
Efficient Lock-Free Removing and Compaction
for the Cache-Trie Data Structure

Aleksandar Prokopec1

Oracle Labs

Abstract. The recently proposed cache-trie data structure improves the
performance of lock-free Ctries by maintaining an auxiliary data struc-
ture called a cache. The cache allows basic operations to run in expected
O(1), instead of the previous O(logn) bound. While earlier work showed
that cache-tries improve inserts and lookups by 1.5 − 5× on standard
workloads, the remove operation was not previously examined. One of
the main challenges of remove is to compact the trie – removing the
elements should recycle the unused parts of the data structure.
In this paper, we describe a new non-compacting and two new compact-
ing non-blocking variants of the remove operation for cache-tries. We
ensure that each remove implementation runs in expected O(1) time.
Compared to standard Ctries, performance improvements range between
10% and 35%, depending on the size of the data structure, the parallelism
level and the hardware architecture.

1 Introduction

Cache-tries [28] improve the running time of traditional lock-free hash tries [32]
with a quiescently consistent auxiliary data structure called a cache. While cache-
trie lookup and insert were shown to run in expected O(1) time [26], original
work on cache-tries gives almost no attention to removing elements.

This paper shows that the lock-free cache-trie remove operation also runs in
expected O(1) time. This operation takes care to compact the cache-trie – the
memory management system is allowed to recycle the unused parts of the data
structure. The main idea in compaction is to, after removing, speculatively detect
if the affected node can be compacted, and then freeze it. Freezing facilitates
compaction by atomically preventing subsequent updates to the candidate node.

After summarizing the earlier results and explaining how cache-tries work in
Section 2, this paper brings forth the following contributions:

– A description and an implementation of a lock-free remove operation for
cache-tries, both with and without compaction (Section 3).

– An optimization that brings a further 5−15% improvement on the expected
execution time (Section 3.2).

– A performance evaluation on two architectures, against three similar concur-
rent data structures. We find that cache-trie removes improve the execution
time of standard lock-free hash tries [34] by 10 − 35% and that, without
compaction, removing can additionally be made 30−65% faster (Section 4).

class SNode:
val key: KeyType
val value: ValueType
var txn: Any

type ANode = Array<Any>

class FNode:
val frozen: Any

val NoTxn
val FVNode
val FSNode

class CacheTrie:
val root = new ANode(16)
var cacheHead: Cache = nil

type Cache = Array<Any>

Fig. 1. Cache trie data types

Finally, Section 5 presents the related work, and Section 6 concludes.

2 Overview of Cache-Tries

A lock-free cache-trie [28] is a special type of a hash trie data structure [3, 4,
32]. A newly created cache-trie consists of a single empty array, which has the
length 16, since nodes are 16-way in our implementation1. Inserting a key works
similar to a hash table – the 4 lowest hash code bits are used to determine the
position in the table. Consider the following figure:

root

11010001

00110100 10000100

root

11010001 00110100

root

11010001

In the first figure above, a key with the hash code 110100012 occupies the
index 110. The key with the hash code 001101002 occupies the index 410 in the
second figure. In the third figure, keys 001101002 and 100001002 collide at the
index 410. The collision is resolved by creating another array, and using the higher
hash code bits to map the keys to indices 310 and 810. Collision resolution repeats
recursively until running out of hash bits, and relies on a linked list thereafter.

...

root

...

...
...
...

 ...
...

 ...
... ANode

SNode

Data types. The aforementioned array nodes are
modeled with the ANode type, shown in Figure 1.
ANode is defined as an array of pointers of Any type.
The SNode type models the leaf nodes. Each leaf holds
a key and the value it is mapped to. Additionally,
SNode objects have a mutable field txn, which is used by the mutating threads
to announce that they are about to replace the respective SNode.

...

NoTxn

...

k v

NoTxnk'v'

CAS ...
...

k v

NoTxnk'v'

CAS
1 2 To insert a key into the cache-trie in a lock-free

manner, a thread finds the appropriate ANode, and
atomically replaces a nil array entry with a new
SNode, using a compare-and-swap (CAS) instruction.
A new SNode has the txn field set to a special value

NoTxn. To replace an existing SNode, a mutation operation first announces the
new value by CASing it into the txn field, as shown on the left. If the first CAS

is successful, the corresponding array entry is replaced with a second CAS.

1 Other arities are possible, but we found 16 to work well, because the node fits into
a 64 byte cache-line when JVM’s compressed object pointers are used.

Freezing. Mutation operations must sometimes prevent all future modifi-
cations to specific subtries. This is achieved with freezing [6, 23], which ensures
that all subsequent CAS invocations on the frozen node fail.

 ..
..

 ..
..

 ..
..

 ..
..

1
..
..

..

..

FV

FS

FV
F

2 3

FS

In figure 1© on the right, a thread selects an ANode

that contains an SNode, a nil entry, and a child
ANode. In figure 2©, the thread CASed an FSNode value
into the txn field of the SNode, and replaced nil with
an FVNode value. To freeze the child ANode, the thread
first writes an FNode value into the corresponding entry, as shown in Figure 3©,
and then recursively freezes the child. Note that, once freezing starts, it even-
tually completes – the reason is that a thread that observes an ongoing freeze
operation will cooperatively complete the freeze. In addition, any operation that
starts after the freeze started will notice the freeze if it works on the respective
subtrie, and ongoing operations do only finitely many changes. The linearization
point is the CAS that freezes the last non-frozen node in the respective subtrie.

Invariants. All operations maintain the following invariants: (1) If an SNode

with a hash code h is reachable from the cache-trie root, then it is only reachable

with a chain of pointers a0
a0[p0]−→ [u0 −→]a1

a1[p1]−→ [u1 −→] . . .
an[pn]−→ [un −→]sn+1

starting from the a0 =root, such that p0p1 . . . pn is a prefix of h (and parts in
the [·] brackets are optional). Here, each ai is an ANode¸ si is an SNode, and ui

is any other type of node. (2) If a node is not reachable from the root, then it
is frozen. (3) Once frozen, a node is not subsequently modified.

cacheHead

...

...
...
...

 ..
 ..

 ..
 ..

 ..
 ..

...

...

......

Cache. Most of the previous description applies
to standard lock-free hash trie variants [31, 32, 34, 1,
2]. In these hash tries, the search time grows loga-
rithmically with the number of keys in the hash trie.
A cache-trie additionally maintains an auxiliary data

structure called a cache, shown on the left, which speeds up the node searches.
The cache is a list of C arrays, starting with the field cacheHead. Each array
corresponds to a level `, 0 ≤ ` < 4·C, and is effectively a concatenation of the en-
tries of the ANodes at level ` (including any missing ones). Levels are counted in
multiples of 4, i.e. 0, 4, 8, 12, . . . and so on. A special entry in each array contains
a pointer to the next array in this list. The list is sorted, going from the largest
arrays (i.e. deepest trie levels) to the smallest. The cache entries are populated
lazily, so they do not always precisely match the trie. However, when they are
present, they allow skipping a non-constant number of cache-trie levels.

Slow path and fast path. Consider how to implement a key lookup. The
slow lookup relies on the aforementioned invariant (1) – it follows the path from
the root to the unique leaf for that key. The fast path lookup attempts to first
find the key in the cache, and then continues the search from some node deep
in the cache-trie. If the cache entry is empty, the search reverts to the slow path
from the root. Similarly, if the cache contains a frozen entry, then the respective
node is potentially unreachable, and must be ignored (recall the invariants (2)
and (3)). The precise pseudocode of lookup was shown in earlier work [28].

When the cache is appropriately positioned and populated, the slow path
runs less frequently. When it does occasionally occur, the slow path updates the
relevant cache entry, and records a miss. When sufficiently many misses occur,
a sampling pass inspects the trie and updates the cache depth if necessary.

Performance. By analyzing the key distribution across levels [26], it was
shown that the expected running time of the lookup and insert operations is
O(1). Performance evaluations on typical sizes (≈1M elements) showed that
cache-trie lookup performance is around 3× better when compared against other
hash tries, and insertion is around 33% faster [28]. Compared to the JDK 8
ConcurrentHashMap [14], cache-tries have faster insertion, but 1.5− 2× slower
lookup.

3 Remove Operation

Depending on the implementation, a remove operation may or may not compact
the cache-trie. Compaction recycles the unused parts of the data structure, and
ensures that the memory footprint corresponds to the actual number of keys.
For example, the JDK ConcurrentHashMap implementation [14] does not recycle
memory, so its footprint corresponds to the maximum number of keys present
at any point during its lifetime. As a benefit, removing without compaction is
faster because no time is spent in housekeeping. Next, we will show one non-
compacting lock-free remove operation, and two compacting variants.

3.1 Basic Implementation

 ..
 ..
 ..
 ..

 ..
 ..lev-4

lev

lev+4

prev

cur

The basic remove implementation does not compact the cache-
trie. If the specified key exists, it is atomically removed. Oth-
erwise, the remove operation leaves the trie intact.

Summary. We first consider the slow path version. At
every step, the search is anchored at an array node cur at
level lev (the parent node prev is at lev-4). The search calculates the index
in cur and reads the respective child pointer. The child is either non-existing
(nil), or another array node, or an SNode. For nil, the search terminates, since
the key is not present, by invariant (1). For SNode, the search checks if the keys
match, and then attempts to remove the SNode. Otherwise, the search resumes
recursively. If the search sees a frozen node, it restarts by returning false.

The fast path version aims to start the search from an ANode within the trie,
so it starts by reading the cacheHead field, which points to the deepest trie
level. If the respective entry is not an ANode, this is retried at the next (higher)
cache level, until reaching the root of the cache-trie.

Implementation. The remove subroutine, shown in Figure 2, implements
the slow path of the remove operation. The subroutine takes the key k, its hash
code h, the current level lev, and the current and previous node cur and prev.
The cLev is the cache level at which the search was entered. The subroutine
returns true if successful, and false if it must be retried.

1def remove(k: KeyType, h: Int, lev: Int,
2 cur: ANode, prev: ANode, cLev: Int) =
3 val pos = (h >>> lev)�(cur.length-1)
4 val ch = READ(cur[pos])
5 if ch == nil: return false
6 else if ch ∈ ANode:
7 return remove(k,h,lev+4,ch,cur,cLev)
8 else if ch ∈ SNode:
9 if lev ≥ cLev + 8:

10 recordMiss()
11 val txn = READ(ch.txn)
12 if txn == NoTxn:
13 if ch.key == k:
14 if CAS(ch.txn,txn,nil):
15 CAS(cur[pos],ch,nil)
16 return true
17 else:
18 return
19 remove(k,h,lev,cur,prev,cLev)
20 else: return true
21 else if txn == FSNode:
22 return false
23 else:
24 CAS(cur[pos],ch,txn)
25 return
26 remove(k,h,lev,cur,prev,cLev)
27 else:
28 return false

29def remove(k: KeyType) =
30 val h = hash(k)
31 if ¬remove(k,h,0,root,nil,0):
32 remove(k)
33
34def fastRemove(k: KeyType) =
35 val h = hash(k)
36 var cache = READ(cacheHead)
37 if cache == nil:
38 return remove(k)
39 val topLev =
40 trailingZeros(cache.length-1)
41 while cache 6= nil:
42 val pos = 1+(h�(cache.length-2))
43 val cur = READ(cache[pos])
44 val lev =
45 trailingZeros(cache.length-1)
46 cache = READ(cache[0])
47 if cur ∈ ANode:
48 if lev < topLev-4:
49 recordMiss()
50 if remove(k,h,lev,cur,nil,lev):
51 return true
52 else:
53 continue
54 else:
55 continue
56 return remove(k)

Fig. 2. Remove operations

The array index pos is calculated in line 3, and the child ch is read in line 4.
The nil and the ANode case are as described above. The SNode case first checks
if the cache is misaligned – if the current trie level is sufficiently far away from
cache level cLev (lines 9 and 10), it increments the cache miss counter by calling
the recordMiss subroutine [28]. After that, the subroutine checks if the keys
match, and performs the two-step SNode replacement described in Section 2.

..

..
 ..
 ..
 ..
 ..

topLev-4

topLev

topLev-4
..
..topLev

cacheHead

 ..
 ..topLev-8

By convention, the cache level corresponds
to the level of the nodes it points to. The figure
on the left shows three trie levels topLev-8,
topLev-4 and topLev. On the right, the deep-
est cache level is at topLev, and the one above

is at topLev-4. Under this convention, the level ` of a cache node is the number
of trailing zeros of S − 1, where S is the cache length (note: the zeroth entry
in the cache is a pointer to the next cache level). For example, the cache with
S = 17 elements is at level 4 – note that its pointees are likewise at level 4. Sep-
arately, the index in the cache for the hash code h is determined by the ` lowest
bits, i.e. with the expression h� (S − 2), where � is the bitwise-and operation.

The fastRemove subroutine in Figure 2 iteratively traverses the cache levels
until a call to remove in line 50 is successful. If the current cache level lev is less
than topLev-4, where topLev is the deepest cache level, a cache miss is recorded
in line 49. Note that using the cache level topLev-4 is not a miss, because the
deepest cache node can point to an SNode, indicating that the corresponding
ANode must be looked up one level above, as shown in the previous figure.

1def remove(k: KeyType, h: Int, lev: Int,
2 cur: ANode, prev: ANode, cLev: Int) =
...

6 else if old ∈ ANode:
7 val status =
8 remove(k,h,lev+4,old,cur,cLev)
9 if status ∧ prev 6= nil:

10 if isCompactible(cur):
11 compactNode(cur,prev,h,lev)
12 return status

...
14 if CAS(ch.txn,txn,nil):
15 CAS(cur[pos],ch,nil)
16 if isCompactible(cur):
17 compactNode(cur,prev,h,lev)
18 return true

...
26 remove(k,h,lev,cur,prev,cLev)
27 else if old ∈ XNode:
28 completeCompaction(xn)
29 return false

...

34def fastRemove(k: KeyType) =
35 val h = hash(k)
36 var cache = READ(cacheHead)
37 if cache == nil:
38 return remove(k)
39 val topLev =
40 trailingZeros(cache.length-1)
41 while cache 6= nil:
42 val pos = 1+(h�(cache.length-2))
43 val cur = READ(cache[pos])
44 val lev =
45 trailingZeros(cache.length-1)

...
50 if remove(k,h,lev,cur,nil,lev):
51 if isCompactible(cur):
52 compactUp(h,lev)
53 return true
54 else:
55 continue
56 else:
57 continue

...

Fig. 3. Adding compaction to remove operations

3.2 Cache-Trie Compaction

1 2 3

 ..
 ..

 ..
 ..

 ..
 ..

 ..
 ..

 ..
 ..

Summary. To compact the cache-trie, the re-
move operation must ensure that there is no
ANode that has at most one SNode child. In
the figure 1© on the right, the rightmost SNode
must be removed. Removing it in 2© produces
an ANode that has a single SNode child. The slow path remove has the parent
pointer prev, so it can compact the ANode into its parent, as shown in 3©.

..

..

 ..
 ..

..

..

 ..
 ..

..

..

 ..
 ..

..

..

 ..
 ..

trie cache trie cache However, the fast path version does not
track the current node’s parent, preventing it
from immediately compacting. To discover the
parent, the fastRemove operation must read
the parent ANode from the cache nodes at the

higher levels if it detects that the current node is compactible.

Consider the first figure on the left, in which the remove subroutine produced
an ANode with a single remaining SNode. This ANode must be compacted, but
the prev parameter is nil, so remove only “sees” the part in the green frame.
In the second figure, the fastRemove operation reads the parent from the next
level of the cache, which allows it to perform the compaction.

Implementation. Figure 3 shows the difference between the non-compacting
and the compacting remove implementation. In the slow path remove subrou-
tine, after successfully announcing that the SNode will be removed in line 14, the
isCompactible call checks the current ANode, and calls compactNode to com-
pact the current node if necessary. As we show briefly, compaction introduces a
new node type XNode to mark the compact regions. If any operation observes
an XNode, then it must first help complete the compaction, as shown in line 27.

The fastRemove subroutine checks if the current node is compactible as soon
as its call to remove returns true. If so, the compactUp call in line 52 iteratively
compacts the path to the root until no further compaction is possible.

class XNode:
val prev: Anode
val ppos: Int
val cur: ANode
val hash: Int
val lev: Int

Figure 4 shows the pseudocode of the different com-
paction operations. Compaction of a single node is done
in compactNode, which starts by replacing the candidate
node with a special XNode value. The XNode contains the
pointer to the parent node prev, the current node cur, the
position ppos of the current node in its parent, and the re-
spective hash code and the current level. Threads that observe this node are
obliged to help compaction. The compactNode then calls freeze on the candi-
date node to prevent further updates (freezing is described in Section 2). Finally,
the current ANode can be replaced in its parent with the compacted version.

 ..
 ..

 ..
 ..

 ..
 ..

 ..
 .. XN

T1:CAS

 ..
 .. XN
 ..
 ..

T2:CAS
T1:freeze

 ..
 .. XN

 ..
 .. XN
 ..
 ..

 ..
 ..
 ..
 ..

 ..
 ..

 ..
 ..

T1:CAS

T1:CAS

Example. In the preceding figure, the thread T1 inserts the XNode and starts
freezing the candidate. Before freezing completes, another thread T2 attempts
to modify the candidate by inserting another SNode. In the first outcome, T1
succeeds in freezing the node before T2 manages to complete its update, and
compaction succeeds. In the second outcome, T2 inserts the key. After freezing,
T1 sees two keys in the candidate node, so it just swaps in a copy of the node.

The compactUp and compactDown subroutines are used in the fast path.
These operations ascend the cache-trie on a path that corresponds to some hash
code h, and invoke compaction until reaching a non-compactible node.

1 2 3

 ..
 ..

 ..
 ..2 2

 ..
 .. 1

CAS CAS
Counter optimization. Every successful

remove operation invokes isCompactible to
traverse all the entries in the candidate node,
and check if the node can be potentially com-
pacted. This check can be made more efficient by adding a counter into each
ANode, which tracks the number of non-nil entries. This counter is updated
after the linearization point, as shown in the figure above, and it is quiescently
consistent – its value is guaranteed to be correct after the operations complete.

3.3 Correctness Discussion

For space reasons, we omit the precise proofs. Instead, we refer to the existing
analysis with a similar structure [26], and we briefly discuss the main points.

Linearizability. To show that the remove is correct and linearizable, we
identify the linearization points, and show that they preserve the invariants.
Concretely, the CAS instruction in line 14 of remove is the linearization point.
Other CASes do not change the state, and neither of them violates the invariants.

1def freeze(cur: ANode) =
2 var i = 0
3 while i < cur.length:
4 val ch = READ(cur[i])
5 if ch == nil:
6 if ¬CAS(cur[i],ch,FVNode):
7 continue
8 else if ch ∈ SNode:
9 val txn = READ(ch.txn)

10 if txn == NoTxn:
11 if ¬CAS(ch.txn,NoTxn,FSNode):
12 continue
13 else if txn 6= FSNode:
14 CAS(cur[i],ch,txn)
15 continue
16 else if ch ∈ ANode:
17 val fn = new FNode(ch)
18 CAS(cur[i],ch,fn)
19 continue
20 else if ch ∈ FNode:
21 freeze(ch.frozen)
22 else if ch ∈ XNode:
23 completeCompaction(ch)
24 continue
25 i += 1
26
27def isCompactible(cur: ANode) =
28 var found = nil
29 var i = 0
30 while i < cur.length:
31 val ch = READ(cur[i])
32 if ch ∈ SNode ∧ found == nil:
33 found = ch
34 else:
35 return false
36 i += 1
37 return true
38
39def compactNode(cur: ANode,
40 prev: ANode, h: Int, lev: Int) =
41 val pmask = prev.length-1
42 val ppos = (h >>> (lev-4))�pmask
43 val xn =
44 new XNode(prev,ppos,cur,h,lev)
45 if CAS(prev[ppos],cur,xn):
46 return completeCompaction(xn)
47 else:
48 return false

49def completeCompaction(xn: XNode) =
50 freeze(xn.cur)
51 var compact = nil
52 var i = 0
53 while i < xn.cur.length:
54 val ch = READ(xn.cur[i])
55 if ch ∈ SNode ∧ compact == nil:
56 compact = ch
57 else:
58 compact = createANode(xn.cur)
59 break
60 i += 1
61 if compact ∈ SNode:
62 compact = createSNode(compact)
63 CAS(xn.prev[xn.ppos],xn,compact)
64 return compact == nil ∨
65 compact ∈ SNode
66
67def compactUp(h: Int, from: Int) =
68 var cache = READ(cacheHead)
69 while cache 6= nil:
70 val ppos = 1+(h�(cache.length-2))
71 val prev = READ(cache[ppos])
72 val lev =
73 trailingZeros(cache.length-1)
74 cache = READ(cache[0])
75 if lev ≥ from ∨ prev ∈ SNode:
76 continue
77 val pos =
78 (h >>> lev)�(prev.length-1)
79 val cur = READ(prev[pos])
80 if cur 6∈ ANode:
81 continue
82 if ¬compactDown(h,lev+4,cur,prev):
83 return
84 compactDown(h,0,root,nil)
85
86def compactDown(h: Int, lev: Int,
87 cur: ANode, prev: ANode) =
88 val pos = (h >>> lev)�(cur.length-1)
89 val ch = READ(cur[pos])
90 if ch ∈ ANode:
91 if ¬compactDown(h,lev+4,ch,cur):
92 return false
93 if isCompactible(cur) ∧ prev 6= nil:
94 if compactNode(cur,prev,h,lev):
95 return true
96 return false

Fig. 4. Compaction operations

Lock-freedom. We must show that, for any failed CAS, the trie state changes
in a finite number of steps. Consider, for example, the CAS in line 6 of freeze.
Failure implies either a successful CAS in line 14 of remove, indicating concurrent
success, or that another thread froze the entry, indicating local progress.

Complexity. When there is no contention among threads, we claim that the
fast path runs in expected O(1). We note that the expected time spent searching
for the node with the specified key is O(1), by the same arguments as for the
cache-trie lookup operation [26]. The only variable amount of time could be spent
in the compactUp subroutine, whose worst-case is indeed O(log n). However, it
was shown that the pair of levels with ≈ 87% or more keys is expected to be at

CHM no-compact no-counter cache-trie ctrie skiplist

1
.0×

1
.9×

5
.9× 5.3×

8
.1×

1
2
.7×

i7 1
0
0
k

4
8

12
16
20
24
28
32

#
k
ey

s

ms

1
.0×

3
.5×

7
.8×
7
.3×

9
.1×

1
8
.4×

i7 2
5
0
k

16
32
48
64
80
96

112
128

#
k
ey

s

ms

1
.0×

2
.7×

5
.1×
4
.8×

6
.1×

1
5
.8×

i7 5
0
0
k

32
64
96

128
160
192
224
256

#
k
ey

s

ms

1
.0×

2
.1×

4
.9× 4.3×

5
.3×
1
4
.7×

Xeon

1
0
0
k

4
8

12
16
20
24
28
32

#
k
ey

s

ms

1
.0×

2
.1×

4
.4×
4
.2×

5
.8×

1
4
.3×

Xeon
5
0
0
k

32
64
96

128
160
192
224
256

#
k
ey

s

ms

1
.0×

2
.1×

3
.9×
3
.7×

4
.4×

1
4
.4×

Xeon

4
M

512
1,024
1,536
2,048
2,560
3,072
3,584
4,096

#
k
ey

s
ms

Fig. 5. Single Threaded Performance Comparison between Remove Implementations

the level of the cache [26], which is O(1) levels away from the key. At that level,
the expected number of entries in the ANode is above 2. Therefore, the number
of compacted levels is expected to be constant, and fastRemove is O(1).

4 Evaluation

We implemented cache-tries in Scala, and compared different remove implemen-
tations against similar data structures: JDK ConcurrentHashMap [14], Scala
standard library Ctries [34], and the concurrent skip list from the JDK [43]. The
single threaded benchmark takes an existing cache-trie and removes all of its N
keys, where N is 100k, 250k, 500k, and 4M . The multithreaded benchmark al-
ternates the number of concurrent threads that are removing the elements. The
benchmarks were executed on two machines. The first is an Intel i7-4900MQ
3.80 GHz quad-core CPU with hyperthreading, dual-channel memory and 32GB
RAM. The second machine is a dual-socket with 2 Intel Xeon E5-2683 3.00GHz
tetradeca-core CPUs with hyperthreading, quad-channel memory and 32 GB
RAM. We used the ScalaMeter tool to run the benchmarks [22], and we followed
the standard performance evaluation techniques for the JVM [11]. We ran each
benchmark 30 times, reporting the mean and the standard deviation. Our imple-
mentation is available online [30], and integrated into the Reactors framework
[40, 24, 35, 27, 25].

Single threaded performance. Figure 5 shows the results of the single
threaded benchmarks on i7 and Xeon. The JDK ConcurrentHashMap does not
compact the underlying hash table, which increases its performance at the cost
of memory footprint. We therefore use the ConcurrentHashMap as a baseline,
since it is unlikely that compacting removes can achieve better performance.

We test three different cache-trie remove variants: basic removes from Sec-
tion 3.1 (no-compact), removes with compaction from Section 3.2 (no-counter),
and the removes with the counter optimization (cache-trie). CHM, ctrie and
skiplist represent JDK concurrent hash maps, Scala Ctries and JDK concurrent
skip lists, respectively. Results show that the cache-trie without compaction is
2− 3.5× slower than that ConcurrentHashMap. The reason for this is that the

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

3
.1× 2

.4×

2
.2×

2
.0×

1
.9×

2
.0×

2
.0×

1
.8×

5
.6×

4
.0× 3

.5×

3
.4×

3
.5×

3
.0×

3
.1×

2
.7×

5
.3×

3
.8× 3

.2×

3
.3×

3
.3×

3
.0×

2
.9×

2
.6×

6
.7×

4
.7× 3

.9×

3
.9×

3
.7×

3
.3×

3
.7×

3
.0×

1
2
.6×

9
.0×

8
.0× 7
.7×

7
.5×

6
.4×

6
.0×

4
.8×

i7
(400k keys)

1 2 3 4 5 6 7 8

32
64
96

128
160
192
224
256

#
p
roc

ms
CHM no-compact no-counter

cache-trie ctrie skiplist

1
.0×

1
.0× 1

.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.0×

1
.9×

1
.4× 1

.5× 1
.1×

1
.1×

1
.7×

1
.7×

1
.4×

3
.1×

2
.5×

2
.7× 2

.1×

3
.0×

2
.6×

2
.7×

2
.3×

2
.9×

2
.3×

2
.5× 1

.9×

2
.2×

2
.3×

2
.7×

2
.1×

3
.2×

2
.8×

2
.9× 2

.2×

3
.0×

3
.1×

3
.0×

2
.3×

7
.6×

5
.9×

5
.7×

4
.4× 4

.6×

4
.4×

4
.8×

3
.9×

Xeon
(400k keys)

1 2 4 8 14 28 42 56

32
64
96

128
160
192
224
256

#
p
roc

ms
CHM no-compact no-counter

cache-trie ctrie skiplist

Fig. 6. Multi Threaded Performance Comparison between Remove Implementations

majority of keys are distributed across two consecutive levels of the cache [26],
so the fast-path needs ≈ 2 pointer hops, and consequently up to ≈ 2 cache
misses, to reach the leaf through the cache (unlike the hash table, which under-
goes ≈ 1 pointer hop), and is consistent with earlier findings [28]. Compaction
reduces performance by 1.5− 3×, depending on the cache-trie size. The counter
optimization from Section 3.2 improves compaction performance by only around
5−15%. This is not very surprising – the loop in the isCompactible subroutine
(which the counters help avoid) is not particularly expensive, since (immediately
after a remove) the respective node is usually already in the L1 cache.

Multi threaded performance. Figure 6 shows the results of the multi
threaded benchmarks. On the i7, we vary the number of threads from 1 to 8.
We test Xeon for 1, 2, 4, 8, 14, 28, 42 and 56 threads. The results are over-
all consistent with the single threaded benchmarks, although the performance
gap is lowered at higher parallelism levels. The i7 processor, with is dual-channel
memory, saturates the memory bandwidth before reaching 4 cores. The Xeon ar-
chitecture saturates the bandwidth before reaching 14 cores, and exhibits a slight
slowdown at higher parallelism levels. Notably, while skip lists are ≈ 7 − 13×
slower in the single threaded benchmarks due to a larger number of pointer hops,
they scale better, and are only ≈ 4.5× slower at 4 and 14 threads, respectively.

5 Related Work

Tries were proposed by Briandais [8], and later named by Fredkin [10], as a string
retrieval data structure. Several authors studied the use of tries as a dictionary
for arbitrary data types [16, 4, 3]. In the recent years, a non-blocking concurrent

hash trie called Ctrie, which supported lock-free insert, lookup and remove oper-
ations, was proposed by Prokopec [32, 31]. An atomic two-keys replace operation
was later proposed in the context of Patricia trees [45]. Ctries were extended with
non-blocking snapshots, which, along with along with high-level compiler opti-
mizations [36, 48], enabled efficient data-parallel traversal [34, 21, 20, 33, 42, 39].
Areias and Rocha studied how to improve performance of lock-free hash tries in
the context of concurrent Prolog programs, by specializing hash tries for insert
operations [1, 2]. Separately, Joisha showed that non-blocking tries can be made
more efficient when the delete operation is disallowed [13]. Steindorfer studied
techniques for automatically deriving the hash trie with optimal tradeoffs for a
given program [46, 47]. Oshman and Shavit were the first to improve complex-
ity of the trie operations from O(log n) to O(log log n) with SkipTries [19], and
cache-tries [28, 26] were the first to lower the complexity for trie lookups and
inserts to O(1). The freezing technique used in cache-tries is similar to freezing
used by SnapQueues [23, 41], freezing in locality-conscious lists [5], and sealing
in FlowPools [38, 37, 44] and future values [12].

There are other concurrent data structures that implement the non-blocking
dictionaries. Lea’s ConcurrentHashMap [14], available in the JDK, is loosely
based on Michael’s lock-free hash table description [18]. ConcurrentHashMap
has a highly efficient wait-free lookup operation, it is a flat data structure, and
it avoids compaction altogether. As such, it is a good baseline for comparison
against tree-like and trie data structures, which generally do compaction and
suffer cache misses due to indirections. Other concurrent hash maps are due to
Liu et al. [17] and Li et al. [15]. The JDK ConcurrentSkipListMap, compared in
Section 4, is based on Pugh’s concurrent skip list [43]. Other notable concurrent
trees include Bronson’s SnapTree (a lock-based AVL tree) [7], lock-free binary
trees from Ellen et al. [9], and Braginsky’s lock-free B+-trees [6].

6 Conclusion

We described several novel non-blocking implementations of the remove op-
eration for the cache-trie data structure. We evaluated a compacting and a
non-compacting variant, and found that the overhead of compaction is around
1.5− 3×, depending on the workload. However, compared to the standard Ctrie
implementation [34], the compacting remove on cache-tries is 10− 35% faster.

Although the compacting remove operation exceeds the performance of Ctries,
it does represent a considerable overhead. One way to alleviate these costs may
be to compact lazily, i.e. trigger compaction only after removing a considerable
subset of the keys. We leave these considerations for future work.

7 Data Availability Statement and Acknowledgments

The datasets and code generated during and/or analysed during the current
study are available in the figshare repository [29]:

https://doi.org/10.6084/m9.figshare.6369134

References

1. Areias, M., Rocha, R.: On the correctness and efficiency of lock-free expandable
tries for tabled logic programs. In: Proceedings of the 16th International Sympo-
sium on Practical Aspects of Declarative Languages - Volume 8324. pp. 168–183.
PADL 2014, Springer-Verlag New York, Inc., New York, NY, USA (2014)

2. Areias, M., Rocha, R.: A lock-free hash trie design for concurrent tabled logic
programs. Int. J. Parallel Program. 44(3), 386–406 (Jun 2016)

3. Bagwell, P.: Ideal hash trees (2001)

4. Baskins, D.: The Judy array implementation. http://judy.sourceforge.net/ (2000)

5. Braginsky, A., Petrank, E.: Locality-conscious lock-free linked lists. In: Proceed-
ings of the 12th International Conference on Distributed Computing and Net-
working. pp. 107–118. ICDCN’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=1946143.1946153

6. Braginsky, A., Petrank, E.: A lock-free B+tree. In: Proceedings of the
Twenty-fourth Annual ACM Symposium on Parallelism in Algorithms and
Architectures. pp. 58–67. SPAA ’12, ACM, New York, NY, USA (2012),
http://doi.acm.org/10.1145/2312005.2312016

7. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical con-
current binary search tree. SIGPLAN Not. 45(5), 257–268 (Jan 2010),
http://doi.acm.org/10.1145/1837853.1693488

8. De La Briandais, R.: File searching using variable length keys. In: Papers Pre-
sented at the the March 3-5, 1959, Western Joint Computer Conference. pp.
295–298. IRE-AIEE-ACM ’59 (Western), ACM, New York, NY, USA (1959),
http://doi.acm.org/10.1145/1457838.1457895

9. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing. pp. 131–140. PODC ’10, ACM, New York, NY,
USA (2010), http://doi.acm.org/10.1145/1835698.1835736

10. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (Sep 1960),
http://doi.acm.org/10.1145/367390.367400

11. Georges, A., Buytaert, D., Eeckhout, L.: Statistically Rigorous Java
Performance Evaluation. SIGPLAN Not. 42(10), 57–76 (Oct 2007),
http://doi.acm.org/10.1145/1297105.1297033

12. Haller, P., Prokopec, A., Miller, H., Klang, V., Kuhn, R., Jovanovic, V.: Scala
improvement proposal: Futures and promises (SIP-14) (2012), http://docs.scala-
lang.org/sips/pending/futures-promises.html

13. Joisha, P.G.: Sticky tries: Fast insertions, fast lookups, no deletions for large
key universes. In: Proceedings of the 2014 International Symposium on Mem-
ory Management. pp. 35–46. ISMM ’14, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2602988.2602998

14. Lea, D.: Doug Lea’s workstation (2014), http://g.oswego.edu/

15. Li, X., Andersen, D.G., Kaminsky, M., Freedman, M.J.: Algorithmic improvements
for fast concurrent cuckoo hashing. In: Proceedings of the Ninth European Con-
ference on Computer Systems. pp. 27:1–27:14. EuroSys ’14, ACM, New York, NY,
USA (2014), http://doi.acm.org/10.1145/2592798.2592820

16. Liang, F.M.: Word Hy-phen-a-tion by Com-pu-ter. Ph.D. thesis, Stanford Univer-
sity, Stanford, CA 94305 (Jun 1983), also available as Stanford University, Depart-
ment of Computer Science Report No. STAN-CS-83-977

17. Liu, Y., Zhang, K., Spear, M.: Dynamic-sized nonblocking hash tables.
In: Proceedings of the 2014 ACM Symposium on Principles of Distributed
Computing. pp. 242–251. PODC ’14, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2611462.2611495

18. Michael, M.M.: High performance dynamic lock-free hash tables and list-based
sets. In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel Al-
gorithms and Architectures. pp. 73–82. SPAA ’02, ACM, New York, NY, USA
(2002), http://doi.acm.org/10.1145/564870.564881

19. Oshman, R., Shavit, N.: The skiptrie: Low-depth concurrent search without re-
balancing. In: Proceedings of the 2013 ACM Symposium on Principles of Dis-
tributed Computing. pp. 23–32. PODC ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2484239.2484270

20. Prokopec, A., Petrashko, D., Odersky, M.: Efficient lock-free work-stealing iterators
for data-parallel collections. In: 2015 23rd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing. pp. 248–252 (March 2015)

21. Prokopec, A.: Data Structures and Algorithms for Data-Parallel Computing in a
Managed Runtime. Ph.D. thesis, IC, Lausanne (2014)

22. Prokopec, A.: Scalameter website (2014), http://scalameter.github.io
23. Prokopec, A.: SnapQueue: Lock-free queue with constant time snapshots. In: Pro-

ceedings of the 6th ACM SIGPLAN Symposium on Scala. pp. 1–12. SCALA 2015,
ACM, New York, NY, USA (2015), http://doi.acm.org/10.1145/2774975.2774976

24. Prokopec, A.: Pluggable scheduling for the reactor programming model. In: Pro-
ceedings of the 6th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control. pp. 41–50. AGERE 2016, ACM, New York,
NY, USA (2016), http://doi.acm.org/10.1145/3001886.3001891

25. Prokopec, A.: Accelerating by idling: How speculative delays improve performance
of message-oriented systems. In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.)
Euro-Par 2017: Parallel Processing. pp. 177–191. Springer International Publishing,
Cham (2017)

26. Prokopec, A.: Analysis of Concurrent Lock-Free Hash Tries with Constant-Time
Operations. ArXiv e-prints (Dec 2017)

27. Prokopec, A.: Encoding the building blocks of communication. In: Proceedings of
the 2017 ACM SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software. pp. 104–118. Onward! 2017, ACM,
New York, NY, USA (2017), http://doi.acm.org/10.1145/3133850.3133865

28. Prokopec, A.: Cache-tries: Concurrent lock-free hash tries with constant-time op-
erations. In: Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. PPoPP ’18, ACM, New York, NY, USA
(2018), http://doi.acm.org/10.1145/3178487.3178498

29. Prokopec, A.: Efficient lock-free removing and compaction for the cache-trie data
structure. https://doi.org/10.6084/m9.figshare.6369134 (2018)

30. Prokopec, A.: Reactors.io website (2018), http://reactors.io
31. Prokopec, A., Bagwell, P., Odersky, M.: Cache-Aware Lock-Free Concurrent Hash

Tries. Tech. rep. (2011)
32. Prokopec, A., Bagwell, P., Odersky, M.: Lock-Free Resizeable Concurrent Tries,

pp. 156–170. LCPC 2011, Springer Berlin Heidelberg, Berlin, Heidelberg (2011)
33. Prokopec, A., Bagwell, P., Rompf, T., Odersky, M.: A generic parallel collection

framework. In: Proceedings of the 17th international conference on Parallel process-
ing - Volume Part II. pp. 136–147. Euro-Par’11, Springer-Verlag, Berlin, Heidelberg
(2011), http://dl.acm.org/citation.cfm?id=2033408.2033425

34. Prokopec, A., Bronson, N.G., Bagwell, P., Odersky, M.: Concurrent tries with effi-
cient non-blocking snapshots. In: Proceedings of the 17th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. pp. 151–160. PPoPP ’12,
ACM, New York, NY, USA (2012), http://doi.acm.org/10.1145/2145816.2145836

35. Prokopec, A., Haller, P., Odersky, M.: Containers and aggregates, mutators
and isolates for reactive programming. In: Proceedings of the Fifth Annual
Scala Workshop. pp. 51–61. SCALA ’14, ACM, New York, NY, USA (2014),
http://doi.acm.org/10.1145/2637647.2637656

36. Prokopec, A., Leopoldseder, D., Duboscq, G., Würthinger, T.: Making collection
operations optimal with aggressive jit compilation. In: Proceedings of the 8th ACM
SIGPLAN International Symposium on Scala. pp. 29–40. SCALA 2017, ACM, New
York, NY, USA (2017), http://doi.acm.org/10.1145/3136000.3136002

37. Prokopec, A., Miller, H., Haller, P., Schlatter, T., Odersky, M.: FlowPools: A Lock-
Free Deterministic Concurrent Dataflow Abstraction, Proofs. Tech. rep. (2012)

38. Prokopec, A., Miller, H., Schlatter, T., Haller, P., Odersky, M.: Flowpools: A lock-
free deterministic concurrent dataflow abstraction. In: LCPC. pp. 158–173 (2012)

39. Prokopec, A., Odersky, M.: Near optimal work-stealing tree scheduler for highly
irregular data-parallel workloads. In: Cascaval, C., Montesinos, P. (eds.) Languages
and Compilers for Parallel Computing. pp. 55–86. Springer International Publish-
ing, Cham (2014)

40. Prokopec, A., Odersky, M.: Isolates, channels, and event streams for com-
posable distributed programming. In: 2015 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and Software
(Onward!). pp. 171–182. Onward! 2015, ACM, New York, NY, USA (2015),
http://doi.acm.org/10.1145/2814228.2814245

41. Prokopec, A., Odersky, M.: Conc-Trees for Functional and Parallel Pro-
gramming, pp. 254–268. Springer International Publishing, Cham (2016),
http://dx.doi.org/10.1007/978-3-319-29778-1 16

42. Prokopec, A., Petrashko, D., Odersky, M.: On lock-free work-stealing iterators for
parallel data structures p. 10 (2014)

43. Pugh, W.: Concurrent maintenance of skip lists. Tech. rep., College Park, MD,
USA (1990)

44. Schlatter, T., Prokopec, A., Miller, H., Haller, P., Odersky, M.: Multi-lane flow-
pools: A detailed look p. 13 (2012)

45. Shafiei, N.: Non-blocking patricia tries with replace operations. In: 2013 IEEE 33rd
International Conference on Distributed Computing Systems. pp. 216–225 (July
2013)

46. Steindorfer, M.J., Vinju, J.J.: Optimizing hash-array mapped tries for fast and
lean immutable jvm collections. SIGPLAN Not. 50(10), 783–800 (Oct 2015),
http://doi.acm.org/10.1145/2858965.2814312

47. Steindorfer, M.J., Vinju, J.J.: Towards a software product line of trie-based col-
lections. In: Proceedings of the 2016 ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences. pp. 168–172. GPCE 2016,
ACM, New York, NY, USA (2016), http://doi.acm.org/10.1145/2993236.2993251

48. Sujeeth, A.K., Rompf, T., Brown, K.J., Lee, H., Chafi, H., Popic, V., Wu, M.,
Prokopec, A., Jovanovic, V., Odersky, M., Olukotun, K.: Composition and reuse
with compiled domain-specific languages. In: Proceedings of the 27th European
Conference on Object-Oriented Programming. pp. 52–78. ECOOP’13, Springer-
Verlag, Berlin, Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-39038-8 3

