
Encoding the Building Blocks of Communication
Aleksandar Prokopec

Principal Researcher

Oracle Labs

Switzerland

aleksandar.prokopec@oracle.com

Abstract
Distributed systems are often built from the simplest build-

ing blocks such as message sends and RPCs. Since many

communication patterns have to be reinvented every time

a distributed system is created, implementing a high-level

system is usually expensive. The recently proposed reactor
model alleviates this cost by expressing distributed com-

putations as reusable components, however, encodings for

various communications patterns in this model are missing.

This paper investigates how to encode the router, client-

server, scatter-gather, rendezvous, two-way communication,

reliable communication and the backpressure protocol in the

reactor model. These protocols are used to implement the

core of a distributed streaming framework, and the perfor-

mance of these implementations is evaluated.

CCS Concepts • Computing methodologies → Distri-
buted programming languages; Concurrent program-
ming languages;

Keywords reactor model, communication protocols, back-

pressure, streaming

ACM Reference Format:
Aleksandar Prokopec. 2017. Encoding the Building Blocks of Com-

munication. In Proceedings of 2017 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward!’17). ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3133850.3133865

1 Introduction
A distributed computing model usually starts off with a few

primitives, but gets extended as new use-cases arise. Here

are some examples. MPI initially defined sends and receives

(roughly); today it defines process topologies, parallel I/O,

distributed state and memory management, and many other

Onward!’17, October 25–27, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed

to Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal

use. Not for redistribution. The definitive Version of Record was published

in Proceedings of 2017 ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward!’17),
https://doi.org/10.1145/3133850.3133865.

features [16]. Similarly, the actor model originally defined

non-blocking sends [6], but it was augmented at least once

with futures to support certain communication patterns [2]

[22]. Futures were not built in terms of message-passing,

and their implementation typically assumes shared memory.

For performance, the RPC model is often extended with

streaming RPCs, which are not built from regular RPCs, but

are an independent extension.

While careful choice likely leads to picking useful exten-

sions, we noticed two problems with this. First, distributed

programming models start off simple, but over time become

bulky, and difficult to implement or port. As an example, the

MPI 3.0 specification is around 850 pages long [16]. Second,

high-level distributed systems are in practice built from the

simplest primitives, such as message-passing [3] or RPCs

[23] [42]. Often, these systems share common patterns (for

example, broadcast). Developers, unable to wait for the next

release, implement their own application-specific variants of

such patterns. At best, effort to discover the wheel is spent

many times over. At worst, a rectangle is discovered instead.

In this paper, we investigate if the recently proposed reac-
tor model [37] allows building communication protocols. The

basic primitives in the reactor model are channels, used for

sending, and event streams, used for receiving data. Rather

than adding additional primitives, we examine how to de-

rive new communication patterns from channels and event

streams. This keeps the basic model simple, and allows users

to partake in identifying the extensions. Since their incep-

tion, reactors raised a lot of questions. Does the model in-

corporate backpressure? Is delivery reliable? Is two-way or

rendezvous-style communication possible? Can one do dis-

tributed dataflow and streaming? Does the model implement

industry standards such as the Reactive Streams [4]?

The main idea in this paper is that, although one could say

yes to each of these extensions, one should say no to all of

them. A few basic primitives suffice to build families of com-

munication protocols. The main benefits of having protocols

in a library, and not in the programming model implemen-

tation, are simplicitly and portability – the communication

protocols can be expressed as libraries only once, and reused

on different platforms, which need to provide only the core

communication primitives. Distributed systems need not be

built directly from the basic communication primitives (as

was often the case – Akka Streams [3], Apache Mesos [23],

and Spark [42] were built mostly using message passing and

https://doi.org/10.1145/3133850.3133865
https://doi.org/10.1145/3133850.3133865

Onward!’17, October 25–27, 2017, Vancouver, Canada Aleksandar Prokopec

RPCs, and without many generic middleware components).

Rather, protocols can be composed from sufficiently high-

level compound building blocks. To validate this, we show

an exploratory implementation of a streaming framework

that incorporates reliable delivery and backpressure.

This paper recapitulates the reactor model in Section 2,

and compares it in Section 6. The paper then identifies a

protocol stack in Section 3, and observes the following:

• A protocol is a set of functions and data types on chan-

nels and event streams. Every such definition is itself

a first-class value, which can be further composed.

• The router protocol and the client-server protocol can

be expressed directly in terms of channels and event

streams (Sections 3.1 and 3.2).

• Scatter-gather, the rendezvous protocol and two-way

communication use the router and the client-server

protocol as building blocks (Sections 3.3, 3.4 and 3.5).

• Backpressure is a special form of two-way communi-

cation, and the pump and valve data types are used to

interact with backpressure (Section 3.7).

• Streaming operations can be expressed as minimalistic

kernels – we implement a polymorphic lift func-

tion that converts a synchronous stream transforma-

tion into an equivalent transformation on asynchro-

nous streams with backpressure (Section 4). This al-

lows building streaming frameworks such as Reactive

Streams [4], Flink [10], or Spark Streaming [43].

• Abstraction costs of these protocols are relatively small

and acceptable in practice (Section 5).

We use Scala [31] in our code examples, and we take care

to use a minimal feature set. Local variables are declared

with the var keyword, and final variables with val. Methods

are declared with def. A lambda is a parameter list and a =>
symbol, followed by the function body. Tuples are comma-

separated expressions enclosed in parentheses (). The case
keyword destructures arguments, such as tuples. Types are

usually inferred, but can be explicitly placed after a colon.We

sometimes do this for clarity. Polymorphic type parameters

come between square brackets []. Type aliases are declared
with the type keyword. Examples should be easy to follow

even if readers have no prior knowledge of Scala.

2 Reactor Model
This section rehashes the reactor model [5] [35] [37] in terms

of an extended variant of the polymorphic lambda calculus

[19] [32]. Several use-case examples are shown.

The key novelty in the reactor model is that each con-

currency unit serially evolves multiple terms. These sepa-

rate terms encode independent protocols, which helps com-

pose distributed, asynchronous computations [37]. Section

6 highlights the differences between the reactor model and

pi-calculus, CSP and the actor model.

t ::= terms:

x identifier

def f[X](p:P):R = t abstraction

f[T] type application

t(t) application

(t, . . . , t) tuple

t._n tuple selection

Left(t) left sum

Right(t) right sum

t match { case Left(x) => t;
case Right(x) => t } pattern match

type N[X] = T type alias

spawn[T](f) spawn

t ! t send

t.onReact(f) react

open[T] open

T ::= types:

X type variable

Boolean boolean type

Int 32-bit integer

Long 64-bit integer

Unit unit type

T => T function type

(T, . . . , T) product type

Either[T, T] sum type

N[T] type instantiation

Channel[T] channel type

Events[T] event stream type

Figure 1. Reactor model – syntax and types

The syntax of the reactor model is shown in Figure 1. Ab-

straction and type abstraction are expressed as a single term

called abstraction, which binds an identifier to the function.

Type application and application are standard. For conve-

nience, we include tuples and sum types (Either values,

which can be pattern matched with the Left or the Right
case), and we add parametric type aliases.

The reactor-specific part consists of the terms that express

concurrency aspects: spawn, send, react and open. The spawn
function takes a type T and the function f that encodes

the reactor body. Evaluation of spawn starts a concurrent

computation (i.e. a reactor), and reduces to a channel value

of type Channel[T], used to communicate with the reactor.

Assume that we want to encode a reactor that behaves

like a variable, shown in Listing 1. We first define a type alias

Op[T] as a sum that is either a value of type T or a channel of
type Channel[T]. We then define a function v that takes the
initial value x, and spawns a reactor. The reactor definition

calls another function named cell, defined shortly.

Listing 1. Spawn example

1 type Op[T] = Either[T, Channel[T]]

2 def v[T](x:T):Channel[Op[T]] = spawn[Op[T]] {

3 case (c,e) => cell(x,e) }

Encoding the Building Blocks of Communication Onward!’17, October 25–27, 2017, Vancouver, Canada

t = spawn[T](f) ; t ′ f:(Channel[T], Events[T]) => Unit (c, e) = open[T]

E ∪ (t ,i) | S −→ E ∪ (c ; t ′,i) ∪ (f((c, e)), (ϵ ,c,e→ ∅)) | S
(Spawn)

t = open[T] ; t ′ c:Channel[T] e:Events[T]

E ∪ (t ,i) | S −→ E ∪ ((c, e) ; t ′,i ∪ (ϵ ,c,e→ ∅)) | S
(Open)

v ∈ values

E ∪ (v,i) | S −→ E | S ∪ (ϵ ,i)
(Sleep)

i = i ′ ∪ (Q · x,c,e→ F) F = { f1, f2, . . . , fn }
t = f1 (x) ; f2 (x) ; . . . ; fn (x)

E | S ∪ (ϵ ,i) −→ E ∪ (t ,i ′ ∪ (Q ,c,e→ ∅)) | S
(Awake)

t = c ! x ; t ′ c:Channel[T]
x:T ∄X.Events[X] ∈ T

E ∪ (t ,i) | S ∪ (ϵ , j ∪ (Q ,c,e)) −→
E ∪ (t ′,i) | S ∪ (ϵ , j ∪ (x ·Q ,c,e))

(Send1)

t = c ! x ; t ′ c:Channel[T]
x:T ∄X.Events[X] ∈ T

E ∪ (t ,i) ∪ (u, j ∪ (Q ,c,e)) | S −→
E ∪ (t ′,i) ∪ (u, j ∪ (x ·Q ,c,e)) | S

(Send2)

t = e.onReact(f) ; t ′

e:Events[T] f:T => Unit

E ∪ (t ,i ∪ (Q ,c,e→ F)) | S −→
E ∪ (t ′,i ∪ (Q ,c,e→ F ∪ f)) | S

(React)

Figure 2. Concurrency-specific part of the operational semantics

Every reactor has one main channel and event stream. As

shown in Listing 1, spawn passes the main channel c and

event stream e to the reactor definition. The channel and the
event stream represent the writing and the reading end, re-

spectively. The ! operator is used to send values, called events,
along the channel. Once sent, events are eventually delivered

to the corresponding event stream of type Events[T]. Only
the owner of the event stream can listen to the next event by

invoking onReact with a callback function. The first event
that arrives is then passed to the callback.

Listing 2. Example of onReact

1 def cell[T](x:T,e:Events[Op[T]]) = e.onReact {

2 case Left(y) => cell(y,e)

3 case Right(c) => c ! x; cell(x,e) }

In Listing 2, the function cell invokes onReact on the

event stream e. If the incoming event is Left(y), then the

new value y is used in a recursive call to cell. If the event
is Right(c), then the previous value x is sent along the

channel c, and used in the recursive call to cell.
The reactor that calls cell effectively becomes a variable

with loads and stores. Here, the cell function is a reusable

protocol, and it can be instantiated in different reactors.

The open function creates additional channel and event

stream pairs. In Listing 3, we use open in the load function

to create a new channel c, then send that channel c to the

variable reactor, and return the corresponding event stream.

As seen in Listing 2, the variable must eventually send a

value back along the channel c. The event stream returned

from load reacts after the reply arrives, so invoking load
corresponds to a variable read. The store function models

assignment – it sends a new value and does not await a reply.

Listing 3. Load and store example

1 def load[T](v:Channel[Op[T]]):Events[T] =

2 { val (c,e) = open[T]; v ! Right(c); e }

3 def store[T](v:Channel[Op[T]],y:T):Unit =

4 v ! Left(y)

Listing 4 shows that the reactor model (not surprisingly

[30]) allows encoding state, so in the rest of the paper we

use a shorthand var to declare variables.

Listing 4. Variable usage example

1 val num = v(1)

2 load(num) onReact { x => store(num ,x+1) }

Furthermore, in the previous examples and throughout

this paper, we rely on n-ary function declarations, curry-

ing, value bindings, if-statements, while-statements, pattern

matching, lambda expressions, methods, and the list data

type. For example, sequencing (;) and value bindings (val)
can be expressed as function applications, and lambda ex-

pressions (=>) as a combination of abstraction and type ap-

plication. The exact encodings for these constructs were

extensively studied [32], so we do not repeat them here.

Evaluation rules that capture the concurrency in the reac-

tor model [37] are recapitulated in Figure 2. Program state

is represented with two sets E and S , denoting currently

executing and sleeping reactors, respectively. Each reactor

is represented as a pair of the currently evaluated term (for

reactors in the sleeping set S always empty, ϵ), and a set

of tuples i , where each tuple contains an event queue Q , a
channel c , and an event stream e → F , where F is the set

of callbacks on the event stream. The program terminates

when the executing set E and the event queues are empty.

The evaluation rule Spawn adds a new reactor to the

executing set, and replaces the spawn term with the new

channel. The Open rule reduces the open expression to a

channel and event stream tuple, and adds that tuple with an

empty event queue to reactor’s set i . The Sleep rule moves

an executing reactor, whose term reduced to a value, to the

sleeping set. The Awake rule moves a reactor with a non-

empty event queue back to the executing set, and invokes

the callbacks on the first event. The Send1 and Send2 rules

deliver an event to a channel, and require that the event type

does not contain Events, as event stream values cannot be

shared. The React rule adds a callback to an event stream.

Onward!’17, October 25–27, 2017, Vancouver, Canada Aleksandar Prokopec

Since every reactor evaluates at most one term at any

point, there are no data races on themutable state of a reactor.

This serializability property is retained from the actor model

[6], and it improves program comprehension [37].

2.1 Combinators and Signals
Additional abstractions can be built from event streams [27]

[36], andwe borrow some of them in this paper. The onEvent
function installs a callback to the event stream that reacts to

every subsequent event, and not just the first one.

1 def onEvent[T](xs:Events[T],f:T=>Unit) =

2 xs.onReact { x => f(x); onEvent(xs,f) }

A signal is an event stream whose last event is cached.

We encode it with the Signal[T] type, which is a pair of an

event stream and a function that returns the last event.

1 type Signal[T] = (Events[T], ()=>T)

2 def signal[T](xs:Events[T],z:T):Signal[T] = {

3 var last:T = z

4 xs.onEvent(x => last = x)

5 (xs , ()=>last) }

We also use several event stream combinators. Given a

function f of type T => S, the map function creates a new

event stream such that when the original event stream emits

an event of type T, the resulting event stream synchronously
emits an event of type S, in the same reactor.

1 def map[T,S](xs:Events[T],f:T=>S):Events[S] = {

2 val (c,e) = open[S]

3 xs.onEvent(x => c ! f(x))

4 e }

The sync combinator applies a function to a tuple after

both input streams emit an event. Synchronizing pairs of

event streams requires keeping two auxiliary queues.

1 def sync[T,S](xs:Events[T],ys:Events[T],

2 f:(T,T)=>S):Events[S] = {

3 val (c,e) = open[S]

4 val (qxs ,qys) = (new Queue[T],new Queue[T])

5 def push(q:Queue[T],v:T) {

6 q.enqueue(v)

7 while (qxs.nonEmpty && qys.nonEmpty)

8 c ! f(qxs.dequeue (), qys.dequeue ()) }

9 xs.onEvent(x => push(qxs ,x))

10 ys.onEvent(y => push(qys ,y))

11 e }

The second version of the sync combinator converts a list

(Seq) of event streams into an event stream of lists. It does

so by first mapping each event stream into an event stream

of lists, and then reducing the event streams pairwise, where

the reduction operator is the two-element sync from above,

and ++ is list concatenation.

1 def sync[T](es:Seq[Events[T]]):Events[Seq[T]] =

2 es.map(xs => xs.map(x=>Seq(x))

3 .reduceLeft { (reduced ,xs) =>

4 (reduced sync xs)(_ ++ _) }

The zip function is the equivalent of sync that works on

signals – the resulting event stream emits when either of the

input signals emits. Here, _2() retrieves the cached value.

1 def zip[T,S](xs:Signal[T],ys:Signal[T],

2 f:(T,T)=>S):Signal[S] = {

3 val (c,e) = open[S]

4 xs.onEvent(x => c ! f(x,ys._2()))

5 ys.onEvent(y => c ! f(xs._2(),y))

6 e }

We now have the machinery needed to present the generic

communication protocols in the next section.

3 Generic Protocol Components
This section presents a stack of modular communication

protocols. In the examples that follow, we name the channel

and event stream pair a connector. We use a selector events
to extract the event stream from a connector, and channel
to extract the channel.

3.1 Router Protocol
One frequent pattern is forwarding events to one or more tar-

get destinations. We call this the router protocol1 and encode

it as a single function router, shown in Listing 5. The router

is parametric in its routing policy p – the policy is a function

that maps each incoming event to an output channel.

Listing 5. Router protocol
1 def router(p:T=>Channel[T]):Channel[T] = {

2 val connector = open[T]

3 connector.events onEvent { x => p(x) ! x }

4 connector.channel }

In Listing 6, we show an implementation of a round robin

routing policy, used when the router executes simple load-

balancing. Such a router protocol is instantiated with the

expression router(roundRobin(chs)), where chs is a list
of destinations.

Listing 6. Round-robin router policy

1 def roundRobin(chs:List[Channel[T]]) = {

2 var i = -1

3 (x: T) => {

4 i = (i + 1) % chs.length

5 chs(i)

6 } }

Similarly, the broadcast policy in Listing 7 forwards each

message to multiple destination channels.

Listing 7. Broadcast router policy
1 def broadcast(chs:Set[Channel[T]]) = {

2 val (c,e) = open[T]

3 e.onEvent(x => for (c <- chs) c ! x)

4 (x:T) => c }

1
We note that the term router is not implied to be a real network router.

Encoding the Building Blocks of Communication Onward!’17, October 25–27, 2017, Vancouver, Canada

Users can provide their own routing policies. For example,

when the workload distribution is biased, a random routing

policy works better. If workload magnitude can be estimated

on a per-request basis, then the deficit round-robin can be

a more efficient load-balancing policy [38]. Load-balancing

can also be made more efficient when destinations provide

explicit feedback, while a hash-based policy is more appro-

priate for sharding and consistent replication.

3.2 Client-Server Protocol
In the client-server protocol, a client sends a request to the

server, and the server uses the request to compute a response.

To respond, the server needs a channel belonging to the

client. Consequently, the client must send not only the re-

quest value, but also the channel that accepts the response

value. It is helpful to encode these relationships with types,

as shown in Listing 8. Req[T,S] is a tuple with the request

value of type T, and the reply channel of type Channel[S].
Server[T,S] is a channel that accepts request tuples.

Listing 8. Data types in the client-server protocol

1 type Req[T,S] = (T,Channel[S])

2 type Server[T,S] = Channel[Req[T,S]]

These types drive the implementation of the server pro-

tocol – the server first opens a new connector for the request

type Req[T,S]. Next, the server calls onEvent to map each

request value with the user-specified function f, and send it

along the reply channel. Finally, the server returns its server

channel of type Server[T,S]. This is shown in Listing 9.

Listing 9. Server protocol
1 def server[T,S](f:T=>S) = {

2 val c = open[Req[T,S]]

3 c.events onEvent {

4 case (x,ch) => ch ! f(x) }

5 c.channel }

The client must send a request tuple to the server, and

then wait for the reply. This is done in the ? operator shown
in Listing 10, which creates a connector of the reply type

S, sends a request to the server, and returns the reply event

stream to the caller.

Listing 10. Client protocol
1 def ?[T,S](s:Server[T,S],x:T):Events[S] = {

2 val reply = open[S]

3 server ! (x,reply.channel)

4 reply.events }

In some cases, a server needs to send a batch of replies, or

compute the reply asynchronously. Assume that these replies

are specified by an event stream f(x), computed from the

request x. Given such a mapping f, the stream function in

Listing 11 adds a callback to the event stream f(x), which
then forwards events back to the client.

Listing 11. Streaming server

1 def stream[T,S](f:T=>Events[S]):Server[T,S] = {

2 val c = open[Req[T,S]]

3 c.events onEvent {

4 case (x,ch) => f(x).onEvent(ch ! x)

5 }

6 c.channel

7 }

Note that the streaming server from Listing 11 does not

take care to prevent overflowing the consumer. We address

this problem in Section 3.7.

3.3 Scatter-Gather Protocol
In some applications, information must be disseminated to

many destinations, which then process this information and

send a result back. This pattern is called scatter-gather, and
it can be expressed by composing the router protocol with

the client-server protocol.

Listing 12 shows the scatterGather function, which takes
a router policy that maps a request to a server. This policy is

used to define a router instance named scatter. A stream-

ing server then uses the router to map each incoming list of

requests of type List[T] to a list of reply event streams of

type List[Events[S]]. Then, it uses the sync combinator

to get an event stream of type Events[List[S]] – this event
stream emits after all the servers reply. After all the results

are gathered by sync, they are sent back to the client.

Listing 12. Scatter-gather protocol
1 def scatterGather[T,S](

2 p: Req[T,S]=>Server[T,S]

3): Server[List[T],List[S]] = {

4 val scatter:Server[T,S] = router(p)

5 stream(xs => sync(xs.map(x => scatter ? x)))

6 }

Given a servers list containing Server[T,S] channels,

the expression scatterGather(roundRobin(servers)) cre-
ates a channel that scatters incoming request batches across

multiple servers, and then gathers the results. This pattern

is useful for implementing map-reduce-style computations,

multicasts and multi-destination queries.

3.4 Rendezvous Protocol
In the rendezvous protocol [29] [33], two processes synchro-

nize and exchange a value. A rendezvous call must provide a

value to exchange, and it suspends the process until a match-

ing rendezvous call is made by another process, at which

point the two processes continue.

The rendezvous method, which creates a rendezvous

point, is shown in Listing 13. This method returns a pair of

servers for types T and S of the values being exchanged. The
method starts by creating two connectors and two queues

for the types T and S. A helper method flush in line 5 checks
if both queues are non-empty, and, if so, dequeues and sends

one event from each. The method meet in line 8 is called

Onward!’17, October 25–27, 2017, Vancouver, Canada Aleksandar Prokopec

two-way

client

Channel[I]

Channel[O]

Events[I]

Channel[O]

1

2

3

two-way

server

TwoWay.Server[I, O]

Channel[I]

Channel[O]

Channel[I]

Events[O]

1

2

3

Figure 3. Establishing two-way communication

when either server receives an event, and it appends an ele-

ment to the queue, calls flush and returns the event stream

of the opposite type. A pair of streaming servers that use

meet are created in line 10. When a process evaluates s?x
on one of the rendezvous servers, the value x is placed on

the respective queue and kept there until another process

does the same. The call to flush by the second process then

releases the enqueued values, and emits them on the event

streams used by the streaming servers. The servers then

respond to the pair of processes, resuming them.

Listing 13. Rendezvous protocol
1 def rendezvous[T,S]:(Server[T,S],Server[S,T]) =

2 {

3 val (ct ,cs) = (open[T], open[S])

4 val (qt ,qs) = (new Queue[T], new Queue[S])

5 def flush () = if (qt.nonEmpty && qs.nonEmpty)

6 { ct.channel ! qt.dequeue ()

7 cs.channel ! qs.dequeue () }

8 def meet[X,Y](x:X,qx:Queue[X],e:Events[Y]) =

9 { qx.enqueue(x); flush(); e }

10 (stream(t => meet(t, qt, cs.events)),

11 stream(s => meet(s, qs, ct.events)))

12 }

The rendezvous protocol is typically invoked at one reac-

tor, and the rendezvous servers are then shared; the ? opera-

tor starts the synchronization. Multiple rendezvous instances

can be composed into other synchronization primitives, such

as barriers or join patterns [17].

3.5 Two-Way Communication
In two-way communication, two parties simultaneously send

and receive events, so each uses both a channel and an event

stream. To establish such a two-way link, the two parties

must first exchange their input channels. One of the parties,

called a client, must initiate the link by sharing its input chan-

nel, and the other, a link server, completes it by responding.

The client, shown on the left in Figure 3, first creates an

event stream of type Events[I], and sends the correspond-

ing channel to the server (1). The client then waits until the

server responds (2) with a channel of type Channel[O]. Fi-
nally, the client uses the two-way link (3). The server, shown

on the right, first accepts the incoming channel (1). It then

creates a channel of type Channel[O], sends it to the client

(2), and starts using the link (3).

These relationships are expressed as types in Listing 14.

The client-side two-way link is a tuple with an outgoing

channel, incoming event stream and the subscription used to

close the link, named TwoWay[I,O], where I is the type of
incoming events, and O is the type of outgoing events. The
server-side link then has the type TwoWay[O,I].

Listing 14. Data types in two-way communication

1 type TwoWay[I,O] = (Channel[O],Events[I])

2 type TwoWay.Req[I,O] =

3 Req[Channel[I],Channel[O]]

4 type TwoWay.Server[I,O] =

5 (Channel[TwoWay.Req[I,O]],

6 Events[TwoWay[O,I]])

The link request type, named TwoWay.Req[I,O], is the
client-server request type instantiated at the request type

Channel[I] and the response type Channel[O]. The server
state, typed TwoWay.Server[I,O], is a tuple with the re-

quest channel, and the event stream that emits established

two-way links.

The function twoWayServer, shown in Listing 15, creates

a new link server. It opens a request connector in line 2,

then uses its event stream to respond to incoming events

and create a two-way link object in line 6. The server state

is returned in line 8.

Listing 15. Two-way server protocol

1 def twoWayServer[I,O]():TwoWay.Server[I,O] = {

2 val c = open[TwoWay.Req[I,O]]

3 val links = c.events map { case (in,reply) =>

4 val output = open[O]

5 reply ! output.channel

6 (in,output.events):TwoWay[O,I]

7 }: Events[TwoWay[O,I]]

8 (c.channel ,links):TwoWay.Server[I,O]

9 }

The connect function shown in Listing 16 starts the client

protocol from Section 3.2 by sending the input channel. Once

the output channel arrives, it is mapped to a two-way link.

Encoding the Building Blocks of Communication Onward!’17, October 25–27, 2017, Vancouver, Canada

reliable

server

Events[T]

(T, Long)

Long

n next

BinHeap[(T,Long)]

stamps

acks

T

Long

reliable

client

1

2 3

p lastStamp

q lastAck

Queue[T]

Channel[T] 1 2

3

Figure 4. Reliable communication over a transport with arbitrary delays

Listing 16. Two-way client protocol

1 def connect[I,O](s:TwoWay.Server[I,O]) = {

2 val in = open[I]

3 (s ? in.channel) map { output =>

4 (output ,in.events):TwoWay[I, O]

5 }: Events[TwoWay[I,O]]

6 }

The implementation of the two-way link is somewhat

complex, but the usage is simple. For example, a chat server

awaits established links, tracks all the clients, and broadcasts

messages (recall the broadcast policy from Listing 7):

1 val (chat ,links) = twoWayServer[String ,String]

2 val clients = new Set[Channel[String]]

3 val everybody = router(broadcast(clients))

4 links.onEvent { case (out ,in) =>

5 clients += out // Add the client 's channel.

6 in.onEvent(msg => everybody ! msg)

7 }

The chat channel from above can now be shared. The chat

client invokes connect, waits until the link is established,

and then forwards standard input to the chat server:

1 connect(chat) onReact { case (out ,in) =>

2 in.onEvent(println)

3 stdin.onEvent(line => out ! line)

4 }

3.6 Reliable Communication
Events traveling between reactors on the same machine are

eventually delivered. For reactors on different machines, de-

livery depends on the underlying transport implementation. A
transport based on the TCP protocol typically guards against

reordering and packet loss. However, a TCP connection can
temporarily break. When this happens, a user program needs

tomanually recover from a broken TCP connection, and resend
the lost events. An application-level reliability protocol helps

deliver events transparently, and keep the user unaware of

the underlying TCP connection failures.

To keep this section short, we assume that the transport

may arbitrarily delay and reorder events, but does not lose,

duplicate or corrupt them. A reliable channel ensures that

events sent from a client are delivered in order. It can be built

from an unreliable two-way link, as shown in Figure 4.

Order is restored by assigning a timestamp to each event.

The client requests a linkwith the (T,Long) output type. The
input type Long is used for acknowledgements. The server

maintains a priority queue with the timestamped events, and

the next expected stamp. Every incoming event is stored into

the priority queue (1). First event in the priority queue is

compared against the expected stamp. While these match,

an acknowledgement is sent back to the client (2), and the

event is removed and delivered (3). The client sends events,

but takes care to avoid flooding the server. For this purpose,

it tracks the last sent stamp and the last acknowledgement.

Each event is first stored into a queue (1). Events are then

dequeued and sent (2) as long as the lastStamp is less than

some window value ahead of lastAck. When an acknowl-

edgement arrives, the lastAck field is incremented.

Listing 17. Data types in reliable communication

1 type Reliable.Req[T] =

2 TwoWay.Req[Long ,(T,Long)]

3 type Reliable.Server[T] =

4 (Channel[Reliable.Req[T]],Events[Events[T]])

Basic data types are encoded in Listing 17. The request

type Reliable.Req[T] is a special case of TwoWay.Req, and
the server type Reliable.Server[T] is a pair of the request
channel, and an event stream of established connections.

Function reliableServer, shown in Listing 18, starts a

reliable server. It first creates a two-way server, and then

maps its two-way links into reliable links. For each two-way

link, a new channel c is opened, used to deliver events of type
T. Channel c, and the two-way link with acks and stamps,
are passed to the setupServer function in line 5.

Listing 18. Reliable server protocol
1 def reliableServer[T]: Reliable.Server[T] = {

2 val (s,links) = twoWayServer[Long ,(T,Long)]

3 val rlinks = links.map { case (acks ,stamps)=>

4 val (c,e) = open[T]

5 setupServer(stamps ,acks ,c)

6 e:Events[T] }: Events[Events[T]]

7 (s,rlinks): Reliable.Server[T]

8 }

The openReliable function in Listing 19 requests a reli-

able connection and establishes thewriting end of the reliable

Onward!’17, October 25–27, 2017, Vancouver, Canada Aleksandar Prokopec

channel. When the client invokes openReliable, this func-
tion invokes connect from Section 3.5 to establish a two-way

link, and then calls setupClient in line 6 to hook incoming

acks and outgoing stamped events with user events. The

reliable channel is then returned in line 7.

Listing 19. Reliable client protocol
1 def openReliable[T](

2 s: Channel[Reliable.Req[T]]

3): Events[Channel[T]] =

4 connect(s) map { case (stamps ,acks) =>

5 val (c,e) = open[T]

6 setupClient(stamps ,acks ,e)

7 c:Channel[T]

8 }

The functions setupServer and setupClient must wire

up the stamps, the acknowledgements and the user-level

events so that the delivery becomes reliable. The policy in

Figure 4, which prevents event reordering due to arbitrary

delays, is implemented in the Listing 20. The setupServer
function puts every stamped event on the binary heap in line

6, and then delivers events with corresponding timestamps.

The setupClient function is not shown, but it has a similar

structure.

Listing 20. Reordering reliability policy

1 def setupServer[T](stamps:Events [(T,Long)],

2 acks:Channel[Long],c:Channel[T]):Unit = {

3 var next = 1L

4 val q = new BinHeap [(T, Long)]

5 stamps onEvent { case (x, stamp) =>

6 q.enqueue ((x, stamp))

7 while (q.nonEmpty && q.head.stamp==next) {

8 acks ! next; next += 1; c ! q.dequeue ()

9 }

10 }

11 }

3.7 Backpressure Protocol, Valves and Pumps
Protocols shown so far did not incorporate flow control. To

ensure that the sender (i.e. the client) does not overflow

the receiver (i.e. the server), feedback about the available

capacity must be sent in the opposite direction. The client,

shown on the left in Figure 5, maintains a budget counter

and can send only when this counter is positive (1). When an

event is sent, the counter is decremented (2). The counter is

incremented when additional budget arrives from the server

(3). The server puts all the inbound events into a queue (1).

The server must explicitly dequeue events, and only do so

after the availability signal becomes true (2). When an event

is dequeued, additional budget is sent back to the client (3).

The backpressure interface differs from earlier protocols,

since the writing end is not always available to its user. The

availability of the writing end is dictated by a signal, which

acts like a valve in fluid flow control. The reading end decides

when to deliver events and sends pressure back to the sender,

much like a mechanical pump.

Listing 21. Data types in the backpressure protocol

1 type Valve[T] = (Channel[T],Signal[Boolean])

2 type Pump[T] =

3 (Signal[Boolean],()=>Unit ,Events[T])

4 type Backpressure.Server[T] =

5 (Channel[TwoWay.Req[Int ,T]],Events[Pump[T]])

The Valve[T] type in Listing 21 is the writing end of a

backpressure channel, and is defined as a pair of an output

channel and an availability signal. The availability of the

valve is indicated with a Signal[Boolean] value. Events can
only be sent while this signal is true. The Pump[T] type is
used to deliver events, and is defined as a pair consisting of an

availability signal, a dequeue function, and an event stream.

If the availability signal is true, then invoking the dequeue

function emits an event on the event stream. Dequeuing

must be explicit, since this allows clients to compose pumps

with valves, as explained later in Section 4.

The backpressure server, shown in Listing 22, creates a

two-way server, and maps inbound two-way links to Pump
values. A two-way link consists of a channel back, used
to send budget to the client, and an event stream in with

incoming events. For each link, a delivery connector (c,e)
is created in line 4. Then, inbound events are mapped to the

grow event stream, which enqueues the event, and produces

1, in line 6. Delivered events from e aremapped to the shrink
event stream, which emits -1, in line 7. The shrink and

grow event streams are joined with union, and their events

are summed using the scanPast combinator (which is the

stream equivalent of scanLeft on collections). The valve

is available when this sum is larger than zero, so the sum

gets mapped into the available signal in line 10. The deq
function in line 11 removes an event from the queue, delivers

it and sends a backpressure token to the writer. The deq
function, the availability signal, and event stream e are used

to create the pump in line 12.

Listing 22. Backpressure server protocol
1 def backpressureServer[T] = {

2 val (s,links) = twoWayServer[T,Int]()

3 val bplinks = links.map { case (back ,in) =>

4 val (c,e) = open[T]

5 val q = new Queue[T]

6 val grow = in.map { x => q.enqueue(x); 1 }

7 val shrink = e.map(_ => -1)

8 val available = (grow union shrink)

9 .scanPast (0)(_ + _)

10 .map(_ > 0).signal(false)

11 val deq = ()=>{ c ! q.dequeue (); back ! 1 }

12 (available ,deq ,e):Pump[T] }

13 (s,bplinks):Backpressure.Server[T] }

Encoding the Building Blocks of Communication Onward!’17, October 25–27, 2017, Vancouver, Canada

backpressure

server

Events[T]

Signal[Boolean]

Queue[T]
T

Int

backpressure

client

Channel[T]

Signal[Boolean] n
budget

two-way

communication

1

2

3

1

2

3

Figure 5. Communication with backpressure

map filter scanPast foreach

T => S S => Boolean (U, S) => U U => Unit

Stream[T] Stream[S] Stream[S] Stream[U]

Valve[T]

reactor A reactor B reactor C reactor D reactor A

Figure 6. Dataflow in distributed streaming frameworks

The client-side connectBackpressure function, shown

in Listing 23, invokes the function connect from Section 3.5

to establish a two-way link with the server. After the link is

established, a new connector (c,e) is opened. Events from

e are forwarded to the outgoing channel, and used to create

a shrink event stream. The grow event stream from line 4

contains the budget sent by the server. The shrink and grow
event streams are again used to define the available signal.

Listing 23. Backpressure client protocol
1 def connectBackpressure[T](

2 server:Channel[TwoWay.Req[Int , T]]

3):Events[Valve[T]] =

4 connect(server) map { case (out ,grow) =>

5 val (c,e) = open[T]

6 val shrink = e.map { x => out ! x; -1 }

7 val available = (grow union shrink)

8 .scanPast(initialBudget)(_ + _)

9 .map(_ > 0).signal(true)

10 (c,available):Valve[T] }

The usage of the Valve[T] data type is different from

channel types from the earlier sections, since its channel can

only be used when the valve is available. In the following

snippet, the client establishes a backpressure channel, then

subscribes to the events when the available signal becomes
true, and sends events while the valve is available.

1 connectBackpressure(server) onReact {

2 case (c,available) =>

3 available.becomes(true) onEvent { _ =>

4 while (available ()) c ! produceNextEvent ()

5 } }

4 Case Study: Distributed Streaming
In this section, we use the previous protocol components

to implement a proof-of-concept streaming framework. Our

aim is to show that the core functionality of a streaming

framework can be composed so that any synchronous stream

operation can be easily lifted into an asynchronous stream

operation. The goal is not to implement all other aspects of a

production streaming framework, such as fusion, persistence,

remoting or fault-tolerance. Later, in Section 5, we show that

the streaming implementation from this section is as efficient

as industry-standard streaming frameworks.

In the distributed streaming context, data elements are

processed in a pipeline that is split across concurrent compu-
tations, as in Figure 6. This is different from normal event

stream operations from Section 2.1, such as map, sync or

scanPast. Event stream transformations, which we used so

far throughout this paper, are synchronous and confined to

a single reactor, so they do not require reliable delivery or

backpressure, whereas in distributed streaming the same

operations are asynchronous and separated across reactors.
In Figure 6, the reactor A creates a source stream element,

and then invokes the map, filter and scanPast operations,

which creates three new reactors B,C andD, each processing
the respective part of the pipeline. Calling foreach routes
the events coming out of the pipeline back to the reactor A.

Most stream elements have upstream dependencies from

which data flows. To establish a backpressure link from Sec-

tion 3.7, a downstream element must send a backpressure

request channel to an upstream element. Thus, a stream re-

quest type Stream.Req[T] must be a backpressure request

channel. A stream, typed Stream[T], is then a channel that

accepts stream requests. There exists a special stream ele-

ment called source, which does not have upstream depen-

dencies, but its input is controlled with a Valve value. These
relationships are expressed as types in Listing 24.

Onward!’17, October 25–27, 2017, Vancouver, Canada Aleksandar Prokopec

Listing 24. Streaming data types

1 type Stream.Req[T] =

2 Channel[TwoWay.Req[Int ,T]]

3 type Stream[T] = Channel[Stream.Req[T]]

4 type Source[T] = (Events[Valve[T]],Stream[T])

The source function, which creates source streams, is

shown in Listing 25. It first creates an event stream e that will
emit a valve once a downstream connects, and then creates a

streaming server channel (s,links). Once a downstream re-

quest arrives on links, the connectBackpressure function
gets called. After the connection is established, the resulting

valve is emitted on the event stream e. The event stream e
and the streaming server s comprise a Source value.

Listing 25. Stream source

1 def source[T]: Source[T] = {

2 val (c,e) = open[Valve[T]]

3 val (s,links) = open[Stream.Req[T]]

4 links.onEvent { b =>

5 connectBackpressure(b).onEvent(v => c!v) }

6 (e,s) }

A sink is another special stream, which does not have

downstream dependencies. Calling the foreach function

shown in Listing 26 creates a sink. This function creates a

backpressure server and sends it to the upstream self. Once
the link is established, events are dequeued from the Pump[T]
whenever they are available. Lines 6-11 show typical pump

usage. First, a callback is added to the pump’s event stream.

Then, another callback is added to the pump’s availability

signal. Similar to a valve, while the pump is available, events

are dequeued and emitted on the event stream, which passes

them to the user function f.

Listing 26. Stream sink

1 def foreach[T](self:Stream[T],f:T=>Unit) {

2 val (server ,links) = backpressureServer[T]

3 self ! server

4 links map {

5 case (available ,deq ,events):Pump[T] =>

6 events.onEvent(f)

7 available.becomes(true) onEvent { _ =>

8 while (available ()) deq()

9 }

10 }

11 }

A streaming dataflow graph contains intermediate streams

that behave as both sources and sinks. Here, the basic con-

straint is that events can be processed only when the up-

stream link is ready to deliver them and the downstream

dependencies are available. This is the basis of the lift
function in Listing 27. This function takes a parent stream

upstream, of type Stream[T], and the transformation func-

tion f, of type Events[T] => Events[S]. The function f is

a transformation on synchronous event streams.

Listing 27. Polymorphic lifting from synchronous to asyn-

chronous event streams

1 type XSync[T,S] = Events[T]=>Events[S]

2 type XAsync[T,S] = Stream[T]=>Stream[S]

3 def lift[T,S](f:XSync[T,S]):XAsync[T,S] =

4 (upstream:Stream[T])=> spawn[Stream.Req[S]] {

5 (ch,downreqs) =>

6 val (s,uplinks) = backpressureServer[T]

7 upstream ! s

8 uplinks.sync(downreqs) { (p, down) =>

9 connectBackpressure(down) onEvent { v =>

10 val (pready ,deq ,in) = p

11 val (out ,vready) = v

12 val ready = (pready zip vready)(_ && _)

13 f(in).onEvent(x => out ! x)

14 ready.becomes(true) onEvent { _ =>

15 while (ready()) deq()

16 }

17 } } }

The lift function spawns a reactor, and then creates a

backpressure server in line 6. The backpressure server is sent

to the stream’s upstream parent in line 7. After both the link

with upstream is established and the downstream request

arrives in line 8, the stream connects with its downstream

dependency with the connectBackpressure call in line 9.

After the downstream connection is established, the stream

defines a new ready signal, which is true only when both

the upstream pump and the downstream valve are available.

The lift function converts any synchronous stream trans-

formation into a distributed stream transformation that han-

dles backpressure. For example, given a mapping f of type
T=>S, and a map combinator on event streams from Section

2.1, the lift((e:Events[T]) => map(e,f)) expression

creates an asynchronous map combinator.

When an equivalent synchronous event stream transfor-

mation does not exist, it is instead convenient to use another

generic mapping called transform, shown in Listing 28. This
function takes a kernel function that specifies how the event

is forwarded to the output channel. Function kernel is in-
voked when there is an event ready for processing and the

output channel is available.

Listing 28. Generic stream transformation function

1 def transform[T,S](

2 up:Stream[T],kernel :(T,Channel[S])=>Unit

3):Stream[S] = {

4 lift(xs => {

5 val (c,e) = open[S]

6 xs.onEvent(x => kernel(x,c))

7 e

8 })(up)

9 }

Listing 29 shows kernels of several stream operations.

The kernel of the map function applies the user-provided

mapping function f, and forwards the event to the output

Encoding the Building Blocks of Communication Onward!’17, October 25–27, 2017, Vancouver, Canada

channel out. The batch function groups events into batches

of a given size, the filter function applies a predicate to

decide whether to forward the event, and scanPast updates

the accumulation value of type S when an event of type T
arrives.

Other stream operations such as sync and union, which
have multiple upstream dependencies, are similarly imple-

mented, but require variants of lift with different arities,

which establish multiple upstream links before responding

to downstream requests.

Listing 29. Stream operation kernels

1 def map[T,S](up:Stream[T],f:T=>S):Stream[S] =

2 transform(up) { (x,out) => out ! f(x) }

3

4 def filter[T](

5 up:Stream[T],p:T=>Boolean

6):Stream[T] =

7 transform(up) { (x,out) =>

8 if (p(x)) out ! x

9 }

10

11 def scanPast[T,S](

12 up:Stream[T],z:S,op:(S,T)=>S

13):Stream[S] = {

14 var acc = z

15 transform(up) { (x,out) =>

16 acc = op(acc ,x)

17 out ! acc

18 }

19 }

20

21 def batch[T](

22 up:Stream[T],sz:Int

23):Stream[Buffer[T]] = {

24 var buff = new Buffer[T]

25 transform(up) { (x,out) =>

26 buff += x

27 if (buff.size == window) {

28 out ! buff

29 buff = new Buffer[T]

30 }

31 }

32 }

5 Demonstration of Efficiency
We empirically estimate the overheads of our protocol encod-

ings, and we compare our streaming framework encoding

on typical workloads against the state-of-the-art industrial

frameworks, such as Akka Streams [3] and Spark Stream-

ing [43]. In all cases, measurements are done on an Intel

i7-4900MQ 2.8 GHz quad-core CPU with hyperthreading. To

gather accurate results, we use established benchmarking

methodologies for the JVM [18], and rely on the ScalaMeter

performance testing framework [34].

Abstraction overhead.We created several synthetic work-

loads that do not execute useful computation and consist

A

1 1.5 2 2.5 3 3.5 4

·105

0

50

100

150

200

Number of events

R
u
n
n
i
n
g
t
i
m
e
/
m
s

fire-and-forget

two-way

reliable

fast reliable

simple BP

reliable BP

B

1
.
0
0
×

1
.
0
0
×

0
.
4
5
×

0
.
6
3
×

0
.
4
7
×

0
.
2
2
×

fi
r
e
-
a
n
d
-
fo
r
g
e
t

tw
o
-
w
a
y
li
n
k

r
e
li
a
b
le
li
n
k

fa
s
t
r
e
li
a
b
le
li
n
k

s
im
p
le
B
P
-
li
n
k

r
e
li
a
b
le
B
P
-
li
n
k

0

0.5

1

normalized throughput

Figure 7. A - Running time comparison between different

protocols (no network, lower is better); B - Normalized aver-

age throughput of different protocols (no network, higher is

better)

entirely from communication. These workloads are deliber-

ately artificial and do not reflect the relative overhead in real

applications, but they help quantify the absolute costs, and

identify various parts of the overhead.

In Figure 7, we use different protocols to deliver N events,

ranging from 100k to 400k , between two reactors. The re-

ceiver discards each event and proceeds to the next one.

Both reactors are kept in the same process and no network

is used – sending an event amounts to putting it on an event

queue. The fire-and-forget curve stands for the ! operator,

and serves as a baseline. Figure 7A shows that the variance

in running time is small for all protocols, usually within

20% of the mean value, and the protocols scale linearly with

the number of events sent N . Figure 7B shows the through-

put of the protocols, normalized against the fire-and-forget
baseline, and averaged across different values of N . We test

the two-way link protocol by sending only in one direction,

so its relative throughput is 1.0×. The reliable link proto-

col from Section 3.6 uses a sender-side buffer (to prevent

receiver overflow) and creates a stamp object for each deliv-

ered event, which makes the relative throughput only 0.45×.
We remove the sender-side buffer in the fast reliable link
variant, but the stamp object allocation keeps throughput

at 0.63× of fire-and-forget. The simple backpressure link is a

variant that incorporates only flow control (it uses two-way

links for delivery directly). Relative throughput is 0.47×, due

Onward!’17, October 25–27, 2017, Vancouver, Canada Aleksandar Prokopec

1
.
0
0
×

1
.
0
0
×

1
.
0
0
×

1
.
0
0
×

1
.
0
0
×

1
.
0
0
×

1
.
0
0
×

1
.
0
0
×

2
.
9
2
×

1
.
1
7
×

2
.
2
0
×

2
.
1
3
×

0
.
4
6
×

0
.
3
3
×

2
.
3
4
×

0
.
5
9
×

1
.
2
0
×

0
.
5
7
×

0
.
8
1
×

0
.
5
9
×

0
.
7
9
×

1
.
8
1
×

1
.
1
5
×

1
.
0
1
×

Statistics Grep WordCount JSON TopTweet K-Means HyperLogLog Count-Min

0

0.5

1

1.5

throughput (elements/µs)
Reactors Spark Streaming Akka Streams

Figure 9. Comparison of streaming frameworks on typical applications, higher is better (note: Spark Streaming is a semi-

batching framework, and it is optimized for throughput, but not latency)

UDPA

1
.
0
0
×

1
.
0
0
×

0
.
3
1
×

0
.
4
1
×

0
.
3
2
×

0
.
2
7
×

fi
r
e
-
a
n
d
-
fo
r
g
e
t

tw
o
-
w
a
y
li
n
k

r
e
li
a
b
le
li
n
k

fa
s
t
r
e
li
a
b
le
li
n
k

s
im
p
le
B
P
-
li
n
k

r
e
li
a
b
le
B
P
-
li
n
k

0

100

200

throughput (events/ms)

TCPB

1
.
0
0
×

1
.
0
0
×

0
.
8
4
×

0
.
8
9
×

0
.
8
6
× 0
.
7
1
×

fi
r
e
-
a
n
d
-
fo
r
g
e
t

tw
o
-
w
a
y
li
n
k

r
e
li
a
b
le
li
n
k

fa
s
t
r
e
li
a
b
le
li
n
k

s
im
p
le
B
P
-
li
n
k

r
e
li
a
b
le
B
P
-
li
n
k

0

1

2

3

throughput (events/µs)

1
.
0
0
×

0
.
2
6
×

0
.
0
2
×

C

UDP TCP local

0

0.5

1

normalized throughput

Figure 8. A, B - throughput comparison of UDP and TCP

transport (higher is better); C - cost breakdown for UDP and

TCP (higher is better; � framework � serialization ■ socket

■ GC)

to backpressure housekeeping, and allocations in TwoWay ob-
jects, which are in this case not type-specialized by the Scala

compiler [13]. The reliable backpressure link uses reliability

and must additionally allocate stamp objects, so this reduces

its relative throughput to 0.22×.
Figure 8A shows that using UDP on the same workload

results in 50× slower delivery, with the throughput penalty

of 3−4×. This is because (a) UDP implementation in Reactors

uses Java serialization for each event, (b) each UDP packet

encodes the destination reactor and channel, and (c) packet-

load is much lower than MTU for UDP. The breakdown of

these costs, obtained with the YourKit JVM profiler, is shown

in Figure 8C, where UDP spends 56% time in serialization,

37% using the network socket, and 2% in garbage collecting

the structures allocated during serialization.

We implemented a proof-of-concept TCP-based transport,

which serializes events directly to the network socket, and

sends them in batches to reduce costs. This is still around 4×

slower compared to no network, and the throughput penalty

is 10 − 30%, as shown in Figure 8B. In both cases, through-

put mostly depends on the data bandwidth, and the cost of

writing to the socket obscures other abstraction penalties.

Applications. We compare the streaming implementa-

tion from Section 4 against Akka Streams [3] and Spark

Streaming [43]. Akka Streams has similar stream transfor-

mation combinators as those shown in Section 4, and imple-

ments stream elements as separate actors. Akka Streams is a

direct counterpart of the implementation in Section 4, the

difference being that flow control is encoded directly with

message sends. In Spark Streaming, events are batched into

RDD collections [41], which are delivered at regular time

intervals [43]. The difference between Akka Streams and

Spark Streaming is a tradeoff between latency and through-

put. While batching events improves throughput, this dis-

cretization increases latency, since events produced at the

start of a batch are delayed until the end of the respective

time interval. Akka Streams and Spark Streaming have two

different streaming approaches – the first is optimized for

lower latency, while the latter is optimized for throughput.

We chose eight typical streaming-based algorithms to com-

pare the performance of these frameworks, and we report

relative throughput in Figure 9. Statistics incrementally com-

putes the average and standard deviation from a stream of

numbers, and is communication-intensive. The Grep bench-

mark does string regex matching, and has a high allocation

pressure. WordCount uses a scan operation to maintain a

word count histogram. JSON uses map to parse input strings.

TopTweet maintains a sliding window over the last 32 tweets,

and selects the tweet with the most retweets. The streaming

K-Means clustering algorithm [7] incrementally computes

clusters from a stream of 2D points, and is work-intensive.

Encoding the Building Blocks of Communication Onward!’17, October 25–27, 2017, Vancouver, Canada

HyperLogLog cardinality estimation [15] has similar charac-

teristics as Statistics, and Count-Min Sketch frequency estima-

tion [11] computes 32 hash functions and is work-intensive.

While garbage collection reduces Spark’s throughput in

TopTweet, K-Means and Count-Min, the batching approach

usually results in much higher throughput. Akka Streams is

between 2× slower and 2× faster compared to the streaming

framework from Section 4, depending on the benchmark.

Throughput is in these workloads around 10 − 40× lower

compared to the synthetic workload from Figure 7, indicat-

ing that useful work dominates abstraction penalties. While

we did not replicate Spark’s streaming strategy in Reactors,

we note that batching only decreases the ratio of communi-

cation and useful work further. We conclude that abstraction

overheads should not noticeable in user applications.

6 Related Work
A language usually has two tasks. First, it allows expressing

patterns. Second, it must be possible to modularize, and then

compose those patterns. In the context of distributed comput-

ing, numerous communication patterns and algorithms were

identified in the past [20] [26], but modest effort was invested

into standard libraries for distributed computing. For exam-

ple, Erlang OTP framework [1] exposes middleware such

as the client-server pattern, finite state machines, and actor

supervision, but does not contain algorithmic components

such as failure detectors, consensus, CRDTs, backpressure

or replication, peer-to-peer or gossip. Support for building

distributed systems is today either high-level and targeted

(a framework such as Spark [42]), or very low-level (RPCs

and message sends). A possible cause for this is lack of com-

posability in existing distributed programming models. This

prompted us to examine the reactor model more closely.

The reactor model draws inspiration from the traditional

actor model [6]. In the actor model, concurrent computations

are separated into entities called actors, which communicate

by asynchronously sending messages between themselves.

To receive a message, an actor invokes the receive state-

ment, which blocks its execution until a message arrives.

There exist multiple variants of actors. In Erlang [40],

actors are called processes, and receivemust specify the de-

sired message type. Computation suspends until such a mes-

sage arrives, and is then resumed from the same point. Mes-

sages of other types are buffered until a matching receive
is invoked. Runtimes without efficient continuation support

either selectively dedicate threads to actors, as was the case

with original Scala actors [21], or only allow a top-level event

loop, as is the case with frameworks like Akka [2].

What is common among these actor models is that at most

a single term inside an actor can await a message at any point

in time. Consequently, protocols that await multiple mes-

sages or combinations thereof can be difficult to express or

modularize. One potential solution for protocol composition

is to implement independent protocol components as sepa-

rate actors. As analyzed in related work [37], this approach

requires separating state across actors, which introduces

additional raciness and complexity into the program.

The reactor model [35] [36] [37] relies on two different

entities for communication – channels and event streams.

To read from an event stream, its owner provides a callback.

After an event gets sent along the channel, the callback is

eventually invoked. Multiple event streams can be listened

to simultaneously, but at most one callback is executed at

any point in time. This is the key feature of reactors, which

enables protocol composition.

The reactor model inherits several important advantages

of the actor model. The first is serializability – events re-

ceived by a reactor are processed serially, one after the other,

regardless of the channel they are delivered on. The second

useful property is location transparency – it does not matter

where a computation is located for program correctness.

Pi-calculus [28] is a foundational calculus for distributed

systems, consisting of send, receive, spawn and channel cre-

ation primitives. Unlike the actor model, a channel value

must be specified when sending and receiving. Like the ac-

tor model, the receive operation is blocking. At first glance,

pi-calculus seems almost identical to the reactor model, but

there are three crucial differences. First, while multiple chan-

nels can be awaited simultaneously, this has to happen on

different processes, hence breaking serializability. Second,

channels, which pi-calculus uses for both reading and writ-

ing, can be arbitrarily shared, whereas event streams cannot

be shared among reactors. Arbitrary reads have an adverse

effect on location transparency – tracking information about

the current readers and writers in an asynchronous fail-stop

model is tremendously difficult [14]. Third, channels are

typed in the reactor model, which improves program com-

prehension, and allows certain static optimizations.

The CSP model [24], which predates pi-calculus, mod-

els imperative processes that communicate with messages.

Its most important difference with pi-calculus is the non-

deterministic choice operator. This operator can be thought

of as the select system call in Unix – given a set of channels,

receive on the channel that first delivers a message. Despite

this extension, CSP has composability limitations that are

similar to those of pi-calculus.

As an example, the Go language adopts a part of the CSP

concurrency model. Receiving on a channel suspends the

respective goroutine. While suspended, that goroutine can-

not receive on other channels. Go provides a select call

that allows waiting on multiple channels, but using select
requires that different protocol components agree on the set

of channels to wait on, and be mutually aware as a result.

This breaks encapsulation – such a select call can be encap-

sulated inside a function, but cannot be further composed.

Onward!’17, October 25–27, 2017, Vancouver, Canada Aleksandar Prokopec

Many other actor-based languages were proposed [9] [21]

[25] [39]. AmbientTalk [12], a distributed programming lan-

guage that focuses on peer-to-peer and mobile applications,

takes a step forward from traditional actor languages in that

it exposes features such as far references and lease references
as basic primitives. These AmbientTalk-specific concepts

could be expressed as protocols in the reactor model, but this

was not yet investigated. The Kompics component model [8]

is an actor-like framework that has an ideology similar to the

reactor model with respect to decoupling and modularizing

components. In Kompics, components are dedicated entities

with explicitly declared ports that must be connected with

channels. Kompics has more basic primitives and a different

composition model compared to reactors, but encodings of

the protocols in this paper can likely be ported to Kompics.

Event streams used in the reactor model are similar to

Observable values from Reactive Extensions [27]. The type

Observable also provides a large set of transformation oper-

ations. While an event stream is confined to a single reactor,

the Observable objects can transmit events across threads,

so their implementations internally need synchronization.

Event streams in the reactor model can be seen as a mini-

malistic form of the publish-subscribe pattern. Many of the

related programming models rely on the this paradigm. A

good general overview of publish-subscribe techniques is

given by Eugster et al. [14].

7 Conclusion
We showed how to implement several communication pro-

tocols in the reactor model. Each protocol was encoded as

a set of functions and corresponding data types. Together,

these protocols form an abstraction stack, in which complex

components use simpler ones as building blocks – two-way

communication relies on the client-server protocol, back-

pressure uses two-way links, and streaming requires back-

pressure. We showed that overheads are mostly acceptable,

and do not affect typical application performance.

Libraries with generic communication protocols are likely

to become standard. Rich ecosystems of libraries, which we

today see for sequential programs, may become available

for distributed programming as well. One aspect that we did

not explore deeply in this work is fault tolerance – focusing

on identifying and expressing composable communication

protocols in the reactor model that guarantee fault-tolerance

by construction is essential for distributed systems, and we

plan to address this in future work.

References
[1] 2015. Erlang/OTP Documentation. (2015). http://www.erlang.org/
[2] 2016. Akka Documentation. (2016). http://akka.io/docs/
[3] 2016. Akka Streams Documentation. (2016). http://doc.akka.io/docs/

akka/2.4.3/scala/stream/index.html
[4] 2016. Reactive Streams. (2016). http://www.reactive-streams.org/
[5] 2016. Reactors.IO website. (2016). http://reactors.io/

[6] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Dis-
tributed Systems. MIT Press, Cambridge, MA, USA.

[7] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. 2009. Streaming

k-means approximation. In NIPS.
[8] Cosmin Arad, Jim Dowling, and Seif Haridi. 2012. Message-passing

Concurrency for Scalable, Stateful, Reconfigurable Middleware. In Pro-
ceedings of the 13th International Middleware Conference (Middleware
’12). Springer-Verlag New York, Inc., New York, NY, USA, 208–228.

[9] J.-P. Briot. 1988. From Objects to Actors: Study of a Limited Symbiosis

in Smalltalk-80. In Proceedings of the 1988 ACM SIGPLAN Workshop
on Object-based Concurrent Programming (OOPSLA/ECOOP ’88). ACM,

NewYork, NY, USA, 69–72. DOI:http://dx.doi.org/10.1145/67386.67403
[10] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,

Seif Haridi, and Kostas Tzoumas. 2015. Apache Flink™: Stream and

Batch Processing in a Single Engine. IEEE Data Eng. Bull. 38, 4 (2015),
28–38. http://sites.computer.org/debull/A15dec/p28.pdf

[11] Graham Cormode and S. Muthukrishnan. 2005. An Improved Data

Stream Summary: The Count-min Sketch and Its Applications. J.
Algorithms 55, 1 (April 2005), 58–75. DOI:http://dx.doi.org/10.1016/j.
jalgor.2003.12.001

[12] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, An-

doni Lombide Carreton, Dries Harnie, Kevin Pinte, and Wolfgang De

Meuter. 2014. AmbientTalk: programming responsive mobile peer-

to-peer applications with actors. Computer Languages, Systems and
Structures, SCI Impact factor in 2013: 0.296, 5 year impact factor 0.329
(to appear) (2014).

[13] Iulian Dragos and Martin Odersky. 2009. Compiling generics through

user-directed type specialization. In Proceedings of the 4th workshop
on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems (ICOOOLPS ’09). ACM, New York,

NY, USA, 42–47. DOI:http://dx.doi.org/10.1145/1565824.1565830
[14] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-

Marie Kermarrec. 2003. The Many Faces of Publish/Subscribe. ACM
Comput. Surv. 35, 2 (June 2003), 114–131. DOI:http://dx.doi.org/10.
1145/857076.857078

[15] Philippe Flajolet, ÃĽric Fusy, Olivier Gandouet, and et al. 2007. Hyper-

loglog: The analysis of a near-optimal cardinality estimation algorithm.

In IN AOFA âĂŹ07: PROCEEDINGS OF THE 2007 INTERNATIONAL
CONFERENCE ON ANALYSIS OF ALGORITHMS.

[16] Message Passing Interface Forum. 2012. MPI: A Message-Passing

Interface Standard Version 3.0. (09 2012). Chapter author for Collective

Communication, Process Topologies, and One Sided Communications.

[17] Cédric Fournet and Georges Gonthier. 2002. The Join Calculus: A
Language for Distributed Mobile Programming. Springer Berlin Hei-

delberg, Berlin, Heidelberg, 268–332. DOI:http://dx.doi.org/10.1007/
3-540-45699-6_6

[18] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically

Rigorous Java Performance Evaluation. SIGPLANNot. 42, 10 (Oct. 2007),
57–76. DOI:http://dx.doi.org/10.1145/1297105.1297033

[19] J.Y. Girard. 1972. Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur. https://books.google.hr/books?id=
IRcVHAAACAAJ

[20] Rachid Guerraoui and Luís Rodrigues. 2006. Introduction to reliable
distributed programming. Springer.

[21] Philipp Haller and Martin Odersky. 2006. Event-Based Programming

without Inversion of Control. In Proc. Joint Modular Languages Con-
ference (Springer LNCS).

[22] Philipp Haller, Aleksandar Prokopec, Heather Miller, Viktor Klang,

Roland Kuhn, and Vojin Jovanovic. 2012. Scala Improvement Pro-

posal: Futures and Promises (SIP-14). http://docs.scala-lang.org/sips/
pending/futures-promises.html

[23] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-

thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 2011.

http://www.erlang.org/
http://akka.io/docs/
http://doc.akka.io/docs/akka/2.4.3/scala/stream/index.html
http://doc.akka.io/docs/akka/2.4.3/scala/stream/index.html
http://www.reactive-streams.org/
http://reactors.io/
http://dx.doi.org/10.1145/67386.67403
http://sites.computer.org/debull/A15dec/p28.pdf
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1016/j.jalgor.2003.12.001
http://dx.doi.org/10.1145/1565824.1565830
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1145/857076.857078
http://dx.doi.org/10.1007/3-540-45699-6_6
http://dx.doi.org/10.1007/3-540-45699-6_6
http://dx.doi.org/10.1145/1297105.1297033
https://books.google.hr/books?id=IRcVHAAACAAJ
https://books.google.hr/books?id=IRcVHAAACAAJ
http://docs.scala-lang.org/sips/pending/futures-promises.html
http://docs.scala-lang.org/sips/pending/futures-promises.html

Encoding the Building Blocks of Communication Onward!’17, October 25–27, 2017, Vancouver, Canada

Mesos: A Platform for Fine-grained Resource Sharing in the Data Cen-

ter. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation (NSDI’11). USENIX Association, Berkeley,

CA, USA, 295–308. http://dl.acm.org/citation.cfm?id=1972457.1972488
[24] C. A. R. Hoare. 1978. Communicating Sequential Processes. Commun.

ACM 21, 8 (Aug. 1978), 666–677. DOI:http://dx.doi.org/10.1145/359576.
359585

[25] ShamsM. Imam andVivek Sarkar. 2014. Selectors: Actors withMultiple

Guarded Mailboxes. In Proceedings of the 4th International Workshop
on Programming Based on Actors Agents and Decentralized Control
(AGERE! ’14). ACM, New York, NY, USA, 1–14. DOI:http://dx.doi.org/
10.1145/2687357.2687360

[26] Nancy A. Lynch. 1996. Distributed Algorithms. MK Publishers Inc.,

San Francisco, CA, USA.

[27] Erik Meijer. 2012. Your Mouse is a Database. Commun. ACM 55, 5

(May 2012), 66–73. DOI:http://dx.doi.org/10.1145/2160718.2160735
[28] Robin Milner, Joachim Parrow, and David Walker. 1992. A Calculus

of Mobile Processes, I. Inf. Comput. 100, 1 (Sept. 1992), 1–40. DOI:
http://dx.doi.org/10.1016/0890-5401(92)90008-4

[29] Thomas D. Newton. 1987. An implementation of Ada tasking. (1987).

[30] Martin Odersky. 2002. An Introduction to Functional Nets. Springer
Berlin Heidelberg, Berlin, Heidelberg, 333–377. DOI:http://dx.doi.org/
10.1007/3-540-45699-6_7

[31] Martin Odersky and al. 2004. An Overview of the Scala Programming
Language. Technical Report IC/2004/64. EPFL Lausanne, Switzerland.

[32] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT

Press, Cambridge, MA, USA.

[33] Rob Pike, Dave Presotto, Ken Thompson, and Gerard Holzmann.

1991. Process Sleep and Wakeup on a Shared-memory Multiprocessor.

(1991).

[34] Aleksandar Prokopec. 2014. ScalaMeter Website. (2014). http://
scalameter.github.io

[35] Aleksandar Prokopec. 2016. Pluggable Scheduling for the Reactor

Programming Model. In Proceedings of the 6th International Workshop
on Programming Based on Actors, Agents, and Decentralized Control
(AGERE 2016). ACM, New York, NY, USA, 41–50. DOI:http://dx.doi.
org/10.1145/3001886.3001891

[36] Aleksandar Prokopec, Philipp Haller, and Martin Odersky. 2014. Con-

tainers and Aggregates, Mutators and Isolates for Reactive Program-

ming. In Proceedings of the Fifth Annual Scala Workshop (SCALA ’14).
ACM, 51–61. DOI:http://dx.doi.org/10.1145/2637647.2637656

[37] Aleksandar Prokopec and Martin Odersky. 2015. Isolates, Channels,

and Event Streams for Composable Distributed Programming. In 2015
ACM International Symposium on New Ideas, New Paradigms, and Re-
flections on Programming and Software (Onward!) (Onward! 2015). ACM,

New York, NY, USA, 171–182.

[38] M. Shreedhar and George Varghese. 1995. Efficient Fair Queueing

Using Deficit Round Robin. SIGCOMM Comput. Commun. Rev. 25, 4
(Oct. 1995), 231–242. DOI:http://dx.doi.org/10.1145/217391.217453

[39] Sriram Srinivasan and Alan Mycroft. 2008. Kilim: Isolation-Typed
Actors for Java. Springer Berlin Heidelberg, Berlin, Heidelberg, 104–

128. DOI:http://dx.doi.org/10.1007/978-3-540-70592-5_6
[40] Robert Virding, Claes Wikström, and Mike Williams. 1996. Concurrent

Programming in ERLANG (2nd Ed.). Prentice Hall International (UK)
Ltd., Hertfordshire, UK, UK.

[41] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and

Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant

Abstraction for In-memory Cluster Computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI’12). USENIX Association, Berkeley, CA, USA, 2–2.

http://dl.acm.org/citation.cfm?id=2228298.2228301
[42] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with Work-

ing Sets. In Proceedings of the 2nd USENIX Conference on Hot Topics in
Cloud Computing (HotCloud’10). USENIX Association, Berkeley, CA,

USA, 10–10. http://dl.acm.org/citation.cfm?id=1863103.1863113
[43] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott

Shenker, and Ion Stoica. 2013. Discretized Streams: Fault-tolerant

Streaming Computation at Scale. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13). ACM,

New York, NY, USA, 423–438. DOI:http://dx.doi.org/10.1145/2517349.
2522737

http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/2687357.2687360
http://dx.doi.org/10.1145/2687357.2687360
http://dx.doi.org/10.1145/2160718.2160735
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.1007/3-540-45699-6_7
http://dx.doi.org/10.1007/3-540-45699-6_7
http://scalameter.github.io
http://scalameter.github.io
http://dx.doi.org/10.1145/3001886.3001891
http://dx.doi.org/10.1145/3001886.3001891
http://dx.doi.org/10.1145/2637647.2637656
http://dx.doi.org/10.1145/217391.217453
http://dx.doi.org/10.1007/978-3-540-70592-5_6
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dx.doi.org/10.1145/2517349.2522737
http://dx.doi.org/10.1145/2517349.2522737

	Abstract
	1 Introduction
	2 Reactor Model
	2.1 Combinators and Signals

	3 Generic Protocol Components
	3.1 Router Protocol
	3.2 Client-Server Protocol
	3.3 Scatter-Gather Protocol
	3.4 Rendezvous Protocol
	3.5 Two-Way Communication
	3.6 Reliable Communication
	3.7 Backpressure Protocol, Valves and Pumps

	4 Case Study: Distributed Streaming
	5 Demonstration of Efficiency
	6 Related Work
	7 Conclusion
	References

