have overheads comparable to those in
Scala collections [Zaharia et al. 2012]. We run all bench-
marks on an 3.8 GHz Intel i7-4900MQ with 32 Gb RAM, with
frequency scaling turned o�. We used Scala 2.11, and the
HotSpot implementation of JDK8, with the heap size set to 1

(a) Call Graph

(b) IR

Figure 9. Creating the type switch incomputeSum

Figure 10. Reading from an array in theArrayBuffer.map

Gb. We used standard evaluation practices for the JVM � we
ran each benchmark until detecting a steady state, and then
reported the mean value across several iterations [Georges
et al. 2007].

Fig. 12 shows the performance comparison between Graal
and the Hotspot C2 compiler. The �rst nine plots show col-
lection microbenchmarks, and they include an equivalent,
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Figure 11. Writing to an array in theArrayBuffer.map

manually optimized version of the code (we take care to avoid
boxing, polymorphic dispatches and iterators). The last four
plots are programs that heavily use collections, where we
only compare Graal and C2 on the same program.

The case studies from Section 4 are shown in the �rst
three plots of Fig. 12. The variants offoldLeft (on a primitive
Int array) with the non-polymorphic and the polymorphic
callsite are both17� faster when run with Graal compared to
C2. Graal's performance on this microbenchmark is equal to
a manually written loop over an integer array. As explained
in Section 4.3, themapsnippet (on anArrayBuffer[Int] ) cannot
avoid boxing, and here Graal is only2:4� faster than C2. Our
hand-optimized version usesInt arrays and avoids boxing,
making it 7:8� faster than Graal. The di�erence is less pro-
nounced on thefilter microbenchmark, since �ltering does
not create new boxed objects (it only reuses the ones from the
original collection). ThegroupBybenchmark materializes a lot
of intermediate data structures, so our hand-optimized ver-
sion is only1:4� faster than the collections version compiled
with Graal. ThecopyToArray(on anArrayBuffer ) benchmark is
3:9� faster on a hand-optimized version that usesInt arrays
� the fast intrinsi�cation of the System.arraycopy method is
possible for raw integer arrays, but not when copying an
object array to an integer array.

The foreach(sum+=_) benchmark computes the same result
as thefoldLeft benchmark. Graal uses PEA and scalar re-
placement to eliminate theIntRef object captured by the
lambda, and produces optimal code. On thefind andstan-
dard deviationbenchmarks, Graal is29� and7:7� faster than
C2, and close to optimal, with a few suboptimal loop code
patterns (which we are currently working on to �x).

We also tested Graal on several larger collection-based pro-
grams � K-means, character histogram, phone code mnemon-
ics, and CafeSAT (SAT solver implementation) [Blanc 2015],

and we observed performance improvements with Graal
ranging from1:1� to 3:7� , compared to the C2 compiler.

We also compared Graal and C2 on several Apache Spark
workloads, as shown in Fig. 13. Spark has a similar API as
Scala collections, but also a similar implementation. From
inspecting the Apache Spark source code, we concluded that
Spark'sRDDdata types have implementations similar to Scala
collections � an RDD operation typically uses an iterator
object with an unknown implementation, traverses elements
whose type is generic, and executes lambda objects whose
implementation is unknown.

Accumulator, Char-Count, TextSearchandWordCountare
Spark RDD data-processing microbenchmarks, which com-
pute a sum of numbers, count the characters, search for a
pattern in the text, and count the words, respectively. Here,
Graal is consistently1:2� 1:3� faster than C2. The larger ap-
plications,Chi-Square, Decision-Tree, Gaussian-MixandPCA,
are standard Spark MLlib statistics and machine-learning
workloads. We found that Graal is1:2 � 1:8� faster than C2.

6 Related Work
Most of the high-level optimizations mentioned in this pa-
per were already treated in earlier works. Escape analysis
[Kotzmann and Mössenböck 2005] replaces unnecessary allo-
cations with raw values, and partial escape analysis [Stadler
et al. 2014] improves standard escape analysis by delaying
the allocation into the control �ow segment in which that
allocation escapes. Inlining was studied extensively by many
researchers in the past [Arnold et al. 2000; Ayers et al. 1997;
Ben Asher et al. 2008; Chang et al. 1992]. One alternative
approach to inlining is specializing classes based on pro�le
information and type constraints [Sutter et al. 2004]. Global
value numbering [Click 1995] is one of the basic optimiza-
tions used in SSA-based compilers, and many optimizations
used in Graal's canonicalization are standard. Although com-
piler optimizations were studied extensively in the past, to
our knowledge, very little work currently exists on how to
optimally compose optimizations for concrete workloads,
and this prompted us to share our insights.

Aside from an optimal code, program performance de-
pends heavily on correct choice of data structures. One of
the major data structure performance impacts on the JVM
is implicit boxingdue to type erasure. Due to its design de-
cisions, this e�ect is more pronounced in Scala than it is in
Java. While some concurrent data structures, such as Scala
lock-free Ctries [Prokopec et al. 2012], FlowPools [Prokopec
et al. 2012], or lock-free SnapQueues [Prokopec 2015], as
well as some functional data structures such as Conc-Trees
[Prokopec and Odersky 2016] and RRB Vectors [Stucki et al.
2015], depend on object allocation and pay the price of heap
allocation in either case, performance of most sequential
and lock-based concurrent data structures can be improved
by avoiding boxing. Ever since erasure-based generics were
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Figure 12. Collections running time comparison between Graal, HotSpot C2 and manually optimized code (lower is better)
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Figure 13. Apache Spark running time comparison between Graal and HotSpot C2 (lower is better)

added to Java 1.5 [Bracha et al. 2003], many mainstream
languages, such as C#, Scala and Kotlin, decided to follow
in its footsteps. While the .NET runtime, which C# runs on,
supports runtime type rei�cation (i.e. allows data structure
specialization in the runtime), most JVM languages pay some
performance overhead for boxing. Aside from type rei�ca-
tion, here have been various attempts at reducing these costs.
The DartVM uses pointer tagging to encode small integers
within the pointer, but this optimization is limited to inte-
gers within a speci�c range. Scala type specialization [Dragos
and Odersky 2009] and miniboxing [Ureche et al. 2013] are
promising solutions that were used in the creation of sev-
eral collection frameworks [Prokopec et al. 2014, 2015], their
main downside being a large output code size.

In the past, the Graal compiler was evaluated on Scala
workloads, speci�cally on the DaCapo and Scala DaCapo
benchmark suites [Stadler et al. 2013]. At the time, Graal

performance was slightly behind C2. Since that evaluation,
Graal was extensively improved and it now beats C2 on most
benchmarks that we are aware of.

7 Conclusion
The performance results reported in Section 5 represent an
opportunity that is, at least currently, unexploited by the
standard HotSpot C2 compiler. JIT compilers generally have
access to branch frequency pro�les, receiver type pro�les
and loop frequencies, so they are in principle capable of eas-
ily performing the same kind of (speculative) optimizations
as those described in this paper. In fact, the case study from
Section 4.2 should be a convincing argument of why this
type of optimizations is best left to the JIT compiler. Specula-
tion based on type pro�les is a cheap (and potentially more
accurate) alternative to whole program analysis. And if a
speculation turns out wrong, deoptimizing the code segment
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is simple. For example, if thefoldLeft callsite from Section
4.2 encounters a new receiver type, Graal simply recompiles
the enclosing method.

Speculating on the data structure invariants is generally
expensive. First, reasoning about a data structure requires
analyzing all its usages, which is usually outside of the scope
of a single method. JIT compilers tend to avoid this, since
they have a limited time budget available for compilation.
For example, in the case study from Section 4.3, to know that
a null value is never assigned to anArrayBuffer , the compiler
would need to analyze all usages of the+= method � the
entire program. To avoid boxing the integers stored into an
ArrayBuffer , a JIT compiler would similarly have to ensure
that all usages of theapply method are followed by unboxing.
Second, if the speculation turns out inaccurate, the deopti-
mization may involve modifying the existing data structure
instances. Aside from shape analysis for dynamic languages,
such as V8 or Tru�e [Würthinger et al. 2012], and auto-
matic object inlining [Wimmer 2008], we are not aware of
many optimizations that speculate on the invariants of a data
structure. In this regard, we see past work on static metapro-
gramming [Burmako 2013], monomorphization [Biboudis
and Burmako 2014] and generic type specialization in Scala
[Dragos and Odersky 2009] as very valuable, since it enables
static data structure specialization � we encourage future
research in this direction.

To conclude, in the context of the current VM technology,
we leave the reader with the following two maxims:

� First, a JIT compiler is generally in a better position to
do code optimizations compared to a static compiler.
By focusing on the optimizations from this paper, the
language designer may be doing a duplicated e�ort.

� Second, a JIT compiler (particularly on the JVM) is
generally less focused on optimizing data structures. A
high-level language designer may want to focus e�orts
on statically optimizing the language data structures
or exposing primitives that allow users to do so.

We hope that these insights will be useful in the design of
the languages that target runtimes with JIT compilation.
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