
Concurrent Tries with Efficient Non-Blocking Snapshots

Aleksandar Prokopec
EPFL

aleksandar.prokopec@epfl.ch

Nathan G. Bronson
Stanford

ngbronson@gmail.com

Phil Bagwell
Typesafe

phil.bagwell@typesafe.com

Martin Odersky
EPFL

martin.odersky@epfl.ch

Abstract
We describe a non-blocking concurrent hash trie based on shared-
memory single-word compare-and-swap instructions. The hash trie
supports standard mutable lock-free operations such as insertion,
removal, lookup and their conditional variants. To ensure space-
efficiency, removal operations compress the trie when necessary.

We show how to implement an efficient lock-free snapshot op-
eration for concurrent hash tries. The snapshot operation uses a
single-word compare-and-swap and avoids copying the data struc-
ture eagerly. Snapshots are used to implement consistent iterators
and a linearizable size retrieval. We compare concurrent hash trie
performance with other concurrent data structures and evaluate the
performance of the snapshot operation.

Categories and Subject Descriptors E.1 [Data structures]: Trees

General Terms Algorithms

Keywords hash trie, concurrent data structure, snapshot, non-
blocking

1. Introduction
When designing concurrent data structures, lock-freedom is an
important concern. Lock-free data structures generally guarantee
better robustness than their lock-based variants [11], as they are
unaffected by thread delays. A fundamental difference is that lock-
free data structures can continue to work correctly in the presence
of failures, whereas a failure may prevent progress indefinitely with
a lock-based data structure.

While obtaining a consistent view of the contents of the data
structure at a single point in time is a trivial matter for data struc-
tures accessed sequentially, it is not clear how to do this in a non-
blocking concurrent setting. A consistent view of the data struc-
ture at a single point in time is called a snapshot. Snapshots can be
used to implement operations requiring global information about
the data structure – in this case, their performance is limited by the
performance of the snasphot.

Our contributions are the following:

1. We describe a complete lock-free concurrent hash trie data
structure implementation for a shared-memory system based on
single-word compare-and-swap instructions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
Copyright c© 2012 ACM 978-1-4503-1160-1/12/02. . . $10.00

root

C3

C2

C1

k1 k2

k3

· · ·

A

root

C3

T1: CAS

C2’

C1

C2

T2: CAS

C1’

k1 k2k1 k2 k4

k3 k3 k5

· · ·

B

Figure 1. Hash tries

2. We introduce a non-blocking, atomic constant-time snapshot
operation. We show how to use them to implement atomic size
retrieval, consistent iterators and an atomic clear operation.

3. We present benchmarks that compare performance of concur-
rent tries against other concurrent data structures across differ-
ent architectures.

Section 2 illustrates usefulness of snapshots. Section 3 describes
basic operations on concurrent tries. Section 4 describes snapshots.
Section 5 presents various benchmarks. Section 6 contains related
work and Section 7 concludes.

2. Motivation
Most stock concurrent collection implementations include opera-
tions such as the atomic lookup, insert and remove operations. Op-
erations that require global data structure information or induce a
global change in the data structure, such as size retrieval, iterator
creation or deleting all the elements are typically implemented with
no atomicity guarantees (e.g. the Java ConcurrentHashMap and
the ConcurrentSkipListMap [14]) or require a global lock. Ide-
ally, these operations should have a constant running time and be
nonblocking. Given an atomic snapshot, implementing these oper-
ations seems to be trivial.

Collection frameworks such as Intel TBB or STAPL parallelize
bulk operations on data. They do this by relying on iterators that
traverse disjunct parts of the collection. Many algorithms exhibit
an interesting interplay of parallel traversal and concurrent updates.
One such example is the PageRank algorithm, implemented using
Scala parallel collections [21] in Figure 2. In a nutshell, this iter-
ative algorithm updates the rank of the pages until the rank con-
verges. The rank is updated based on the last known rank of the
pages linking to the current page (line 4). Once the rank becomes
smaller than some predefined constant, the page is removed from
the set of pages being processed (line 5). The for loop that does the
updates is executed in parallel. After the loop completes, the arrays
containing the previous and the next rank are swapped in line 7,
and the next iteration commences if there are pages left.

The main point about this algorithm is that the set of pages be-
ing iterated is updated by the remove operation during the parallel
traversal. This is where most concurrent data structures prove inad-
equate for implementing this kind of algorithms – an iterator may
or may not reflect the concurrent updates. Scala parallel collections
can remedy this by removing the test in line 5 and adding another
parallel operation filter to create a new set of pages without those
that converged – this new set is traversed in the next iteration. The
downside of this is that if only a few pages converge during an it-
eration then almost the entire set needs to be copied. If the iterators
used for parallel traversal reflected only the elements present when
the operation began, there would be no need for this. We show in
Section 5 that avoiding the additional filter phase enhances per-
formance.

while (pages.nonEmpty) {1
for (page <- pages.par) {2

val sum = page.incoming.sumBy(p => last(p) / p.links)3
next(page) = (1 - damp) / N + damp * sum4
if (next(page) - last(page) < eps) pages.remove(page)5

}6
swap(next, last)7

}8

Figure 2. Parallel PageRank implementation

3. Basic operations
Hash array mapped tries (or simply hash tries) described previously
by Bagwell [2] are trees composed of internal nodes and leaves.
Leaves store key-value bindings. Internal nodes have a 2W -way
branching factor. In a straightforward implementation, each inter-
nal node is a 2W -element array. Finding a key proceeds as follows.
If the internal node is at the level l, then the W bits of the hashcode
starting from the position W ∗ l are used as an index to the appro-
priate branch in the array. This is repeated until a leaf or an empty
entry is found. Insertion uses the key to find an empty entry or a
leaf. It creates a new leaf with the key if an empty entry is found.
Otherwise, the key in the leaf is compared against the key being
inserted. If they are equal, the existing leaf is replaced with a new
one. If they are not equal (meaning their hashcode prefixes are the
same) then the hash trie is extended with a new level.

Bagwell describes an implementation that is more space-
efficient [2]. Each internal node contains a bitmap of length 2W .
If a bit is set, then the corresponding array entry contains either a
branch or a leaf. The array length is equal to the number of bits in
the bitmap. The corresponding array index for a bit on position i
in the bitmap bmp is calculated as #((i− 1)� bmp), where #(·)
is the bitcount and � is a bitwise AND operation. The W bits of
the hashcode relevant at some level l are used to compute the bit
position i as before. At all times an invariant is preserved that the
bitmap bitcount is equal to the array length. Typically, W is 5 since
that ensures that 32-bit integers can be used as bitmaps. Figure 1A
shows a hash trie example.

The goal is to create a concurrent data structure that pre-
serves the space-efficiency of hash tries and the expected depth
of O(log2W (n)). Lookup, insert and remove will be based solely
on CAS instructions and have the lock-freedom property. Remove
operations must ensure that the trie is kept as compact as pos-
sible. Finally, to support linearizable lock-free iteration and size
retrievals, the data structure must support an efficient snapshot op-
eration. We will call this data structure a Ctrie.

Intuitively, a concurrent insertion operation could start by locat-
ing the internal node it needs to modify and then create a copy of
that node with both the bitmap and the array updated with a ref-
erence to the key being inserted. A reference to the newly created

node could then be written into the array of the parent node using
the CAS instruction. Unfortunately, this approach does not work.
The fundamental problem here is due to races between an inser-
tion of a key into some node C1 and an insertion of another key
into its parent node C2. One scenario where such a race happens is
shown in Figure 1. Assume we have a hash trie from the Figure 1A
and that a thread T1 decides to insert a key k5 into the node C2 and
creates an updated version of C2 called C2′. It must then do a CAS
on the first entry in the internal node C3 with the expected value
C2 and the new value C2′. Assume that another thread T2 decides
to insert a key k4 into the node C1 before this CAS. It will create
an updated version of C1 called C1′ and then do a CAS on the first
entry of the array of C2 – the updated node C1′ will not be reach-
able from the updated node C2′. After both threads complete their
CAS operations, the trie will correspond to the one shown in Fig-
ure 1B, where the dashed arrows represent the state of the branches
before the CASes. The key k4 inserted by the thread T2 is lost.

We solve this problem by introducing indirection nodes, or I-
nodes, which remain present in the Ctrie even as nodes above and
below change. The CAS instruction is performed on the I-node
instead of on the internal node array. We show that this eliminates
the race between insertions on different levels.

The second fundamental problem has to do with the remove
operations. Insert operations extend the Ctrie with additional levels.
A sequence of remove operations may eliminate the need for the
additional levels – ideally, we would like to keep the trie as compact
as possible so that the subsequent lookup operations are faster. In
Section 3.2 we show that removing an I-node that appears to be
no longer needed may result in lost updates. We describe how to
remove the keys while ensuring compression and no lost updates.

The Ctrie data structure is described in Figure 3. Each Ctrie
contains a root reference to a so-called indirection node (I-node).
An I-node contains a reference to a single node called a main node.
There are several types of main nodes. A tomb node (T-node) is a
special node used to ensure proper ordering during removals. A list
node (L-node) is a leaf node used to handle hash code collisions by
keeping such keys in a list. These are not immediately important, so
we postpone discussion about T-nodes and L-nodes until Sections
3.2 and 3.3, respectively. A Ctrie node (C-node) is an internal main
node containing a bitmap and the array with references to branch
nodes. A branch node is either another I-node or a singleton node
(S-node), which contains a single key and a value. S-nodes are
leaves in the Ctrie (shown as key-value pairs in the figures).

The pseudocode in Figures 4, 6, 8, 9, 11, 13, 15 and 16 assumes
short-circuiting semantics of the conditions in the if statements.
We use logical symbols in boolean expressions. Pattern matching
constructs match a node against its type and can be replaced with a
sequence of if-then-else statements – we use pattern matching for
conciseness. The colon (:) in the pattern matching cases should be
read as has type. The keyword def denotes a procedure definition.
Reads, writes and compare-and-set instructions written in capitals
are atomic. This high level pseudocode might not be optimal in all
cases – the source code contains a more efficient implementation.

The rest of the section describes the basic update operations.

3.1 Lookup and insert operations
A lookup starts by reading the root and then calls the recursive pro-
cedure ilookup, which traverses the Ctrie. This procedure either
returns a result or a special value RESTART, which indicates that the
lookup must be repeated.

The ilookup procedure reads the main node from the current
I-node. If the main node is a C-node, then (as described in Sec-
tion 3) the relevant bit flag of the bitmap and the index pos in the
array are computed by the flagpos function. If the bitmap does
not contain the relevant bit (line 10), then a key with the required

structure Ctrie {
root: INode
readonly: boolean

}

structure Gen

structure INode {
main: MainNode
gen: Gen

}

MainNode:
CNode | TNode | LNode

Branch:
INode | SNode

structure CNode {
bmp: integer
array: Branch[2^W]

}

structure SNode {
k: KeyType
v: ValueType

}

structure TNode {
sn: SNode

}

structure LNode {
sn: SNode
next: LNode

}

Figure 3. Types and data structures

hashcode prefix is not present in the trie, so a NOTFOUND value is
returned. Otherwise, the relevant branch at index pos is read from
the array. If the branch is an I-node (line 12), the ilookup pro-
cedure is called recursively at the next level. If the branch is an
S-node (line 14), then the key within the S-node is compared with
the key being searched – these two keys have the same hashcode
prefixes, but they need not be equal. If they are equal, the corre-
sponding value from the S-node is returned and a NOTFOUND value
otherwise. In all cases, the linearization point is the read in the line
7. This is because no nodes other than I-nodes change the value of
their fields after they are created and we know that the main node
was reachable in the trie at the time it was read in the line 7 [20].

If the main node within an I-node is a T-node (line 17), we try
to remove it and convert it to a regular node before restarting the
operation. This is described in more detail in Section 3.2. The L-
node case is described in Section 3.3.

def lookup(k)1
r = READ(root)2
res = ilookup(r, k, 0, null)3
if res 6= RESTART return res else return lookup(k)4

5
def ilookup(i, k, lev, parent)6

READ(i.main) match {7
case cn: CNode =>8

flag, pos = flagpos(k.hash, lev, cn.bmp)9
if cn.bmp � flag = 0 return NOTFOUND10
cn.array(pos) match {11

case sin: INode =>12
return ilookup(sin, k, lev + W, i)13

case sn: SNode =>14
if sn.k = k return sn.v else return NOTFOUND15

}16
case tn: TNode =>17

clean(parent, lev - W)18
return RESTART19

case ln: LNode =>20
return ln.lookup(k)21

}22

Figure 4. Lookup operation

When a new Ctrie is created, it contains a root I-node with the
main node set to an empty C-node, which contains an empty bitmap
and a zero-length array (Figure 5A). We maintain the invariant that
only the root I-node can contain an empty C-node – all other C-
nodes in the Ctrie contain at least one entry in their array. Inserting
a key k1 first reads the root and calling the procedure iinsert.

The procedure iinsert is invoked on the root I-node. This
procedure works in a similar way as ilookup. If it reads a C-node

root

I1

C1

CAS

A

root

I1

C1

(k1, v1)

CAS

B

root

I1

C1

(k1, v1)(k2, v2)

CAS

C

root

I1

C1

(k1, v1) I2

C2

(k2, v2)(k3, v3)

CAS

D

root

I1

C1

(k1, v1) I2

C2

(k2, v2) (k3, v
′
3)

CAS

E

root

I1

C1

(k1, v1) (k4, v4)I2

C2

(k2, v2) (k3, v
′
3)F

Figure 5. Ctrie insert

def insert(k, v)23
r = READ(root)24
if iinsert(r, k, v, 0, null) = RESTART insert(k, v)25

26
def iinsert(i, k, v, lev, parent)27

READ(i.main) match {28
case cn: CNode =>29

flag, pos = flagpos(k.hash, lev, cn.bmp)30
if cn.bmp � flag = 0 {31

ncn = cn.inserted(pos, flag, SNode(k, v))32
if CAS(i.main, cn, ncn) return OK33
else return RESTART34

}35
cn.array(pos) match {36

case sin: INode =>37
return iinsert(sin, k, v, lev + W, i)38

case sn: SNode =>39
if sn.k 6= k {40

nsn = SNode(k, v)41
nin = INode(CNode(sn, nsn, lev + W))42
ncn = cn.updated(pos, nin)43
if CAS(i.main, cn, ncn) return OK44
else return RESTART45

} else {46
ncn = cn.updated(pos, SNode(k, v))47
if CAS(i.main, cn, ncn) return OK48
else return RESTART49

}50
}51

case tn: TNode =>52
clean(parent, lev - W)53
return RESTART54

case ln: LNode =>55
if CAS(i.main, ln, ln.inserted(k, v)) return OK56
else return RESTART57

}58

Figure 6. Insert operation

within the I-node, it computes the relevant bit and the index in the
array using the flagpos function. If the relevant bit is not in the
bitmap (line 31) then a copy of the C-node with the new entry
is created using the inserted function. The linearization point
is a successful CAS in the line 33, which replaces the current C-
node with a C-node containing the new key (see Figures 5A,B,C
where two new keys k1 and k2 are inserted in that order starting
from an empty Ctrie). An unsuccessful CAS means that some other
operation already wrote to this I-node since its main node was read
in the line 28, so the insert must be repeated.

If the relevant bit is present in the bitmap, then its corresponding
branch is read from the array. If the branch is an I-node, then
iinsert is called recursively. If the branch is an S-node and its key
is not equal to the key being inserted (line 40), then the Ctrie has to
be extended with an additional level. The C-node is replaced with
its updated version (line 44), created using the updated function
that adds a new I-node at the respective position. The new I-
node has its main node pointing to a C-node with both keys. This
scenario is shown in Figures 5C,D where a new key k3 with the
same hashcode prefix as k2 is inserted. If the key in the S-node is
equal to the key being inserted, then the C-node is replaced with
its updated version with a new S-node. An example is given in
the Figure 5E where a new S-node (k3, v

′
3) replaces the S-node

(k3, v3) from the Figure 5D. In both cases, the successful CAS
instructions in the lines 44 and 48 are the linearization point.

Note that insertions to I-nodes at different levels may proceed
concurrently, as shown in Figures 5E,F where a new key k4 is added
at the level 0, below the I-node I1. No race can occur, since the I-
nodes at the lower levels remain referenced by the I-nodes at the
upper levels even when new keys are added to the higher levels.
This will not be the case after introducing the remove operation.

3.2 Remove operation
The remove operation has a similar control flow as the lookup and
the insert operation. After examining the root, a recursive procedure
iremove reads the main node of the I-node and proceeds casewise,
removing the S-node from the trie by updating the C-node above it,
similar to the insert operation.

The described approach has certain pitfalls. A remove operation
may at one point create a C-node that has a single S-node below it.
This is shown in Figure 7A, where the key k2 is removed from the
Ctrie. The resulting Ctrie in Figure 7B is still valid in the sense that
the subsequent insert and lookup operations will work. However,
these operations could be faster if (k3, v3) were moved into the
C-node below I1. After having removed the S-node (k2, v2), the
remove operation could create an updated version of C1 with a
reference to the S-node (k3, v3) instead of I2 and write that into I1
to compress the Ctrie. But, if a concurrent insert operation were to
write to I2 just before I1 was updated with the compressed version
of C1, the insertion would be lost.

To solve this problem, we introduce a new type of a main node
called a tomb node (T-node). We introduce the following invariant
to Ctries – if an I-node points to a T-node at some time t0 then for
all times greater than t0, the I-node points to the same T-node. In
other words, a T-node is the last value assigned to an I-node. This
ensures that no inserts occur at an I-node if it is being compressed.
An I-node pointing to a T-node is called a tombed I-node.

The remove operation starts by reading the root I-node and
calling the recursive procedure iremove. If the main node is a C-
node, the flagpos function is used to compute the relevant bit and
the branch position. If the bit is not present in the bitmap (line 69),
then a NOTFOUND value is returned. In this case, the linearization
point is the read in the line 66. Otherwise, the branch node is read
from the array. If the branch is another I-node, the procedure is
called recursively. If the branch is an S-node, its key is compared
against the key being removed. If the keys are not equal (line 75),
the NOTFOUND value is returned and the linearization point is the
read in the line 66. If the keys are equal, a copy of the current node
without the S-node is created. The contraction of the copy is then
created using the toContracted procedure. A successful CAS in
the line 79 will substitute the old C-node with the copied C-node,
thus removing the S-node with the given key from the trie – this is
the linearization point.

If a given C-node has only a single S-node below and is not
at the root level (line 101) then the toContracted procedure

root

I1

C1

(k1, v1) I2

C2

(k2, v2)(k3, v3)

CAS

A

root

I1

C1

(k1, v1) I2

C2

(k3, v3)B

root

I1

C1

(k1, v1) I2

S2

(k3, v3)

CAS

C

root

I1

C1

(k1, v1)(k3, v3)

CAS

D

root

I1

C1

(k3, v3)

CAS

E

root

I1

C1F

Figure 7. Ctrie remove

def remove(k)59
r = READ(root)60
res = iremove(r, k, 0, null)61
if res 6= RESTART return res62
else return remove(k)63

64
def iremove(i, k, lev, parent)65

READ(i.main) match {66
case cn: CNode =>67

flag, pos = flagpos(k.hash, lev, cn.bmp)68
if cn.bmp � flag = 0 return NOTFOUND69
res = cn.array(pos) match {70

case sin: INode =>71
iremove(sin, k, lev + W, i)72

case sn: SNode =>73
if sn.k 6= k74

NOTFOUND75
else {76

ncn = cn.removed(pos, flag)77
cntr = toContracted(ncn, lev)78
if CAS(i.main, cn, cntr) sn.v else RESTART79

}80
}81
if res = NOTFOUND ∨ res = RESTART return res82
if READ(i.main): TNode83

cleanParent(parent, in, k.hash, lev - W)84
return res85

case tn: TNode =>86
clean(parent, lev - W)87
return RESTART88

case ln: LNode =>89
nln = ln.removed(k)90
if length(nln) = 1 nln = entomb(nln.sn)91
if CAS(i.main, ln, nln) return ln.lookup(k)92
else return RESTART93

}94

Figure 8. Remove operation

returns a T-node that wraps the S-node. Otherwise, it just returns
the given C-node. This ensures that every I-node except the root
points to a C-node with at least one branch. Furthermore, if it
points to exactly one branch, then that branch is not an S-node (this
scenario is possible if two keys with the same hashcode prefixes are
inserted). Calling this procedure ensures that the CAS in the line
79 replaces the C-node C2 from the Figure 7A with the T-node
in Figure 7C instead of the C-node C2 in Figure 7B. This CAS
is the linearization point since the S-node (k2, v2) is no longer in
the trie. However, it does not solve the problem of compressing the
Ctrie (we ultimately want to obtain a Ctrie in Figure 7D). In fact,

given a Ctrie containing two keys with long matching hashcode
prefixes, removing one of these keys will create a arbitrarily long
chain of C-nodes with a single T-node at the end. We introduced the
invariant that no tombed I-node changes its main node. To remove
the tombed I-node, the reference to it in the C-node above must
be changed with a reference to its resurrection. A resurrection of
a tombed I-node is the S-node wrapped in its T-node. For all other
branch nodes, the resurrection is the node itself.

To ensure compression, the remove operation checks if the
current main node is a T-node after removing the key from the Ctrie
(line 83). If it is, it calls the cleanParent procedure, which reads
the main node of the parent I-node p and the current I-node i in
the line 113. It then checks if the T-node below i is reachable from
p. If i is no longer reachable, then it returns – some other thread
must have already completed the contraction. If it is reachable then
it replaces the C-node below p, which contains the tombed I-node
i with a copy updated with the resurrection of i (CAS in the line
122). This copy is possibly once more contracted into a T-node at a
higher level by the toContracted procedure.

def toCompressed(cn, lev)95
num = bit#(cn.bmp)96
ncn = cn.mapped(resurrect(_))97
return toContracted(ncn, lev)98

99
def toContracted(cn, lev)100

if lev > 0 ∧ cn.array.length = 1101
cn.array(0) match {102

case sn: SNode => return entomb(sn)103
case _ => return cn104

}105
else return cn106

107
def clean(i, lev)108

m = READ(i.main)109
if m: CNode CAS(i.main, m, toCompressed(m, lev))110

111
def cleanParent(p, i, hc, lev)112

m, pm = READ(i.main), READ(p.main)113
pm match {114

case cn: CNode =>115
flag, pos = flagpos(k.hash, lev, cn.bmp)116
if bmp � flag = 0 return117
sub = cn.array(pos)118
if sub 6= i return119
if m: TNode {120

ncn = cn.updated(pos, resurrect(m))121
if ¬CAS(p.main, cn, toContracted(ncn, lev))122

cleanParent(p, i, hc, lev)123
}124

case _ => return125
}126

Figure 9. Compression operations

To preserve the lock-freedom property, all operations that read
a T-node must help compress it instead of waiting for the removing
thread to complete the compression. For example, after finding a
T-node lookups call the clean procedure on the parent node in the
line 17. This procedure creates the compression of the given C-node
– a new C-node with all the tombed I-nodes below resurrected.
This new C-node is contracted if possible. The old C-node is then
replaced with its compression with the CAS in the line 110. Note
that neither clean nor cleanParent are ever called for the parent
of the root, since the root never contains a T-node. For example,
removing the S-node (k3, v3) from the Ctrie in Figure 7D produces
a Ctrie in Figure 7E. A subsequent remove produces an empty trie
in Figure 7F.

Both insert and lookup are tail-recursive and may be rewritten to
loop-based variants, but this is not so trivial with the remove oper-
ation. Since remove operations must be able to compress arbitrary

long chains of C-nodes, the call stack is used to store information
about the path in the Ctrie being traversed.

3.3 Hash collisions
In this implementation, hash tries use a 32-bit hashcode space. Al-
though hash collisions are rare, it is still possible that two unequal
keys with the same hashcodes are inserted. To preserve correct-
ness, we introduce a new type of nodes called list nodes (L-nodes),
which are basically persistent linked lists. If two keys with the same
hashcodes collide, we place them inside an L-node.

We add another case to the basic operations from Section 3.
Persistent linked list operations lookup, inserted, removed and
length are trivial and not included in the pseudocode. We addi-
tionally check if the updated L-node in the iremove procedure has
length 1 and replace the old node with a T-node in this case.

Another important change is in the CNode constructor in line 42.
This constructor was a recursive procedure that creates additional
C-nodes as long as the hashcode chunks of the two keys are equal
at the given level. We modify it to create an L-node if the level is
greater than the length of the hashcode – in our case 32.

3.4 Additional operations
Collection classes in various frameworks typically need to im-
plement additional operations. For example, the ConcurrentMap
interface in Java defines four additional methods: putIfAbsent,
replace any value a key is mapped to with a new value, replace
a specific value a key is mapped to with a new value and remove a
key mapped to a specific value. All of these operations can be im-
plemented with trivial modifications to the operations introduced in
Section 3. For example, removing a key mapped to a specific value
can be implemented by adding an additional check sn.v = v to
the line 74. We invite the reader to try to inspect the source code of
our implementation.

Methods such as size, iterator or clear commonly seen
in collection frameworks cannot be implemented in a lock-free,
linearizable manner so easily. The reason for this is that they require
global information about the data structure at one specific instance
in time – at first glance, this requires locking or weakening the
contract so that these methods can only be called during a quiescent
state.

It turns out that for Ctries these methods can be computed
efficiently and correctly by relying on a constant time lock-free,
atomic snapshot.

4. Snapshot
While creating a consistent snapshot often seems to require copying
all of the elements of a data structure, this is not generally the
case. Persistent data structures present in functional languages have
operations that return their updated versions and avoid copying all
the elements, typically achieving logarithmic or sometimes even
constant complexity [19].

A persistent hash trie data structure seen in standard libraries
of languages like Scala or Clojure is updated by rewriting the path
from the root of the hash trie to the leaf the key belongs to, leaving
the rest of the trie intact. This idea can be applied to implement
the snapshot. A generation count can be assigned to each I-node.
A snapshot is created by copying the root I-node and setting it to
the new generation. When some update operation detects that an
I-node being read has a generation older than the generation of the
root, it can create a copy of that I-node initialized with the latest
generation and update the parent accordingly – the effect of this is
that after the snapshot is taken, a path from the root to some leaf
is updated only the first time it is accessed, analogous to persistent
data structures. The snapshot is thus an O(1) operation, while all

other operations preserve an O(logn) complexity, albeit with a
larger constant factor.

Still, the snapshot operation will not work as described above,
due to the races between the thread creating the snapshot and
threads that have already read the root I-node with the old genera-
tion and are traversing the Ctrie in order to update it. The problem is
that a CAS that is a linearization point for an insert (e.g. in the line
48) can be preceeded by the snapshot creation – ideally, we want
such a CAS instruction to fail, since the generation of the Ctrie root
has changed. If we used a DCAS instruction instead, we could en-
sure that the write occurs only if the Ctrie root generation remained
the same. However, most platforms do not support an efficient im-
plementation of this instruction yet. On closer inspection, we find
that an RDCSS instruction described by Harris et al. [10] that does a
double compare and a single swap is enough to implement safe up-
dates. The downside of RDCSS is that its software implementation
creates an intermediate descriptor object. While such a construc-
tion is general, due to the overhead of allocating and later garbage
collecting the descriptor, it is not optimal in our case.

We will instead describe a new procedure called generation-
compare-and-swap, or GCAS. This procedure has semantics sim-
ilar to that of the RDCSS, but it does not create the intermediate
object except in the case of failures that occur due to the snapshot
being taken – in this case the number of intermediate objects cre-
ated per snapshot is O(t) where t is the number of threads invoking
some Ctrie operation at the time.

4.1 GCAS procedure
The GCAS procedure has the following preconditions. It takes 3
parameters – an I-node in, and two main nodes old and n. Only
the thread invoking the GCAS procedure may have a reference to
the main node n1. Each main node must contain an additional field
prev that is not accessed by the clients. Each I-node must contain
an additional immutable field gen. The in.main field is only read
using the GCAS_READ procedure.

def GCAS(in, old, n)
r = READ(in.main)
if r = old ∧ in.gen = READ(root).gen {

WRITE(in.main, n)
return >

} else return ⊥

Figure 10. GCAS semantics

Its semantics are equivalent to an atomic block shown in Figure
10. The GCAS is similar to a CAS instruction with the difference that
it also compares if I-node gen field is equal to the gen field of the
Ctrie root. The GCAS instruction is also lock-free. We show the im-
plementation in Figure 11, based on single-word CAS instructions.
The idea is to communicate the intent of replacing the value in the
I-node and check the generation field in the root before committing
to the new value.

The GCAS procedure starts by setting the prev field in the new
main node n to point at main node old, which will be the expected
value for the first CAS. Since the preconditions state that no other
thread sees n at this point, this write is safe. The thread proceeds
by proposing the new value n with a CAS instruction in line 129. If
the CAS fails then GCAS returns ⊥ and the CAS is the linearization
point. If the CAS succeeds (shown in Figure 12B), the new main
node is not yet committed – the generation of the root has to be

1 This is easy to ensure in environments with automatic memory manage-
ment and garbage collection. Otherwise, a technique similar to the one pro-
posed by Herlihy [11] can be used to ensure that a thread does not reuse
objects that have already been recycled.

def GCAS(in, old, n)127
WRITE(n.prev, old)128
if CAS(in.main, old, n) {129

GCAS_Commit(in, n)130
return READ(n.prev) = null131

} else return ⊥132
133

def GCAS_Commit(in, m)134
p = READ(m.prev)135
r = ABORTABLE_READ(root)136
p match {137

case n: MainNode =>138
if (r.gen = in.gen ∧ ¬readonly) {139

if CAS(m.prev, p, null) return m140
else return GCAS_Commit(in, m)141

} else {142
CAS(m.prev, p, new Failed(p))143
return GCAS_Commit(in, READ(in.main))144

}145
case fn: Failed =>146

if CAS(in.main, m, fn.prev) return fn.prev147
else return GCAS_Commit(in, READ(in.main))148

case null => return m149
}150

151
def GCAS_READ(in)152

m = READ(in.main)153
if (READ(m.prev) = null) return m154
else return GCAS_Commit(in, m)155

Figure 11. GCAS operations

compared against the generation of the I-node before committing
the value, so the tail-recursive procedure GCAS_Commit is called
with the parameter m set to the proposed value n. This procedure
reads the previous value of the proposed node and the Ctrie root.
We postpone the explanation of the ABORTABLE_READ procedure
until Section 4.2 – for now it can be considered an ordinary atomic
READ. It then inspects the previous value.

If the previous value is a main node different than null, the root
generation is compared to the I-node generation. If the generations
are equal, the prev field in m must be set to null to complete the
GCAS (Figure 12C). If the CAS in the line 140 fails, the procedure
is repeated. If the generations are not equal, the prev field is set
to a special Failed node whose previous value is set to m.prev
(Figure 12D), and the GCAS_Commit procedure is repeated. This
special node signals that the GCAS has failed and that the I-node
main node must be set back to the previous value.

If the previous value is a failed node, then the main node of the
I-node is set back to the previous value from the failed node by the
CAS in the line 147 (Figure 12D,E). If the CAS is not successful,
the procedure must be repeated after rereading the main node.

If the previous value is null, then some other thread already
checked the generation of the root and committed the node, so the
method just returns the current node.

Once the GCAS_Commit procedure returns, GCAS checks if the
prev field of the proposed node is null, meaning that the value
had been successfully committed at some point.

If the proposed value is rejected, the linearization point is the
CAS in line 147, which sets the main node of an I-node back to
the previous value (this need not necessarily be done by the current
thread). If the proposed value is accepted, the linearization point is
the successful CAS in the line 140 – independent of that CAS was
done by the current thread or some other thread. If the linearization
point is external, we know it happened after GCAS was invoked.
We know that the gen field does not change during the lifetime of
an I-node, so it remains the same until a successful CAS in the line
140. If some other thread replaces the root with a new I-node with a
different gen field after the read in the line 136, then no other thread

IN

A

A

IN

B A

B
IN

B

C

IN

B
FAIL

A

D
IN

A

E

Figure 12. GCAS states

that observed the root change will succeed in writing a failed node,
since we assumed that the CAS in the line 140 succeeded.

To ensure lock-freedom, the GCAS_READ procedure must help
commit if it finds a proposed value. After reading the main node,
it checks if its prev field is set to null. If it is, it can safely return
the node read in line 153 (which is the linearization point) since the
algorithm never changes the prev field of a committed node and
comitting a node sets the prev field to null. If prev is different
than null, the node hasn’t been committed yet, so GCAS_Commit
is called to complete the read. In this case, the value returned by
GCAS_Commit is the result and the linearization points are the same
as with GCAS invoking the GCAS_Commit.

Both GCAS and GCAS_READ are designed to add a non-significant
amount of overhead compared a single CAS instruction and a read,
respectively. In particular, if there are no concurrent modifications,
a GCAS_READ amounts to an atomic read of the node, an atomic
read of its prev field, a comparison and a branch.

4.2 Implementation
We now show how to augment the existing algorithm with snap-
shots using the GCAS and GCAS_READ procedures. We add a prev
field to each type of a main node and a gen field to I-nodes. The
gen field points to generation objects allocated on the heap. We
do not use integers to avoid overflows and we do not use pointers
to the root as generation objects, since that could cause memory
leaks – if we did, the Ctrie could potentially transitively point to all
of its previous snapshot versions. We add an additional parameter
startgen to procedures ilookup, iinsert and iremove. This
parameter contains the generation count of the Ctrie root, which
was read when the operation began.

Next, we replace every occurence of a CAS instruction with
a call to the GCAS procedure. We replace every atomic read with
a call to the GCAS_READ procedure. Whenever we read an I-node
while traversing the trie (lines 12, 37 and 71) we check if the I-
node generation corresponds to startgen. If it does, we proceed
as before. Otherwise, we create a copy of the current C-node such
that all of its I-nodes are copied to the newest generation and use
GCAS to update the main node before revisiting the current I-node
again. This is shown in Figure 13, where the cn refers to the C-
node currently in scope (see Figures 4, 6 and 8). In line 43 we
copy the C-node so that all I-nodes directly below it are at the latest
generation before updating it. The readonly field is used to check
if the Ctrie is read-only - we explain this shortly. Finally, we add
a check to the cleanParent procedure, which aborts if startgen
is different than the gen field of the I-node.

All GCAS invocations fail if the generation of the Ctrie root
changes and these failures cause the basic operations to be restarted.
Since the root is read once again after restarting, we are guaran-
teed to restart the basic operation with the updated value of the
startgen parameter.

...
case sin: INode =>

if (startgen eq in.gen)
return iinsert(sin, k, v, lev + W, i, startgen)

else
if (GCAS(cn, atGen(cn, startgen)))

iinsert(i, k, v, lev, parent, startgen)
else return RESTART

...
def atGen(n, ngen)156

n match {157
case cn: CNode => cn.mapped(atGen(_, ngen))158
case in: INode => new INode(GCAS_READ(in), ngen)159
case sn: SNode => sn160

}161

Figure 13. I-node renewal

One might be tempted to implement the snapshot operation by
simply using a CAS instruction to change the root reference of
a Ctrie to point to an I-node with a new generation. However, the
snapshot operation can copy and replace the root I-node only if its
main node does not change between the copy and the replacement.

We use the RDCSS procedure described by Harris et al. [10],
which works in a similar way as GCAS, but proposes the new
value by creating an intermediate descriptor object, which points
to the previous and the proposed value. We do not see the cost of
allocating it as critical since we expect a snapshot to occur much
less often than the other update operations. We specialize RDCSS –
the first compare is on the root and the second compare is always
on the main node of the old value of the root. GCAS_READ is used
to read the main node of the old value of the root. The semantics
correspond to the atomic block shown in Figure 14.

def RDCSS(ov, ovmain, nv)
r = READ(root)
if r = ov ∧ GCAS_READ(ov.main) = ovmain {

WRITE(root, nv)
return >

} else return ⊥

Figure 14. Modified RDCSS semantics

To create a snapshot of the Ctrie the root I-node is read. Its main
node is read next. The RDCSS procedure is called, which replaces
the old root I-node with its new generation copy. If the RDCSS is
successful, a new Ctrie is returned with the copy of the root I-
node set to yet another new generation. Otherwise, the snapshot
operation is restarted.

def snapshot()162
r = RDCSS_READ()163
expmain = GCAS_READ(r)164
if RDCSS(r, expmain, new INode(expmain, new Gen))165

return new Ctrie {166
root = new INode(expmain, new Gen)167
readonly = ⊥168

}169
else return snapshot()170

Figure 15. Snapshot operation

An observant reader will notice that if two threads simultane-
ously start a GCAS on the root I-node and an RDCSS on the root
field of the Ctrie, the algorithm will deadlock2 since both locations
contain the proposed value and read the other location before com-
mitting. To avoid this, one of the operations has to have a higher

2 Actually, it will cause a stack overflow in the current implementation.

priority. This is the reason for the ABORTABLE_READ in line 136 in
Figure 11 – it is a modification of the RDCSS_READ that writes back
the old value to the root field if it finds the proposal descriptor there,
causing the snapshot to be restarted. The algorithm remains lock-
free, since the snapshot reads the main node in the root I-node
before restarting, thus having to commit the proposed main node.

Since both the original Ctrie and the snapshot have a root with
a new generation, both Ctries will have to rebuild paths from the
root to the leaf being updated. When computing the size of the
Ctrie or iterating the elements, we know that the snapshot will not
be modified, so updating paths from the root to the leaf induces
an unnecessary overhead. To accomodate this we implement the
readOnlySnapshot procedure that returns a read only snapshot.
The only difference with respect to the snapshot procedure in
Figure 15 is that the returned Ctrie has the old root r (line 167)
and the readonly field is set to >. The readonly field mentioned
earlier in Figures 3, 11 and 13 guarantees that no writes to I-nodes
occur if it is set to >. This means that paths from the root to
the leaf being read are not rewritten in read-only Ctries. The rule
also applies to T-nodes – instead of trying to clean the Ctrie by
resurrecting the I-node above the T-node, the lookup in a read-only
Ctrie treats the T-node as if it were an S-node. Furthermore, if the
GCAS_READ procedure tries to read from an I-node in which a value
is proposed, it will abort the write by creating a failed node and
then writing the old value back (line 139).

def iterator()171
if readonly return new Iterator(RDCSS_READ(root))172
else return readOnlySnapshot().iterator()173

174
def size()175

sz, it = 0, iterator()176
while it.hasNext sz += 1177
return sz178

179
def clear()180

r = RDCSS_READ()181
expmain = GCAS_READ(r)182
if ¬RDCSS(r, expmain, new INode(new Gen)) clear()183

Figure 16. Snapshot-based operations

Finally, we show how to implement snapshot-based operations
in Figure 16. The size operation can be optimized further by
caching the size information in main nodes of a read-only Ctrie
– this reduces the amortized complexity of the size operation to
O(1) because the size computation is amortized across the update
operations that occurred since the last snapshot. For reasons of
space, we do not go into details nor do we show the entire iterator
implementation, which is trivial once a snapshot is obtained.

5. Evaluation
We performed experimental measurements on a JDK6 configu-
ration with a quad-core 2.67 GHz Intel i7 processor with 8 hy-
perthreads, a JDK6 configuration with an 8-core 1.165 GHz Sun
UltraSPARC-T2 processor with 64 hyperthreads and a JDK7 con-
figuration with four 8-core Intel Xeon 2.27 GHz processors with a
total of 64 hyperthreads. The first configuration has a single mul-
ticore processor, the second has a single multicore processor, but a
different architecture and the third has several multicore proces-
sors on one motherboard. We followed established performance
measurement methodologies [9]. We compared the performance of
the Ctrie data structure against the ConcurrentHashMap and the
ConcurrentSkipListMap from the Java standard library, as well
as the Cliff Click’s non-blocking concurrent hash map implemen-
tation [5]. All of the benchmarks show the number of threads used

on the x-axis and the throughput on the y-axis. In all experiments,
the Ctrie supports the snapshot operation.

The first benchmark called insert starts with an empty data
structure and inserts N = 1000000 entries into the data structure.
The work of inserting the elements is divided equally between
P threads, where P varies between 1 and the maximum number
of hyperthreads on the configuration (x-axis). The y-axis shows
throughput – the number of times the benchmark is repeated per
second. This benchmark is designed to test the scalability of the
resizing, since the data structure is initially empty. Data structures
like hash tables, which have a resize phase, do no seem to be very
scalable for this particular use-case, as shown in Figure 17. On the
Sun UltraSPARC-T2 (Figure 18), the Java concurrent hash map
scales for up to 4 threads. Cliff Click’s nonblocking hash table
scales, but the cost of the resize is so high that this is not visible
on the graph. Concurrent skip lists scale well in this test, but Ctries
are a clear winner here since they achieve an almost linear speedup
for up to 32 threads and an additional speedup as the number of
threads reaches 64.

The benchmark lookup does N = 1000000 lookups on a
previously created data structure with N elements. The work of
looking up all the elements is divided between P threads, where P
varies as before. Concurrent hash tables perform especially well in
this benchmark on all three configurations – the lookup operation
mostly amounts to an array read, so the hash tables are 2− 3 times
faster than Ctries. Ctries, in turn, are faster than skip lists due to a
lower number of indirections, resulting in fewer cache misses.

The remove benchmark starts with a previously created data
structure with N = 1000000 elements. It removes all of the
elements from the data structure. The work of removing all the
elements is divided between P threads, where P varies. On the
quad-core processor (Figure 17) both the Java concurrent skip list
and the concurrent hash table scale, but not as fast as Ctries or
the Cliff Click’s nonblocking hash table. On the UltraSPARC-T2
configuration (Figure 18), the nonblocking hash table is even up
to 2.5 times faster than Ctries. However, we should point out that
the nonblocking hash table does not perform compression – once
the underlying table is resized to a certain size, the memory is
used regardless of whether the elements are removed. This can be
a problem for long running applications and applications using a
greater number of concurrent data structures.

The next three benchmarks called 90 − 9 − 1, 80 − 15 − 5
and 60 − 30 − 10 show the performance of the data structures
when the operations are invoked in the respective ratio. Starting
from an empty data structure, a total of N = 1000000 invocations
are done. The work is divided equally among P threads. For the
90− 9− 1 ratio the Java concurrent hash table works very well on
both the quad-core configuration and the UltraSPARC-T2. For the
60 − 30 − 10 ratio Ctries seem to do as well as the nonblocking
hash table. Interestingly, Ctries seem to outperform the other data
structures in all three tests on the 4x 8-core i7 (Figure 19).

The preallocated−5−4−1 benchmark in Figure 18 proceeds
exactly as the previous three benchmarks with the difference that
it starts with a data structure that contains all the elements. The
consequence is that the hash tables do not have to be resized – this is
why the Java concurrent hash table performs better for P up to 16,
but suffers a performance degradation for bigger P . For P > 32
Ctries seem to do better. In this benchmarks, the nonblocking hash
table was 3 times faster than the other data structures, so it was
excluded from the graph. For applications where the data structure
size is known in advance this may be an ideal solution – for others,
preallocating may result in a waste of memory.

To evaluate snapshot performance, we do 2 kinds of bench-
marks. The snapshot−remove benchmark in Figure 20 is similar
to the remove benchmark – it measures the performance of remov-

ing all the elements from a snapshot of a Ctrie and compares that
time to removing all the elements from an ordinary Ctrie. On both
i7 configurations (Figures 17 and 19), removing from a snapshot is
up to 50% slower, but scales in the same way as removing from an
ordinary Ctrie. On the UltraSPARC-T2 configuration (Figure 18),
this gap is much smaller. The benchmark snapshot − lookup in
Figure 21 is similar to the last one, with the difference that all the
elements are looked up once instead of being removed. Looking up
elements in the snapshot is slower, since the Ctrie needs to be fully
reevaluated. Here, the gap is somewhat greater on the UltraSPARC-
T2 configuration and smaller on the i7 configurations.

Finally, the PageRank benchmark in Figure 22 compares the
performance of iterating parts of the snapshot in parallel against
the performance of filtering out the page set in each iteration as ex-
plained in Section 2. The snapshot-based implementation is much
faster on the i7 configurations, whereas the difference is not that
much pronounced on the UltraSPARC-T2.

2 4 6 8

0

10

20

insert (#/s vs threads)

2 4 6 8
0

20

40

60

lookup (#/s vs threads)

2 4 6 8

5

10

15

20

remove (#/s vs threads)

2 4 6 8

5

10

15

90-9-1 (#/s vs threads)

2 4 6 8
0

5

10

80-15-5 (#/s vs threads)

2 4 6 8

0

5

10

15

60-30-10 (#/s vs threads)

Ctrie
◦ ConcurrentSkipListMap

× ConcurrentHashMap

• Nonblocking hash table

Figure 17. Basic operations, quad-core i7

0 20 40 60

0

5

10

15

insert (#/s vs threads)

0 20 40 60

0

20

40

lookup (#/s vs threads)

0 20 40 60

0

10

20

remove (#/s vs threads)

0 20 40 60

0

20

40

90-9-1 (#/s vs threads)

0 20 40 60

0

20

40

80-15-5 (#/s vs threads)

0 20 40 60

0

5

10

15

prealloc. 5-4-1 (#/s vs threads)

Ctrie
◦ ConcurrentSkipListMap

× ConcurrentHashMap

• Nonblocking hash table

Figure 18. Basic operations, 64 hyperthread UltraSPARC-T2

0 20 40 60

0

10

20

30

40

insert (#/s vs threads)

0 20 40 60
0

20

40

60

80

lookup (#/s vs threads)

0 20 40 60

10

20

30

remove (#/s vs threads)

0 20 40 60

0

20

40

60

90-9-1 (#/s vs threads)

0 20 40 60

0

20

40

80-15-5 (#/s vs threads)

0 20 40 60

0

20

40

60-30-10 (#/s vs threads)

Ctrie
◦ ConcurrentSkipListMap

× ConcurrentHashMap

• Nonblocking hash table

Figure 19. Basic operations, 4x 8-core i7

2 4 6 8

5

10

15

20

4-core i7 (#/s vs threads)

no snapshot
snapshot

0 20 40 60
0

5

10

15

20

UltraSPARC-T2 (#/s vs threads)

no snapshot
snapshot

0 20 40 60
0

10

20

4x 8-core i7 (#/s vs threads)

no snapshot
snapshot

Figure 20. Remove vs. snapshot remove

2 4 6 8

10

20

30

4-core i7 (#/s vs threads)

no snapshot
snapshot

0 20 40 60
0

10

20

30

40

UltraSPARC-T2 (#/s vs threads)

no snapshot
snapshot

0 20 40 60

20

40

4x 8-core i7 (#/s vs threads)

no snapshot
snapshot

Figure 21. Lookup vs. snapshot lookup

6. Related work
Moir and Shavit give an overview of concurrent data structures
[18]. A lot of research was done on concurrent lists, queues and
concurrent priority queues. Linked lists are an inefficient imple-
mentation of a map abstraction because they do not scale well and
the latter two do not support the basic map operations.

Hash tables are resizeable arrays of buckets. Each bucket holds
some number of elements that is expected to be constant. The
constant number of elements per bucket requires resizing the data
structure as more elements are added – sequential hash tables
amortize the resizing cost the table over other operations [6]. While
the individual concurrent hash table operations such as insertion
or removal can be performed in a lock-free manner as shown by
Maged [17], resizing is typically implemented with a global lock.
Although the cost of resizing is amortized against operations by

2 4 6 8
0.2

0.4

0.6

0.8

4-core i7 (#/s vs threads)

Ctrie
filter

0 20 40 60

0.1

0.2

UltraSPARC-T2 (#/s vs threads)

Ctrie
filter

0 5 10 15

5 · 10−2

0.1

4x 8-core i7 (#/s vs threads)

Ctrie
filter

Figure 22. Pagerank

one thread, this approach does not guarantee horizontal scalability.
Lea developed an extensible hash algorithm that allows concurrent
searches during the resizing phase, but not concurrent insertions
and removals [14]. Shalev and Shavit give an innovative approach
to resizing – split-ordered lists keep a table of hints into a single
linked list in a way that does not require rearranging the elements
of the linked list when resizing the table [25].

Skip lists store elements in a linked list. There are multiple lev-
els of linked lists that allow logarithmic time insertions, removals
and lookups. Skip lists were originally invented by Pugh [23]. Pugh
proposed concurrent skip lists that achieve synchronization using
locks [22]. Concurrent non-blocking skip lists were later imple-
mented by Lev, Herlihy, Luchangco and Shavit [12] and Lea [14].

Concurrent binary search trees were proposed by Kung and
Lehman [13] – their implementation uses a constant number of
locks at a time that exclude other insertion and removal operations,
while lookups can proceed concurrently. Bronson et al. presented
a scalable concurrent implementation of an AVL tree based on
transactional memory mechanisms that require a fixed number of
locks to perform deletions [4]. Recently, the first non-blocking
implementation of a binary search tree was proposed [7].

Tries were originally proposed by Brandais [3] and Fredkin
[8]. Trie hashing was applied to accessing files stored on the disk
by Litwin [15]. Litwin, Sagiv and Vidyasankar implemented trie
hashing in a concurrent setting [16], however, they did so by using
mutual exclusion locks. Hash array mapped trees, or hash tries,
are tries for shared-memory described by Bagwell [2]. To our
knowledge, there is no nonblocking concurrent implementation of
hash tries prior to our work. A correctness proof for the basic
operations is presented as part of our tech report on the version of
concurrent hash tries that do not support lock-free snapshots [20].

A persistent data structure is a data structure that preserves
its previous version when being modified. Efficient persistent data
structures are in use today that re-evaluate only a small part of the
data structure on modification, thus typically achieving logarith-
mic, amortized constant and even constant time bounds for their
operations. Okasaki presents an overview of persistent data struc-
tures [19]. Persistent hash tries have been introduced in standard
libraries of languages like Scala [24] and Clojure.

RDCSS and DCAS software implementations have been described
by Harris [10]. In the past, DCAS has been used to implement lock-
free concurrent deques [1].

7. Conclusion
We described a concurrent implementation of the hash trie data
structure with lock-free update operations. We described an O(1)
lock-free, atomic snapshot operation that allows efficient traversal,
amortized O(1) size retrieval and an O(1) clear operation. It is ap-
parent that a hardware supported DCAS instruction would simplify
the design of both update and the snapshot operations.

As a future work direction, we postulate that the GCAS ap-
proach can be applied to other data structures – given a CAS-based

concurrent data structure and its persistent sequential version, a
lock-free, atomic snapshot operation can be implemented by adding
a generation counter fields to nodes in the data structure and replac-
ing the CAS instructions that are linearization points with GCAS
instructions. This approach appears to be particularly applicable to
tree-based data structures.

Acknowledgments
We would like to express our thanks to prof. Doug Lea at the State
University of New York at Oswego for his help. We would also
like to thank Eva Darulova and Tihomir Gvero at the EPFL for the
useful discussions we’ve lead.

References
[1] O. Agesen, D. L. Detlefs, C. H. Flood, A. Garthwaite, P. A. Martin , N.

Shavit , G. L. Steele Jr.: DCAS-Based Concurrent Deques. SPAA, 2000.
[2] P. Bagwell: Ideal Hash Trees. EPFL Technical Report, 2001.
[3] R. Brandais: File searching using variable length keys. Proceedings of

Western Joint Computer Conference, 1959.
[4] N. G. Bronson, J. Casper, H. Chafi, K. Olukotun: A Practical

Concurrent Binary Search Tree. Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2009.

[5] C. Click: Towards a Scalable Non-Blocking Coding Style.
http://www.azulsystems.com/events/javaone_2007/2007_LockFreeHash.pdf

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: Introduction to
Algorithms, 2nd Edition. The MIT Press, 2001.

[7] F. Ellen, P. Fatourou, E. Ruppert, F. van Breugel: Non-blocking binary
search trees. PODC, 2010.

[8] E. Fredkin: Trie memory. Communications of the ACM, 1960.
[9] A. Georges, D. Buytaert, L. Eeckhout: Statistically Rigorous Java

Performance Evaluation. OOPSLA, 2007.
[10] T. L. Harris, K. Fraser, I. A. Pratt: A Practical Multi-word Compare-

and-Swap Operation. DISC, 2002.
[11] M. Herlihy: A Methodology for Implementing Highly Concurrent

Data Structures. PPOPP, 1990.
[12] M. Herlihy, Y. Lev, V. Luchangco, N. Shavit: A Provably Correct

Scalable Concurrent Skip List. OPODIS, 2006.
[13] H. Kung, P. Lehman: Concurrent manipulation of binary search trees.

ACM Transactions on Database Systems (TODS), vol. 5, issue 3, 1980.
[14] Doug Lea’s Home Page: http://gee.cs.oswego.edu/
[15] W. Litwin: Trie Hashing. Proceedings of the 1981 ACM SIGMOD

international conference on Management of data, 1981.
[16] W. Litwin, Y. Sagiv, K. Vidyasankar: Concurrency and Trie Hashing.

Acta Informatica archive, vol. 26, issue 7, 1989.
[17] Maged M. Michael: High Performance Dynamic Lock-Free Hash

Tables and List-Based Sets. SPAA, 2002.
[18] M. Moir, N. Shavit: Concurrent data structures. Handbook of Data

Structures and Applications, Chapman and Hall, 2004.
[19] C. Okasaki: Purely Functional Data Structures. Cambridge University

Press, 1999.
[20] A. Prokopec, P. Bagwell, M. Odersky: Cache-Aware Lock-Free

Concurrent Hash Tries. EPFL Technical Report, 2011.
[21] A. Prokopec, P. Bagwell, T. Rompf, M. Odersky, A Generic Parallel

Collection Framework. Euro-Par 2011 Parallel Processing, 2011.
[22] William Pugh: Concurrent Maintenance of Skip Lists. UM Technical

Report, 1990.
[23] William Pugh: Skip Lists: A Probabilistic Alternative to Balanced

Trees. Communications ACM, volume 33, 1990.
[24] The Scala Programming Language Homepage. http://www.scala-

lang.org/
[25] O. Shalev, N. Shavit: Split-Ordered Lists: Lock-Free Extensible Hash

Tables. Journal of the ACM, vol. 53., no. 3., 2006.

