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Abstract. We propose a technique called speculative lagging, which im-
proves performance by dynamically adding periods of idle execution into
the message-oriented system. The speculation is guided by a statisti-
cal model, which predicts context switches that benefit from delays. We
analytically derive the expected speedup, which, for a fixed confidence,
allows identifying lagging opportunities in O(1) time, without a perfor-
mance overhead. We describe the corresponding speculation algorithm
and use it to extend an existing scheduler. Comparison with other actor
frameworks on standard benchmarks shows improvements of up to 2.1×.

1 Introduction

Consider a system with concurrent processes that communicate by exchanging
messages. We call these processes actors. When a message arrives, it is placed
on the message queue of the corresponding actor, and we say that it is available.
The system is tasked with assigning CPUs to any number of actors with avail-
able messages. An actor cooperatively yields the CPU back to the system after
emptying its message queue. Assigning and yielding is called context switching
– this is the period of time required to switch the CPU between two actors.

The main question in this paper is the following: can the overall performance
of a message-based system be improved by slowing down individual actors with
periods of idle execution? Generally, adding extra execution cycles to a program
slows it down, so the first reaction is to say no. Counter-intuitively, this paper
shows that selectively adding periods of idle execution improves performance.
The essential idea is that it can be less costly to wait for another message, than
it is to undergo a context switch when there are no messages. The key difficulty
addressed in the paper is to quickly detect (at runtime) that a program benefits
from delays, apply those delays selectively to some actors, and do so without
compromising the performance of programs that do not benefit from delays.

This paper brings forth the following contributions:

– A probabilistic model of speculative lagging, a new runtime technique that
increases program performance by O((1 + δ − P )−1), where P is the proba-
bility that a relative delay δ is beneficial for a given program (Sect. 2), along
with a decision criteria for applying speculative lagging (Sect. 2.2).



– A sampling strategy that, for some fixed confidence α, when speculation is
beneficial, is expected to correctly decide in O(1) time, and when delays
are not beneficial, concludes this in O(ϕ−1) time, where ϕ is the allowed
performance overhead from sampling (Sect 2.1 and 2.3).

– An algorithm and an implementation of speculative lagging (Sect. 3).

– An evaluation on standard actor benchmarks [12], where we identify spe-
cific benchmarks on which speculative lagging achieves up to 2.1× speedups,
without any noticeable performance overhead otherwise (Sect. 4).

2 A Model of Speculative Lagging

In this section, we construct a model of speculative lagging. The speculation is
based on the bet that a context switch is expensive, and that another message
will arrive between the start and the end of the context switch. We investigate
how each actor determines the minimal number of messages to receive before
making a speculation decision, how it decides whether to speculate or not, and
how to minimize the time until making the decision.

2.1 Determining the sample size

To decide whether speculation is beneficial, an actor must have a sample – a set
of delayed context switches. We start by estimating the necessary sample size.

Definition 1. Consider an actor that, upon processing a message at some time
t, waits for a fixed duration of time d before returning control to the scheduler.
A speculation hit is the event in which at least one other message arrives in
the time interval 〈t, t+ d〉. A speculation miss is the event in which no message
arrives in the interval 〈t, t+ d〉.

Definition 2 (Delay sampling). Consider a sampling strategy in which an
actor, before context switching, waits some fixed time d with a probability ϕ, and
counts speculation hits. We call this process speculation hit sampling.

Theorem 1 (Speculation hit estimate). Consider a speculation hit sampling
process that estimates the probability P of a speculation hit, which is independent
between speculation hits. Let n be the sample size, and hi a random variable, equal
to 1 if there was a speculation hit in the i-th sampling iteration, and 0 otherwise.
The sampled probability p̂ = p = 1

nΣihi is a consistent estimate for P .

An estimate p̂ is consistent for the value P if p̂ → P when n → ∞. We as-
sumed that the probability P is independent between speculation hits, a method
which is called simple random sampling [5]. It was shown in the related work [5]
that p̂ is in this case a consistent estimate for P .

Theorem 2 (Sample size). Consider a speculation hit sampling process that
estimates the speculation hit probability P with p = 1

nΣihi. Let α be the probabil-
ity that a normally distributed value is within the ±z1−α/2 range (α uniquely



defines z1−α/2). The minimum sample size is at least
z21−α/2
4·e2 , for the probability

α that the estimated probability P is approximately within the range 〈0.1, 0.9〉.

Proof. We are sampling speculation hits with replacement, so the number of
observed speculation hits follows the binomial distribution. It was shown that in
this case, the confidence interval e can be approximated with z1−α/2·

√
p̂(1− p̂)/n,

where n is the sample size [5]. The term p̂(1− p̂) is maximized for p̂ = 0.5, which
allows deriving the worst case n from e. ut

The result in Theorem 2 allows us to calculate the minimum number of
samples required for deciding, with a specific confidence α, the interval of the
possible values of the speculation probability P . As we show later, this allows
deciding whether speculation improves program performance or not.

2.2 Estimating speculation benefits

Theorem 2 shows how to pick the sample size, but does not mention the delay
time d. The probability P , and the estimated speculation hit probability p̂, both
depend on the chosen delay d. In this section, we investigate how to find the
optimal value for the delay d. We first show that d is not unbounded – an actor
only needs to search through a finite interval to find the optimal value d.

Definition 3. The setup cost cs is the time between the point when the scheduler
assigns an actor to a processor, and the point when the actor starts processing
the first pending message. The teardown cost ct is the time between the point
when the actor finishes processing the last pending message, and the point when
the actor returns control to the scheduler. We define the context-switch cost c
as the sum cs + ct of the setup and teardown cost.

Definition 4. An actor speculates with a delay d if, after processing the last
available message, it spends an additional time d waiting for the arrival of an-
other message. The speculation efficiency Ψspec = Tspec/Tbase is the ratio be-
tween the total actor execution time with speculation Tspec and the time without
speculation Tbase, and its inverse value Sspec = Ψ−1

spec is the speculation speedup.

Lemma 1 (Delay bound). Consider an actor that speculates with a delay d.
Let there always exist at least one inactive actor with an available message. Then
for every d > c, the program execution time is not optimal.

Proof. Assume that there is some time d0 > c for which the execution is optimal.
Consider a specific actor R that, at some point in the execution schedule E0,
speculates with d0. By assumption, when R starts speculating, there exists an-
other actor Q with an available message. Consider now an alternative execution
schedule E1 in which the actor R does not speculate, but instead releases the
processor. The scheduler can then assign the processor time to another actor Q,
after a context switch with duration c. The execution schedule E1 is at least
d0 − c faster than E0. By contradiction, E0 is not optimal. ut
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Fig. 1. Probability tree for the running time with speculative lagging

Lemma 1 states that there exists an upper bound on the benefits from spec-
ulatively delaying the context switch. Consequently, the sampling plan needs to
focus only on the values of d in the interval 〈0, c〉. We now investigate how to
choose d from this interval to maximize the benefits.

Lemma 2 (Speculative running time). Consider an actor that speculates
with a delay d, and with probability ϕ � 1, prior to context switching, samples
speculation hits. The time required to receive and process N messages is then
Tspec(N) = [(1−P ) · c+w+ d] ·N , where P is the speculation hit probability for
the delay d, c is the context switch time, and w is the time to process a message.

Proof. Consider the execution of an actor in Fig. 1, which has one message
available at the beginning, and still has to process N messages. The time required
to process these messages is Tspec(N). The actor spends w time to process the
first message, and d time speculating for the next message. During the time d,
another message arrives with probability P , which brings the actor into a state
with one available message, where the remaining execution time is recursively
Tspec(N − 1). Alternatively, with a probability 1−P , another message does not
arrive during the time d. In this case, the actor may decide to return control
to the scheduler with a probability 1 − ϕ (i.e. not to sample speculation hits)
and spend c time in a context switch. Alternatively, with a probability ϕ, the
actor spends additional dmax = c units of time sampling speculation hits. When
the sampling ends, another message will appear with probability that is at least
P , bringing the actor into the state with an available message – the remaining
execution time is here Tspec(N − 1). Alternatively, with probability 1 − P , no
message arrives, and the actor spends c time in a context switch.

Putting this together, we get the following execution time recurrence:

Tspec(N) = w+d+
(

(1−P ) ·ϕ+(1−P ) · (1−ϕ)+(1−P )2 ·ϕ
)
·c+Tspec(N −1)

This recurrence has the following closed-form solution:

Tspec(N) = (w + d+ (1− P ) · (1 + ϕ− ϕ · P ) · c) ·N (1)

Under the assumption that sampling is done infrequently, that is, ϕ � 1, the
term 1 + ϕ− ϕ · P becomes 1, and the claim follows. ut

Theorem 3 (Speculation efficiency and speedup). Let c be the context
switch duration, w the time required to process a message, and p be the sampled
speculation hit rate. Define δ = d/c ∈ 〈0, 1〉 and η = w/c as ratios between
the delay, the work and context switch time. Then, the expected efficiency of
speculative lagging is Ψspec = 1+ δ−p

1+η , and the expected speedup Sspec >
1+η

1+η+δ−p .



Proof. The expected efficiency is defined as E[Ψspec] = E[Tspec(N)/Tbase(N)],
where Tbase(N) is the time required to process N messages without speculation,
and Tspec(N) is the same time with speculation.

Without speculation, in the worst case, an actor always processes only a single
message before returning control to the scheduler. The time without speculation
is then Tbase(N) = (c+w) ·N . By Lemma 2, expected time with speculation is
Tspec(N) = [(1−P ) · c+w+ d] ·N . Since Tbase(N) does not depend on random
variables, linearity of expectation gives us:

Ψspec = E[Ψspec] =
N · [(1− E[P ]) · c+ w + d]

N · (c+ w)
(2)

Using E[P ] = p from Theorem 1, this further simplifies to:

Ψspec = 1 +
δ − p
1 + η

(3)

By expressing the inverse Ψ−1
spec of Ψspec with its Taylor series, it can be shown

that Sspec = E[Sspec] = E[Ψ−1
spec] > E[Ψspec]

−1, as noted previously [9]. ut

The result from Theorem 3 provides a way to decide whether speculative
lagging improves performance. This is captured with the following corollary.

Corollary 1 (Speculation decision). An actor that speculates with a relative
delay δ = d/c ∈ 〈0, 1〉 improves program performance when δ ≤ p.

Proof. Program performance is expected to improve when the expected speedup
Sspec > 1. Using the result from Theorem 3, we have:

Sspec >
1 + η

1 + η + δ − p
≥ 1 (4)

We can rewrite the second inequality as 1 + η ≥ 1 + η + δ − p, and the result
follows irrespective of the work ratio η. ut

The previous corollary states the necessary conditions to apply delays. Let’s
assume that we have a set of (δi, pi) pairs, and we need to pick the δi that
maximizes speedup. The next corollary shows how to do this.

Corollary 2 (Speculation choice). Given a set of (δi, pi) pairs, where δi is
the speculated delay and pi is the respective sampled speculation hit probability,
speedup is maximal for the relative delay δi that has the minimum δi − pi.

Proof. Expression for Sspec from Theorem 3 is monotonic with respect to p and
δ, and is maximized when p− δ is minimized, irrespective of η. ut

2.3 Better time-to-speculation with an adaptive sampling rate

We can use the Theorem 2 to estimate the sample size n. For example, for a
α = 95% confidence that speculation hit probability P lies within e = 15% of the
true value, we need n = 43. Our analysis implicitly assumed that the sampling
frequency ϕ is so low that it can be ignored. As an example, for ϕ = 1%,



execution overhead less than 1%, but the expected number of context switches
that an actor must undergo before deciding on speculation is N = n ·ϕ−1, which
is 4300 for the confidence α = 95% and the interval e = 15%, assumed previously.
This value is impractical for applications in which the actor lifetime is short.

To reduce the time until a speculation decision, we note that increasing the
sampling frequency ϕ causes a slowdown only if speculation hits are unlikely. If
speculation helps, it is likely that a message arrives during sampling. In what fol-
lows, we substantiate this intuition with an upper bound on the allowed sampling
rate ϕ. We then compute an upper bound on the expected number of messages
N that must be received before deciding on δ, when ϕ gets dynamically adapted.

Lemma 3 (Sampling rate bound). Consider an actor that speculates with
a relative delay δ = d/c, and, before a context switch, samples speculation hits
with the rate ϕ. Sampling does not decrease performance as long as ϕ ≤ P−δ

(1−P )2 .

Proof. We are investigating the upper bound for ϕ, so the previous assumption
that ϕ � 1 no longer holds, and we cannot use the result from Theorem 3.
Instead, we rely on (1) from Lemma 2. We require that the speculative running
time is less than equal than the baseline:

w + d+ c · (1− P ) · (1 + ϕ− ϕ · P ) ≤ w + c (5)

By simplifying and substituting δ = d/c, we get the desired bound on ϕ. ut

We could (prematurely) conclude that a newly created actor must set the
sampling rate ϕ to the bound from Lemma 3. However, a new actor does not
know the speculation hit probability P . At the end of each sampling iteration i,
the actor only has an imprecise estimate pi of P , which, as shown in Theorem
2, is only adequately accurate with the desired sample size n ≥ i.

We now show that, somewhat surprisingly, the actor can indeed use its cur-
rent estimate pi as a proxy for P to increase the sampling rate ϕ, and reduce
the expected number of messages N needed to reach the sample size n, with-
out compromising performance. The bound on N will be proportional with the
speculation miss probability 1− P , confirming the initial intuition.

Theorem 4 (Adaptive sampling). Consider a newly created actor that starts
with an initial sampling frequency ϕ0, and then changes the sampling frequency
to ϕ = max(ϕ0,min(1, pi

(1−pi)2
)) after every sampling iteration i. The expected

number of messages N that an actor will receive before gathering the sample of
size n is bounded by N ≤ 1+ϕ−1

0 ·(1+(2+ϕ0)−1)·(1−P )·O(n)+O(n). Expected
speedup S between speculation and baseline is bounded by S ≥ 1− (1 + ϕ−1

0 )−1.

Proof. After each sampling event, the sampling probability ϕ is modified using
the expression P−δ

(1−P )2 from Lemma 3, where δ is 0 because the newly created

actor does not speculate yet, and P is replaced with the current value p.
The probability tree in Fig. 2 shows a series of sampling events, and the num-

ber of messages received Ni,j , which are needed to reach the respective sampling
iteration i and state j. N0,0 is 1, since a newly created actor can immediately
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Fig. 2. Probability tree and message counts in adaptive sampling

sample once – the sampling cost is amortized by the actor creation costs. Sam-
pling can result in a speculation hit with a probability P , or a speculation miss
with 1−P , where P is the true speculation hit probability. The expected number
of messages between two sampling iterations is ϕ−1, so we have:

Ni,j = Ni−1,j÷2 +min
(
ϕ−1
0 ,

(1− pi)2

pi

)
(6)

Our task is compute the expected number of messages after n sampling itera-
tions, in other words, to produce a sum of the messages received at the depth n
in the tree, weighted by the respective probabilities. This is given with the ex-
pression N = ΣjPn,j ·Nn,j , where Pn,j is the probability of the outcome j after
n sampling iterations. We now compute the upper bound for N by grouping the
execution paths according to the number of speculation hits k, and choosing the
longest path in each such group k. The execution is longest when the initial k
sampling iterations are speculation misses, followed by n− k speculation hits.

N ≤ 1 +

n∑
k=0

(
n

k

)
Pn−k(1− P )k

(
k · f · ϕ−1

0 +

n∑
i=k·f+1

(
1− i−k

i

)2
i−k
i

)
(7)

Note that in the min in (6), the second term does not outweigh ϕ−1
0 at i = k+1,

but only after a few additional iterations. For this reason, we include the factor
f in (7). It can be shown that the upper bound holds when f = 1+(2 +ϕ−1

0 )−1.
Next, note that in the given range, the fraction in the last sum is always less
than i/(i−k). Therefore, we can use the following upper bound for the last sum:

n∑
i=k+1

(
1− i−k

i

)2
i−k
i

≤
n∑

i=k+1

i

i− k
=

n−k−1∑
j=0

j + k + 1

j + 1
≤ (k + 1) ·Hn + n (8)

Above, Hn = Σn
i=1i

−1 is the n-th harmonic number. By combining this with
(7), and by applying the identities Σn

k=0

(
n
k

)
Pn−k(1 − P )kk = n(1 − P ) and



Σn
k=0

(
n
k

)
Pn−k(1− P )k = 1, we get the following upper bound for N :

N ≤ 1 + ϕ−1
0 · (1 +

1

2 + ϕ−1
0

) · n · (1− P ) + n ·Hn · (1− P ) + n (9)

The bound in (9) is too conservative – in particular, the term n·Hn never exceeds
n · ϕ−1

0 (in the worst case, the sampling frequency stays ϕ0), so we can replace
it with n ·min(ϕ−1

0 , Hn). This proves the first part. To prove the second part,
we find a lower bound for N – we consider the path in the probability tree that
starts with n− k hits (which set ϕ to 1), followed by k misses:

N ≥ 1 +

n∑
k=0

(
n

k

)
Pn−k(1−P )k

(
(n− k) · 1 +

n∑
i=n−k+1

min(ϕ−1
0 ,

(1− n−k
i )2

n−k
i

)
)
(10)

The term n− k becomes n ·P under the outer sum. The second term (the inner
sum) consists of two parts, depending on which part under the min dominates.
The part with ϕ0 is alone greater than kϕ−1

0 when P → 0. From this, it can be
shown that N is lower bound by n · P + ϕ−1

0 · n · (1− P ). When work tends to
0, the speedup S = T base/T sampling becomes the ratio between the time spent
in context switching without sampling and the time spent with sampling. Note
that sampling spends n · c extra time, but only in the 1 − P cases that do not
end in a speculation hit. By substituting the lower bound into the speedup:

S ≥ N · c
N · c+ n · c · (1− P )

≥ 1− 1− P
1 + ϕ−1

0 · (1− P )
(11)

The last expression in (11) is minimal when P = 0, and the claim follows. ut

We interpret the Theorem 4 as follows. First, when P → 1, the term with
the initial frequency ϕ0 disappears, and the expected number of messages N
depends only on the sample size n. From (9) and (10), for P = 0.9, n = 43 and
ϕ0 = 0.01, the expected number of messages N is between 468 and 497, an 8×
improvement. Second, when P → 0, the sampling overhead depends only on the
initial sampling frequency ϕ0. If we pick an unreasonably high value ϕ0 → 1 for
the initial sampling frequency, the performance degrades by at most 50% – this
is the case when we always sample after receiving a message, without benefiting
from speculation hits, and effectively paying the context switch cost twice.

3 Algorithm and Implementation

We can summarize the results from Sect. 2 as follows. When the speculation
hit probability P is greater than the relative delay δ, where δ = d/c is the ratio
between the absolute delay d ∈ 〈0, c〉 and the context switch time c, an actor must
speculatively delay its context switches by the duration d. For a confidence level
α, an actor must gather a sample of speculation hits of size n = z21−α/2/(4e

2),
where e is the confidence interval for the sampled speculation hit probability p.
These n values are sampled with some probability ϕ, which is a small value ϕ0

initially, but can be set to ϕ = (pi − δ)/(1− pi)2 after every sampling iteration.



1 global ϕ = ϕ0

2 global L = 32

3 global counts = [1..L]

4 global d_best = 0

5 global sample_count = 0

6

7 has_more = poll()

8 while has_more:

9 has_more = false

10 if drain ():

11 spins = d_best

12 while spins > 0:

13 spins -= 1

14 if spins %(C/L) == 0:

15 has_more = poll()

16 if has_more:

17 spins = 0

18 if random (0.0, 1.0) < ϕ:
19 spins = 0, i = 0

20 while spins < C:

21 spins += 1

22 if spins %(C/L) == 0:

23 has_more = poll()

24 i += 1

25 if has_more:

26 counts[j ∈ i..L] += 1

27 spins = C

28 sample_count += 1

29 ϕ = max(ϕ0, calc_p ())

30 if sample_count == n:

31 sample_count = 0

32 k = argmin(counts[i]-C/L*i)

33 d_best = C/L*k

34 counts[i ∈ 1..L] = 0

Fig. 3. Pseudocode for speculative lagging

The algorithm in Fig. 3 collects a set of sampled probabilities pi for equidis-
tant delays di ∈ 〈0, c〉. An actor runs the algorithm immediately before each
context switch. The algorithm maintains the current best delay d_best, initially
zero, and the array counts of speculation hit counts for each di. It first checks
for messages with poll in line 7, and handles them by calling drain in line 10.
The drain method returns false only when the scheduler externally disallows
further execution – in this case, the actor must immediately yield. Otherwise,
the actor spins for d_best time units, and calls poll on the message queue every
C / L time units, where L is the total number of delays di, and C is the context
switch time. If the actor finds that the message is available, it calls drain again
and this process is repeated. After the loop in line 8 ends, the actor samples the
delays, with the probability ϕ, by finding the first delay di after which a method
is available, and updates the speculation hit counts accordingly in line 26. The
actor adapts the sampling frequency ϕ in line 29. Upon reaching the sample size
n, the actor sets d_best to the di with the largest value pi − di in line 33, and
then resets the speculation hit counts in line 34.

We implemented our algorithm in the Reactors framework [2] [19], as a mod-
ification of the pluggable scheduling system in Reactors [18]. Context switch in
this framework consists of finding a worker thread, creating a task object, inter-
acting with the work queue, and setting up actor-local state on the worker. The
largest deviation from the analysis in Section 2 is that the number of messages a
reactor can process is upper bound, and kept around 50 – this already amortizes
the context switch times, but ensures fair scheduling (i.e. a bound on latency).
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Fig. 4. Running time comparison between Reactors and Akka on the Savina benchmark
suite (lower better; N – number of messages, P – number of actors, W – streaming
window size, F – computed Fibonacci number)

4 Evaluation

In this section, we (1) show the running times of the benchmarks from the Savina
actor suite [12], using three different processor models. We identify a subset of
benchmarks on which speculative lagging improves performance, and use them
to estimate the context switch time c. We then (2) study the performance of
these benchmarks for a different number of actors in the system. Finally, to
validate that speculative lagging does not degrade performance when it is not
beneficial, we (3) identify a subset of benchmarks for which speculative lagging is
potentially harmful, and compare the running time for different initial sampling
frequencies ϕ0. We use standard performance evaluation techniques [10].

We emphasize that we only expect to see a performance improvement on
specific benchmarks, in which a majority of actors normally spend a lot of time
context switching compared to doing useful work. On other benchmarks, where
the actors’ mailboxes are saturated and the context switches are rare compared
to the amount of useful work, it is unreasonable to expect a speedup – here,
eliminating the context switch is unnoticeable by definition. However, we require
that the addition of our speculation algorithm does not degrade performance on
any benchmark – in the worst case, the performance must stay the same.
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Fig. 5. First Row – Impact of Estimated Context Switch Time C (i7-4900MQ); Second
Row – Impact of Parallelism Level P (i7-4900MQ; C = 2048); Third Row – Impact of
Initial Frequency ϕ0 (i7-4900MQ; C = 2048; note that smallest ϕ0 is 0.1%)

In Fig. 4, we compare the running time between Reactors with specula-
tive lagging and the Akka framework [1] on the Savina benchmark suite, using
three different processors, quad-core 2.8 GHz i7-4900MQ with hyperthreading,
quad-core 3.2 GHz i7-6500, and quad-core 3.3 GHz i5-2500. We distinguish be-
tween benchmarks for which speculative lagging is beneficial, namely, Ping-Pong,
Thread Ring and Fork-Join Throughput, and the remaining benchmarks on
which lagging does not improve performance. We note that Reactors is 2 − 3×
faster on the Counting Actor benchmark due to primitive type specialization
optimization [7], which is only used in that particular benchmark.

In the first row of Fig. 5, we compare the running times for different values of
the estimated context switch time C. Here, C is expressed as the number of spins
in the algorithm from Fig. 3. In Ping-Pong, two actors repetitively exchange N
messages, where N is shown on the x-axis. For C = 128, the running time is
slightly below the Akka version, and converges after C reaches 512. In Thread
Ring, a total of P = 4 actors form a ring, and send a message N/P times



around, and C also converges after 512. In both these benchmarks, the run-
ning time is additionally improved by keeping an actor-local 1-element message
miniqueue, which the actor can steal a message from to avoid context switching.
The miniqueue optimization has no effect on FJ Throughput, where a single
producer sends messages to P = 128 consumer actors in a roundabout manner.
Here, speculative delays cause messages to pile up at non-active actors, which
decreases the overall number of context switches, and improves performance by
up to 10× for C > 1024 (note the logarithmic y-axis).

In the second row in Fig. 5, we analyze the performance of FJ Throughput
by keeping the total number of delivered messages fixed at 3.2 million, and
changing the number of consumers from 1 to 256. The speculation benefits are
less pronounced when there are 2 to 8 consumers, which coincides with the
number of hardware threads in i7-4900MQ – when each consumer is assigned
to a CPU core, speculative delays are just long enough to let the producer run
a full cycle, but messages cannot pile up. The situation is reversed on Thread
Ring, where performance is improved only when ring size is 8 or less. Since there
is a single message passed around, speculative delays only help when each actor
can be pinned to a CPU. For P > 8, Akka is noticeably faster when miniqueues
are disabled in Reactors, since Akka’s scheduler runs the next actor directly.

In Thread Ring (when P � 8), Big and Fibonacci, each actor receives only
very few messages in total, so speculative delays can only slow down the program.
We vary initial sampling frequency ϕ0 in the third row of Fig. 5, and find that the
optimal value is ϕ0 ≤ 0.2% (we note that we used ϕ0 = 0.2% and C = 2048
for the benchmarks in Fig. 4). For comparison, actors in Streaming Ping-
Pong (SPP) always have a large number of messages waiting in the mailbox, so
that benchmark is insensitive to the sampling frequency.

5 Related Work

Speculation is in practice frequently used to improve execution performance.
Many compiler optimizations speculate on program sections that execute less
frequently [8], and optimistic concurrency control is based on the bet that syn-
chronization can be omitted [13]. CPUs speculatively execute instructions out
of order, and speculatively eliding locks improves performance in some cases
[15]. In the context of cluster computing, delaying the start of a job can improve
throughput [21]. To cope with straggler jobs, some cluster runtimes speculatively
execute them in parallel [3].

In the context of concurrent computing, existing related work can be sepa-
rated into two groups. The first group consists of various spin lock techniques,
and was studied extensively [16]. When acquiring a spin lock, a process repeti-
tively polls the availability of a critical section until another process releases the
spin lock. Spin locks were used in a variety of applications, from general-purpose
locking [6] to concurrent data structures [4]. Spin locks are similar to specula-
tive lagging, proposed in this work, but differ in several crucial ways. First, in
speculative lagging, the release of a computing resource is preceded by spinning,



whereas with spin locks, a process spins prior to acquiring a lock. Second, after
acquiring a spin lock, a process may attempt to acquire other locks, potentially
entering a deadlock. In speculative lagging, the wait time is bound, and cannot
lead to a deadlock. Third, spin locks are exposed as a programming primitive,
while speculative lagging is performed transparently by a scheduler.

The second group deals with speculatively applying optimizations to con-
current programs. Optimistic concurrency techniques [13] speculate that it is
more efficient to run a computation without synchronization, and pay the price
only occasionally, compared to always synchronizing concurrent processes. Op-
timistic concurrency is used in databases and in software transactional memory
[11]. Techniques for eliding locks in multithreaded programs were proposed in
the past both as microarchitectural solutions [20] and as compiler techniques
[15]. Some lock implementations speculatively assume that there are no con-
currently executing modifications, and validate memory reads by only reading
the lock state [17], which is cheaper compared to writes. Just-in-time compila-
tion techniques make statistical assumption about the program behaviour, and
deoptimize the program to a slower variant if an assumption is broken [8]. Com-
mon to all of these techniques is the idea of speculation – running a simpler,
cheaper version of the execution, and potentially reverting to the more costly
implementation if it turns out that the assumption is invalidated.

Speculation is often applied blindly, but was in some cases guided by a sta-
tistical model. For example, a statistical model was used in the past to predict
which threads are more likely to acquire a lock next [14].

We are unaware of prior work on speculatively delaying context switches
in actors and other message-based systems, and believe that this is the first
contribution in this area.

6 Conclusion

We proposed a new technique for scheduling message-based programs, called
speculative lagging. The speculation is based on the bet that waiting for another
message is less costly than context-switching to another process. To correctly
detect speculation opportunities at runtime, we proposed a statistical sampling
model that predicts whether delaying a context switch is beneficial. The sam-
pling is adaptive – when it believes that lagging helps, the algorithm increases
the sampling rate, hence reaching the conclusion faster. We showed the bounds
for the expected speedup, and derived their proofs. When applied to an exist-
ing actor system, our speculative lagging algorithm improves performance on
benchmarks that spend considerable time in context switches. We experimen-
tally identified the standard benchmarks in which speculative lagging improves
performance, and we showed that performance is otherwise not degraded.

Our conclusion is that speculative lagging improves program performance by
reducing the amount of context switching. The sampling overhead of detecting
speculation opportunities at runtime can be made arbitrarily small with the
correct choice of initial parameters. We found that the initial sampling frequency



ϕ0 = 0.2% and the maximum spin count C = 2048 work well, but these numbers
may need to be tuned on a per-system basis. Thus, speculation lagging does not
degrade the performance of programs that cannot benefit from context switches,
and it improves the overall throughput otherwise.
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